

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

1.	(<i>a</i>)	Gradien	t of $AB = \frac{\text{incr}}{\text{in or}}$			M1
		Gradien	at of $AB = -\frac{4}{3}$	rease in x	(or equivalent)	A1
	(<i>b</i>)	A corre	ct method for	finding C		M1
		C(-1, 3)	5)			A1
	(<i>c</i>)			to find gradient of L finding the equation of		M1
				candidate's gradient for	0	M1
				$y-3 = \frac{3}{4} [x - (-1)]$		
					date's gradient for AB)	A1
		Equatio	on of <i>L</i> :	3x - 4y + 15 = 0	(convincing, c.a.o.)	A1
	(<i>d</i>)	(i)	Substituting <i>x</i>	= 7, y = k in equation of	of L	M1
		• •	k = 9	,,, , , , , , , , , , , , , , , , , ,		A1
		(ii)	A correct meth	nod for finding the leng	gth of CA(DA)	M1
			CA = 5	(f.t. candidate'	s coordinates for <i>C</i>)	A1
			$DA = \sqrt{125}$			A1
		(iii)	$\sin ADC = \underline{CA}$	$\underline{\mathbf{h}} = \underline{5}$		
				√125		
				ndidate's derived value		M1
			$\sin ADC = \underline{CA}$		(c.a.o.)	A1
			DA	$1 \sqrt{5}$		

(a)

$$\frac{10}{7+2\sqrt{11}} = \frac{10(7-2\sqrt{11})}{(7+2\sqrt{11})(7-2\sqrt{11})}$$
M1

 $7 + 2\sqrt{11} \quad (7 + 2\sqrt{11})(7 - 2\sqrt{11})$ Denominator: 49 - 44 A1

$$\frac{10}{7+2\sqrt{11}} = \frac{10(7-2\sqrt{11})}{5} = 2(7-2\sqrt{11}) = 14 - 4\sqrt{11} \quad \text{(c.a.o.) A1}$$

Special case

If M1 not gained, allow B1 for correctly simplified denominator following multiplication of top and bottom by $7 + 2\sqrt{11}$

(b) $(4\sqrt{3})^2 = 48$ B1

$$\sqrt{8} \times \sqrt{50} = 20$$

$$5\sqrt{63} = 15$$
B1
B1

$$\frac{5\sqrt{65}}{\sqrt{7}} = 13$$
(4 $\sqrt{3}$)² - ($\sqrt{8} \times \sqrt{50}$) - 5 $\sqrt{63}$ = 13 (c.a.o.) B1

$$(4\sqrt{3})^2 - (\sqrt{8} \times \sqrt{50}) - \frac{5\sqrt{63}}{\sqrt{7}} = 13$$
 (c.a.o.) B1

3. (a)
$$\underline{dy} = 4x - 11$$
 (an attempt to differentiate, at least
 dx one non-zero term correct) M1
An attempt to substitute $x = 2$ in candidate's expression for \underline{dy} m1
Use of candidate's numerical value for \underline{dy} as gradient of tangent at P
 dx m1
Equation of tangent at P : $y - (-1) = -3(x-2)$ (or equivalent)
(c.a.o.) A1
(b) Gradient of tangent at $Q = 9$
An attempt to equate candidate's expression for \underline{dy} and candidate's
 dx
derived value for gradient of tangent at Q
 $4x - 11 = 9 \Rightarrow x = 5$
(f.t. one error in candidate's expression for \underline{dy}) A1
 dx

4.
$$(1-2x)^6 = 1 - 12x + 60x^2 - 160x^3 + \dots$$
 B1 B1 B1 B1
(-1 for further incorrect simplification)

5. (a)
$$a = 3$$
 B1

$$b = -2 \qquad B1$$

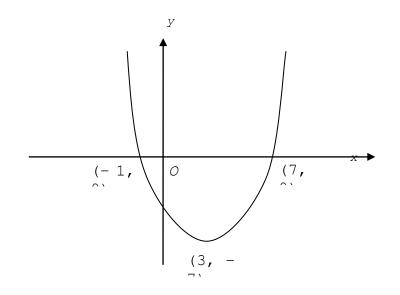
$$c = 17 \qquad B1$$

(b)Stationary value = 17(f.t. candidate's value for
$$c$$
)B1This is a minimumB1

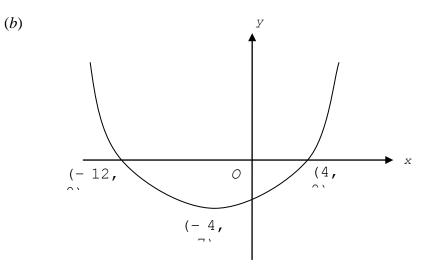
6.	(<i>a</i>)	An expression for $b^2 - 4ac$, with at least two of a , b , c correct $b^2 - 4ac = (2k-1)^2 - 4(k^2 - k + 2)$	M1 A1
		$b^2 - 4ac = -7$ (c.a.o.)	A1
		candidate's value for $b^2 - 4ac < 0$ (\Rightarrow no real roots)	A1
	(<i>b</i>)	Finding critical values $x = -6$, $x = \frac{2}{3}$ A statement (mathematical or otherwise) to the effect that	B1
		$x < -6 \text{ or }^{2}/_{3} < x$ (or equivalent)	
		(f.t critical values ± 6 , $\pm^2/_3$ only)	B2
		Deduct 1 mark for each of the following errors	
		the use of \leq rather than $<$	

the use of the word 'and' instead of the word 'or'

7.	<i>(a)</i>	$y + \delta y = 3(x + \delta x)^2 - 7(x + \delta x) + 5$	B1
		Subtracting <i>y</i> from above to find δy	M1
		$\delta y = 6x\delta x + 3(\delta x)^2 - 7\delta x$	A1
		Dividing by δx and letting $\delta x \to 0$	M1
		$\underline{dy} = \text{limit} \ \underline{\delta y} = 6x - 7$	(c.a.o.) A1
		$\mathrm{d}x \overset{\delta x \to 0}{\longrightarrow} \delta x$	


(b) Required derivative =
$$\frac{2}{3} \times \frac{1}{4} \times x^{-3/4} + 12 \times (-3) \times x^{-4}$$
 B1, B1

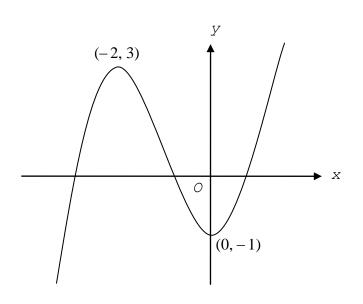
8.	(<i>a</i>)	Attempting to find $f(r) = 0$ for	some value of <i>r</i>	M1
		$f(2) = 0 \implies x - 2$ is a factor		A1
		$f(x) = (x-2)(6x^2 + ax + b)$ with	th one of <i>a</i> , <i>b</i> correct	M 1
		$f(x) = (x-2)(6x^2 - 7x - 3)$		A1
		f(x) = (x-2)(3x+1)(2x-3)	(f.t. only $6x^2 + 7x - 3$ in above line) A1
		$x = 2, -\frac{1}{3}, \frac{3}{2}$	(f.t. for factors $3x \pm 1$, $2x \pm 3$)	A1
		Special case		
		Candidates who, after having	found $x - 2$ as one factor, then find of	one


Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 4 marks

(b) Use of
$$g(a) = 11$$
 M1
 $a^3 - 53 = 11 \Rightarrow a = 4$ A1

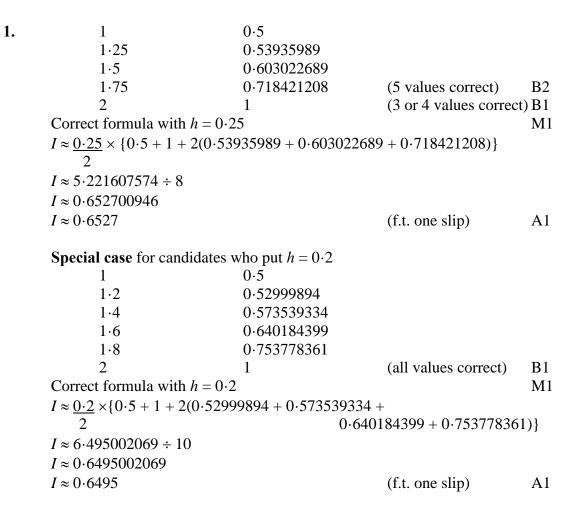
9. (*a*)

Concave up curve and y-coordinate of minimum $= -7$	B1
<i>x</i> -coordinate of minimum $= 3$	B1
Both points of intersection with <i>x</i> -axis	B1


Concave up curve and <i>y</i> -coordinate of minimum $= -7$	B1
<i>x</i> -coordinate of minimum $= -4$	B1
Both points of intersection with x-axis	B 1

10.	(<i>a</i>)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6$	x			B1
		Putting deriv	1			M1
		x = 0, -2	dx (both correct)	(f.t. candidate		A1
		Stationary p	oints are $(0, -1)$ and $(-2, 3)$	(both correct)	dx	A1

Stationary points are (0, -1) and (-2, 3) (both correct) (c.a.o) AI A correct method for finding nature of stationary points yielding either (0, -1) is a minimum point (f.t. candidate's derived values) M1 or (-2, 3) is a maximum point Correct conclusion for other point


(f.t. candidate's derived values) A1

(b)

Graph in shape of a positive cubic with two turning points	M1
Correct marking of both stationary points	
(f.t. candidate's derived maximum and minimum points)	A1

One positive root (f.t. the number of times the candidate's *(c)* curve crosses the positive *x*-axis) B1

Note: Answer only with no working earns 0 marks

2. (*a*)

<i>(a)</i>	$10\cos^2\theta + 3\cos\theta = 4(1-\cos^2\theta) - 2$	
	(correct use of $\sin^2\theta = 1 - \cos^2\theta$)	M1
	An attempt to collect terms, form and solve quadratic equation	
	in $\cos \theta$, either by using the quadratic formula or by getting the	
	expression into the form $(a \cos \theta + b)(c \cos \theta + d)$,	
	with $a \times c =$ candidate's coefficient of $\cos^2\theta$ and $b \times d =$ candidate	, 'a
	constant	ml
	$14\cos^2\theta + 3\cos\theta - 2 = 0 \Longrightarrow (2\cos\theta + 1)(7\cos\theta - 2) = 0$	
	$\Rightarrow \cos \theta = \frac{2}{7}, \qquad \cos \theta = -\frac{1}{2} \qquad (c.a.o.)$	A1
	7 2	
	$\theta = 73.40^{\circ}, 286.60^{\circ}$	B1
		B1
	Note: Subtract 1 mark for each additional root in range for each	
	branch, ignore roots outside range.	
	$\cos \theta = +, -,$ f.t. for 3 marks, $\cos \theta = -, -,$ f.t. for 2 marks	
	$\cos \theta = +, +, \text{ f.t. for 1 mark}$	
	$\cos \theta = +, +, 1.1.$ for 1 mark	
<i>(b)</i>	$3x - 21^\circ = -54^\circ, 234^\circ, 306^\circ, 594$ (one value)	B1
(0)		B1
	Note: Subtract (from final two marks) 1 mark for each additional	
		1001
	in range, ignore roots outside range.	

(c) Use of
$$\frac{\sin \phi}{\cos \phi} = \tan \phi$$
 M1

(a)
$$11^2 = 5^2 + x^2 - 2 \times 5 \times x \times \frac{2}{5}$$
 (correct use of cos rule) M1
An attempt to collect terms, form and solve quadratic equation
in *x*, either by using the quadratic formula or by getting the
expression into the form $(x + b)(x + d)$, with $b \times d$ = candidate's
constant m1
 $x^2 - 4x - 96 = 0 \Rightarrow x = 12$ (c.a.o.) A1

(b)
$$\frac{\sin XZY}{32} = \frac{\sin 19^{\circ}}{15}$$

(substituting the correct values in the correct places in the sin rule) M1
 $XZY = 44^{\circ}, 136^{\circ}$ (at least one value) A1
Use of angle sum of a triangle = 180° M1
 $YXZ = 117^{\circ}, 25^{\circ}$ (both values)
(f.t. candidate's values for XZY provided both M's awarded) A1

3.

4. (a)
$$S_n = a + [a + d] + ... + [a + (n - 1)d]$$

(at least 3 terms, one at each end) B1
 $S_n = [a + (n - 1)d] + [a + (n - 2)d] + ... + a$
Either:
 $2S_n = [a + a + (n - 1)d] + [a + a + (n - 1)d] + ... + [a + a + (n - 1)d]$
Or:
 $2S_n = [a + a + (n - 1)d]$ n times M1
 $2S_n = n[2a + (n - 1)d]$
 $S_n = n[2a + (n - 1)d]$ (convincing) A1

$$(b)$$
 $a + 2d + a + 3d + a + 9d = 79$ B1 $a + 5d + a + 6d = 61$ B1An attempt to solve the candidate's linear equations simultaneously by
eliminating one unknownM1 $a = 3, d = 5$ (both values)(c.a.o.)

(c)
$$a = 15, d = -2$$

 $S_n = \frac{n}{2} [2 \times 15 + (n-1)(-2)]$ (f.t. candidate's d) M1
 $S_n = n(16 - n)$ (c.a.o.) A1

5. (a)
$$a + ar = 72$$

 $a + ar^2 = 120$
An attempt to solve candidate's equations simultaneously by correctly
eliminating a
 $3r^2 - 5r - 2 = 0$
(convincing) A1

(b) An attempt to solve quadratic equation in r, either by using the quadratic formula or by getting the expression into the form
$$(ar + b)(cr + d), \text{ with } a \times c = 3 \text{ and } b \times d = -2 \qquad \text{M1}$$

$$(3r + 1)(r - 2) = 0 \Rightarrow r = -\frac{1}{3} \qquad \text{A1}$$

$$a \times (1 - \frac{1}{3}) = 72 \Rightarrow a = 108 \quad \text{(f.t. candidate's derived value for } r\text{) B1}$$

$$S_{\infty} = \frac{108}{1 - (-\frac{1}{3})} \qquad \text{(correct use of formula for } S_{\infty}, \text{ f.t. candidate's } \text{derived values for } r \text{ and } p \text{ M1}$$

$$S_{\infty} = 81 \qquad (\text{c.a.o.) A1}$$

6. (a)
$$3 \times \frac{x^{3/2}}{3/2} - 2 \times \frac{x^{-2/3}}{-2/3} + c$$
 (-1 if no constant term present) B1 B1

(b) (i)
$$36 - x^2 = 5x$$
 M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = -36$ m1
 $(x - 4)(x + 9) = 0 \Rightarrow A(4, 20)$ (c.a.o.) A1
 $B(6, 0)$ B1

(ii) Area of triangle =
$$40$$
 (f.t. candidate's coordinates for A) B1

Area under curve =
$$\int_{4}^{6} (36 - x^2) dx$$
 (use of integration) M1

$$\int 36 \, \mathrm{d}x = 36x \text{ and } \int x^2 \, \mathrm{d}x = \frac{x^3}{3}$$
B1

Area under curve = [(216 - 216/3) - (144 - 64/3)]

(substitution of candidate's limits) m1 = 64/3

Use of candidate's, x_A , x_B as limits and trying to find total area by adding area of triangle and area under curve m1 Total area = 40 + 64/3 = 184/3 (c.a.o.) A1 *(a)* Let $p = \log_a x$ Then $x = a^p$ (relationship between log and power) B1 $x^n = a^{pn}$ (the laws of indices) B1 $\therefore \log_a x^n = pn$ (relationship between log and power) $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1 *(b)* **Either:** $(x/2 - 3) \log_{10} 9 = \log_{10} 6$ (taking logs on both sides and using the power law) M1 $x = 2(\log_{10} 6 + 3\log_{10} 9)$ A1 $\log_{10} 9$ x = 7.631(f.t. one slip, see below) A1 Or: (rewriting as a log equation) $x/2 - 3 = \log_{9} 6$ **M**1 $x = 2(\log_9 6 + 3)$ A1 x = 7.631(f.t. one slip, see below) A1 Note: an answer of x = -4.369 from $x = 2(\log_{10} 6 - 3\log_{10} 9)$ $\log_{10}9$ earns M1 A0 A1 an answer of x = 3.815 from $x = log_{10}6 + 3 log_{10}9$ $\log_{10}9$ earns M1 A0 A1 an answer of x = 1.908 from $x = (\log_{10} 6 + 3 \log_{10} 9)$ $2\log_{10}9$ earns M1 A0 A1 an answer of x = 4.631 from $x = 2\log_{10} 6 + 3\log_{10} 9$ $\log_{10} 9$ earns M1 A0 A1

Note: Answer only with no working earns 0 marks

(<i>c</i>)	$\log_a (x-2) + \log_a (4x+1) = \log_a [(x-2) (4x+1)]$	1)]	(addition law)	B1
	$2\log_a(2x-3) = \log_a(2x-3)^2$		(power law)	B1
	$(x-2) (4x+1) = (2x-3)^2$	(re	emoving logs)	M1
	$x = 2 \cdot 2$		(c.a.o.)	A1

Note: Answer only with no working earns 0 marks

8.	<i>(a)</i>	A(2, -3)	B1
		A correct method for finding the radius	M1
		Radius = $\sqrt{12}$	A1

(<i>b</i>)	$AT^{2} = 61$	(f.t. candidate's coordinates for A)	B1
	Use of $RT^2 = A$	$T^2 - AR^2$	M1
	RT = 7	(f.t. candidate's radius and coordinates for A)	A1

7.

9. Area of sector $POQ = \frac{1}{2} \times r^2 \times 1.12$ Area of triangle $POQ = \frac{1}{2} \times r^2 \times \sin(1.12)$ $10.35 = \frac{1}{2} \times r^2 \times 1.12 - \frac{1}{2} \times r^2 \times \sin(1.12)$ (f.t. candidate's expressions for area of sector and area of triangle) $r^2 = \frac{2 \times 10.35}{(1.12 - 0.9)}$ r = 9.7(o.e.) (c.a.o.) A1 (f.t. one numerical slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{1} e^{x^{2} + 3} dx = e^{3} \times \int_{0}^{1} e^{x^{2}} dx$$
 M1
$$\int_{0}^{1} e^{x^{2} + 3} dx = 29.399$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

(a)
$$\phi = 360^\circ - \theta$$
 or $\phi = -\theta$ and noting that $\cos \theta = \cos \phi$ B1
 $\sin \theta \neq \sin \phi$ (including correct evaluations) B1

(b)
$$13 \tan^2 \theta = 5(1 + \tan^2 \theta) + 6 \tan \theta.$$

(correct use of $\sec^2 \theta = 1 + \tan^2 \theta$) M1
An attempt to collect terms, form and solve quadratic equation
in tan θ , either by using the quadratic formula or by getting the
expression into the form $(a \tan \theta + b)(c \tan \theta + d)$,
with $a \times c$ = candidate's coefficient of $\tan^2 \theta$ and
 $b \times d$ = candidate's constant
 $8 \tan^2 \theta - 6 \tan \theta - 5 = 0 \Rightarrow (4 \tan \theta - 5)(2 \tan \theta + 1) = 0$

$$8 \tan^2 \theta - 6 \tan \theta - 5 = 0 \Longrightarrow (4 \tan \theta - 5)(2 \tan \theta + 1) = 0$$

$$\Rightarrow \tan \theta = \frac{5}{4}, \tan \theta = -\frac{1}{2}$$
 (c.a.o.) A1

$$\begin{array}{ll} \theta = 51 \cdot 34^{\circ}, 231 \cdot 34^{\circ} & \text{B1} \\ \theta = 153 \cdot 43^{\circ}, 333 \cdot 43^{\circ} & \text{B1} & \text{B1} \\ \text{Note: Subtract 1 mark for each additional root in range for each} \\ \text{branch, ignore roots outside range.} \\ \tan \theta = +, -, \text{ f.t. for 3 marks, } \tan \theta = -, -, \text{ f.t. for 2 marks} \\ \tan \theta = +, +, \text{ f.t. for 1 mark} \end{array}$$

3. (a)
$$\underline{d}(x^3) = 3x^2$$
 $\underline{d}(-3x-2) = -3$ B1

$$\frac{\mathrm{d}(-4x^2y) = -4x^2\mathrm{d}y - 8xy}{\mathrm{d}x}$$
B1

$$\frac{d}{d(2y^3)} = 6y^2 \frac{dy}{dx}$$
B1

$$x = 3, y = 1 \Longrightarrow \underline{dy} = \underline{6} = \underline{1}$$
 (c.a.o.) B1

(b) (i) Differentiating sin *at* and cos *at* with respect to *t*, at least one
correct M1
candidate's *x*-derivative =
$$a \cos at$$
,
candidate's *y*-derivative = $-a \sin at$ (both values) A1
 $\frac{dy}{dy} = \frac{candidate's y-derivative}{dx}$ M1
 $\frac{dy}{dx} = -\tan at$ (c.a.o.) A1
 $\frac{dy}{dt} = -a \sec^2 at$ (f.t. candidate's expression for $\frac{dy}{dx}$) B1
 $\frac{dt}{dt} \frac{dy}{dt} = -a \sec^2 at$ (f.t. candidate's *x*-derivative M1
 $\frac{dx}{dt} = -a \sec^2 at$ (f.t. candidate's *x*-derivative M1
 $\frac{dx}{dt} = -a \sec^2 at$ (f.t. candidate's *x*-derivative M1
 $\frac{d^2y}{dt^2} = -\sec^2 at$ (c.a.o.) A1

2.

4. $f(x) = \cos x - 5x + 2$ M1 An attempt to check values or signs of f(x) at x = 0, $x = \pi/4$ $f(0) = 3 > 0, f(\pi/4) = -1.22 < 0$ Change of sign $\Rightarrow f(x) = 0$ has root in $(0, \pi/4)$ A1 $x_0 = 0.6$ $x_1 = 0.565067123$ **B**1 $x_2 = 0.568910532$ $x_3 = 0.568497677$ (x_4 correct to 5 decimal places) $x_4 = 0.568542145 = 0.56854$ **B**1 An attempt to check values or signs of f(x) at x = 0.568535, x = 0.568545 M1 $f(0.568535) = 1.563 \times 10^{-5} > 0, f(0.568545) = -3.975 \times 10^{-5} < 0$ A1 Change of sign $\Rightarrow \alpha = 0.56854$ correct to five decimal places A1

Note: 'change of sign' must appear at least once

5. (a)
$$\frac{dy}{dx} = \frac{a+bx}{7+2x-3x^2}$$
 (including $a = 1, b = 0$) M1

$$\frac{dy}{dx} = 2-6x$$
 A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2-6x}{7+2x-3x^2}$$
A1

(b)
$$\underline{dy} = e^{\tan x} \times f(x)$$
 $(f(x) \neq 1, 0)$ M1

$$\frac{dy}{dx} = e^{\tan x} \times \sec^2 x$$
 A1

(c)
$$\frac{dy}{dx} = 5x^2 \times f(x) + \sin^{-1}x \times g(x) \qquad (f(x), g(x) \neq 1, 0) \qquad M1$$

$$\frac{dy}{dx} = 5x^2 \times f(x) + \sin^{-1}x \times g(x)$$
(either $f(x) = \frac{1}{\sqrt{1-x^2}}$ or $g(x) = 10x$) A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^2 \times \frac{1}{\sqrt{1-x^2}} + 10x \times \sin^{-1}x$$
 A1

6. (a) (i)
$$\int_{J} 3e^{2-x/4} dx = k \times 3e^{2-x/4} + c$$
 (k = 1, -¹/₄, 4, -4) M1
$$\int_{J} 3e^{2-x/4} dx = -4 \times 3e^{2-x/4} + c$$
 A1

(ii)
$$\int \frac{9}{(2x-3)^6} dx = \frac{k \times 9 \times (2x-3)^{-5}}{-5} + c \quad (k = 1, 2, \frac{1}{2}) \quad M1$$

$$\int \frac{9}{(2x-3)^6} dx = \frac{9 \times (2x-3)^{-5}}{-5 \times 2} + c$$
 A1

(iii)
$$\int \frac{7}{3x+1} dx = k \times 7 \times \ln |3x+1| + c$$
 $(k = 1, 3, \frac{1}{3})$ M1

$$\int \frac{7}{3x+1} dx = \frac{7}{3} \times \ln|3x+1| + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

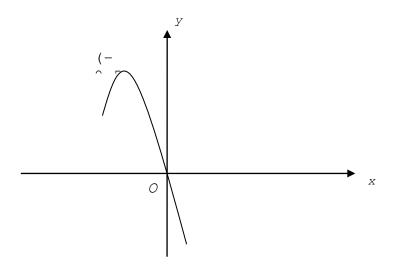
(b)
$$\int \sin 2x \, dx = k \times \cos 2x$$
 $(k = -1, -2, \frac{1}{2}, -\frac{1}{2})$ M1

$$\int_{1}^{3} \sin 2x \, dx = -\frac{1}{2} \times \cos 2x \qquad A1$$

$$k \times (\cos 2a - \cos 0) = \frac{1}{4}$$

(f.t. candidate's value for k) M1

$$\cos 2a = \frac{1}{2}$$
 (c.a.o.) A1
 $a = \frac{\pi}{6}$ (f.t. $\cos 2a = h$ provided both M's are awarded) A1


$$a = \pi/6$$
 (f.t. cos $2a = b$ provided both M's are awarded) A1

7. (a)
$$9|x-3| = 6$$

 $x-3 = \pm^{2}/_{3}$ (f.t. candidate's $a|x-3| = b$,
with at least one of a, b correct) B1
 $x = \frac{11}{3}, \frac{7}{3}$ (f.t. candidate's $a|x-3| = b$,
with at least one of a, b correct) B1

(b) Trying to solve either
$$5x - 2 \le 3$$
 or $5x - 2 \ge -3$ M1
 $5x - 2 \le 3 \Rightarrow x \le 1$
 $5x - 2 \ge -3 \Rightarrow x \ge -\frac{1}{5}$ (both inequalities) A1
Required range: $-\frac{1}{5} \le x \le 1$ (f.t. one slip) A1

Alternative mark scheme $(5x - 2)^2 < 0$ (form

$(5x-2)^2 \le 9$	(forming and trying to solve quadratic	c) M1
Critical points $x = -\frac{1}{2}$	$_{5} \text{ and } x = 1$	A1
Required range: $-\frac{1}{5} \le$	$\leq x \leq 1$ (f.t. one slip)	A1

Concave down curve passing through the origin with maximum j	point in the
second quadrant	B1
x-coordinate of stationary point = -0.5	B1
y-coordinate of stationary point $= 8$	B1

9. (a) (i)
$$f'(x) = \frac{(x^2+5) \times f(x) - (x^2+3) \times g(x)}{(x^2+5)^2}$$
 (f(x), g(x) \neq 1) M1

$$f'(x) = \frac{(x^2 + 5) \times 2x - (x^2 + 3) \times 2x}{(x^2 + 5)^2}$$
A1

$$f'(x) = \frac{4x}{(x^2 + 5)^2}$$
 (c.a.o.) A1

B1

f'(x) < 0 since numerator is negative and denominator is positive

(ii)
$$R(f) = (^{3}/_{5}, 1)$$
 B1 B1

(b) (i)
$$x^2 = 3 - 5y \quad (\text{o.e.})$$
 (condone any incorrect signs) M1
 $x = (\pm) \left[\frac{3 - 5y}{y - 1} \right]^{1/2}$ (f.t. at most one incorrect sign) A1
 $x = - \left[\frac{3 - 5y}{y - 1} \right]^{1/2}$ (f.t. at most one incorrect sign) A1
 $f^{-1}(x) = - \left[\frac{3 - 5x}{x - 1} \right]^{1/2}$ (c.a.o.) A1

(ii)
$$R(f^{-1}) = (-\infty, 0), D(f^{-1}) = (^{3}/_{5}, 1),$$

(both intervals, f.t. candidate's $R(f)$) B1

10.	$gg(x) = (3(g(x))^{2} + 7)^{1/2} \text{ or } gg(x) = gg(x) = (3(3x^{2} + 7) + 7)^{1/2}$	$((3x^2+7)^{1/2})$		M 1
	$gg(x) = (3(3x^2 + 7) + 7)^{1/2}$			A1
	An attempt to solve the equation by	squaring both sides		M1
	$gg(x) = 8 \Longrightarrow 9x^2 = 36$	(o.e.)	(c.a.o.)	A1
	$x = \pm 2$		(c.a.o.)	A1

1. (a) $f(x) = \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$ (correct form) M1 $11 + x - x^2 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)$ (correct clearing of fractions and genuine attempt to find coefficients) A = 1, C = 3, B = -2 (2 correct coefficients) A1 (third coefficient, f.t. one slip in enumeration of other 2 coefficients) A1 (b) $f'(x) = -\frac{1}{(x+1)^2} + \frac{2}{(x-2)^2} - \frac{6}{(x-2)^3}$ (o.e.)

 $(x + 1)^{2} (x - 2)^{2} (x - 2)^{3}$ (f.t. candidate's values for A, B, C) (at least one of the first two terms) B1 (third term) B1

$$f'(0) = \frac{1}{4}$$
 (c.a.o.) B1

2. $3y^{2} \frac{dy}{dx} - 8x - 3x \frac{dy}{dx} - 3y = 0$ $\begin{cases} 3y^{2} \frac{dy}{dx} - 8x \\ dx \end{cases}$ B1 $\begin{cases} 3y^{2} \frac{dy}{dx} - 8x \\ dx \end{cases}$ B1

$$\begin{bmatrix} -3x \underline{dy} - 3y \\ dx \end{bmatrix}$$
B1

Either $\underline{dy} = \underline{3y + 8x}_{3y^2 - 3x}$ or $\underline{dy} = \underline{1}_{3y}$ (o.e.) (c.a.o.) B1

Equation of tangent: $y - (-3) = \frac{1}{3}(x - 2)$ $\begin{cases} f.t. candidate's value for <math>\frac{dy}{dx} \end{cases}$ B1

3.	(<i>a</i>)	An atte in sin e expres	$(2 \sin^2 \theta) = 1 - 2 \sin \theta.$ (corrected) empt to collect terms, form an θ , either by using the quadratices in the form ($a \sin \theta + b \times c$ = candidate's coefficient	nd solve quadratic equal to c formula or by gett $p(c \sin \theta + d)$,	quation	M1
			d = candidate's constant			m1
			$\theta - 2\sin\theta - 3 = 0 \Longrightarrow (4\sin\theta - 4)$	$-3)(2\sin\theta + 1) = 0$		
			$\theta = \frac{3}{4}, \sin \theta = -\frac{1}{2}$		(c.a.o.)	A1
		$\theta = 48$	·59°, 131·41°			B1
		$\theta = 21$	0°, 330°		B1	B1
		Note:	Subtract 1 mark for each add branch, ignore roots outside $\sin \theta = +, -, \text{ f.t. for 3 marks},$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$	range.		
	$\langle 1 \rangle$		D 17			
	(<i>b</i>)	(i)	R = 17 Correctly expanding $\sin (x + or 17 \sin \alpha = 15 \text{ or } \tan \alpha = 12)$	15 to find α	$17 \cos \alpha =$	B1 8
	(b)	(i)	Correctly expanding $\sin(x +$	$\frac{15}{8}$ to find α		
	(b)	(i)	Correctly expanding $\sin(x +$	15 to find α		8
	(b)	(i) (ii)	Correctly expanding $\sin (x + \mathbf{or} \ 17 \sin \alpha = 15 \ \mathbf{or} \ \tan \alpha = 12$	$\frac{15}{8}$ to find α	llue for <i>R</i>) (c.a.o)	8 M1 A1
	(b)		Correctly expanding $\sin (x + \alpha - 17 \sin \alpha = 15 \text{ or } \tan \alpha = \frac{1}{2}$ $\alpha = 61.93^{\circ}$ $\sin (x + \alpha) = \frac{11}{17}$ $x + 61.93^{\circ} = 40.32^{\circ}, 139.68$	$\frac{15}{8}$ to find α (f.t. candidate's va (f.t. candidate's va	llue for <i>R</i>) (c.a.o)	8 M1 A1

4.

Volume = $\pi \int_{3}^{4} \left[\sqrt{x} + \frac{5}{\sqrt{x}} \right]^2 dx$ B1 $\left[\sqrt{x} + 5 \right]^2 = \left[x + 10 + 25 \right]$ B1

$$\begin{vmatrix} \sqrt{x} + \frac{5}{\sqrt{x}} \end{vmatrix}^2 = \begin{vmatrix} x + 10 + \frac{25}{x} \end{vmatrix}$$

B1
$$\int \left[ax + b + c \right] dx = ax^2 + bx + c \ln x \text{ where } c \neq 0 \text{ and at least one of } a, b \neq 0$$

$$\int \begin{bmatrix} x \\ x \end{bmatrix} = \frac{1}{2}$$
B1
Correct substitution of correct limits in candidate's integrated expression M1
of form $ax^2 + bx + c \ln x$, where $c \neq 0$ and at least one of $a, b \neq 0$

or form
$$\underline{ax} + bx + c \ln x$$
, where $c \neq 0$ and at least one of $a, b \neq 0$
2
Volume = 65(.0059...) (c.a.o.) A1

5.
$$\begin{pmatrix} 1+\frac{x}{3} \end{pmatrix}^{-1/2} = 1 - \frac{x}{6} + \frac{x^2}{24}$$

$$\begin{pmatrix} 1-\frac{x}{6} \end{pmatrix}$$
 B1
$$\begin{pmatrix} \frac{x^2}{24} \end{pmatrix}$$
 B1

$$|x| < 3 \text{ or } -3 < x < 3$$

$$\begin{bmatrix} 16\\15 \end{bmatrix}^{-1/2} \approx 1 - \frac{1}{30} + \frac{1}{600}$$
(f.t. candidate's coefficients)
B1
$$\sqrt{15} \approx \frac{581}{150}$$
(c.a.o.)
B1

rrect)
M1
a.o.) A1
m1
m1
c.a.o.) A1
M1
A1
M 1
A1
A1
(c.a.o.) A1
2

7. (a)
$$u = x \Rightarrow du = dx$$
 (o.e.) B1
 $du = e^{-2x} dx \Rightarrow u = -1e^{-2x}$ (o.e.) B1

$$\int r e^{-2x} dr = r \times -1 e^{-2x} - (-1e^{-2x} dr)$$
(0.c.) B1

$$\int x e^{-2x} dx = x \times -\underline{1} e^{-2x} - \int -\underline{1} e^{-2x} dx$$
 M1
$$\int x e^{-2x} dx = -\underline{x} e^{-2x} - \underline{1} e^{-2x} + c$$
 (c.a.o.) A1

(b)
$$\int \frac{1}{x(1+3\ln x)} dx = \int \frac{k}{u} du \qquad (k = \frac{1}{3} \text{ or } 3) \qquad \text{M1}$$
$$\int \frac{a}{u} du = a \ln u \qquad B1$$

$$\int_{1}^{e} \frac{1}{x(1+3\ln x)} dx = k \left[\ln u \right]_{1}^{4} \text{ or } k \left[\ln (1+3\ln x) \right]_{1}^{e}$$
B1

$$\int_{1}^{e} \frac{1}{x(1+3\ln x)} \, dx = 0.4621$$
 (c.a.o.) A1

8. (a)
$$\frac{dV}{dt} = -kV^3$$
 (where $k > 0$) B1

(b)
$$\int \frac{\mathrm{d}V}{V^3} = -\int k \,\mathrm{dt}$$
 (o.e.) M1

$$-\frac{V}{2} = -kt + c \qquad A1$$

$$c = -\frac{1}{7200} \qquad (c.a.o.) \qquad A1$$

$$V^{2} = \frac{3600}{7200kt + 1} = \frac{3600}{at + 1}$$
 (convincing)
where $a = 7200k$ A1

(c)Substituting
$$t = 2$$
 and $V = 50$ in expression for V^2 M1 $a = 0.22$ A1Substituting $V = 27$ in expression for V^2 with candidate's value for a M1 $t = 17.9$ (c.a.o)A1

9. (<i>a</i>)	An attempt to evaluate a.b Correct evaluation of a.b and $\mathbf{a.b} \neq 0 \Rightarrow \mathbf{a}$ and b not perpendicular	M1 : A1
(b)	(i) $AB = 2i + j + 2k$ (ii) Use of $a + \lambda AB$, $a + \lambda(b - a)$, $b + \lambda AB$ or $b + \lambda(b - a)$ to f vector equation of AB $r = 4i + j - 6k + \lambda (2i + j + 2k)$ (o.e.) (f.t. if candidate uses his/her expression for AB)	B1 ïnd M1 A1
(c)	$4 + 2\lambda = 2 - 2\mu$ $1 + \lambda = 6 + \mu$ $-6 + 2\lambda = p + 3\mu$ (o.e.) (comparing coefficients, at least one equation correct) (at least two equations correct) Solving the first two of the equations simultaneously (f.t. for all 3 marks if candidate uses his/her expression for AB) $\lambda = 2, \mu = -3$ (o.e.) (c.a.o.) $p = 7$ from third equation (f.t. candidates derived values for λ and μ)	M1 A1 m1 A1 A1

10.
$$a^2 = 5b^2 \Rightarrow (5k)^2 = 5b^2 \Rightarrow b^2 = 5k^2$$
B1 \therefore 5 is a factor of b^2 and hence 5 is a factor of bB1 \therefore a and b have a common factor, which is a contradiction to the original assumptionB1

Ques	Solution	Mark	Notes
1	$S_n = \sum_{r=1}^n r^3 - \sum_{r=1}^n r$	M1	
	$=\frac{n^2(n+1)^2}{4}-\frac{n(n+1)}{2}$	A1A1	
	4 2		
	$=\frac{n(n+1)}{4}\left(n^2+n-2\right)$	A1	
	$= \frac{n(n-1)(n+1)(n+2)}{4}$ (1+2i) ² = 1+4i+4i ²		
	4	A1	
2(a)		M1 A1	Award for 3 reasonable terms.
	= -3 + 4i	AI	
	$z = \frac{(-3+4i)(2-i)}{(2+i)(2-i)}$	M1	
	$=\frac{-6+8i+3i-4i^2}{5}$	A1A1	A1 numerator, A1 denominator
	5		FT 1 arithmetic slip from line 2
	$=\frac{-2+11i}{5}(-0.4+2.2i)$ cao	A1	
(b)	5		
	$r = \sqrt{5}$ (2.24)	B1	FT on line above for <i>r</i> .
	$\tan^{-1}(-5.5) = -1.39 \ (-79.6^{\circ}) \text{ or}$	B1 B1	FT on line above for this B1
	$\tan^{-1}(5.5) = 1.39 \ (79.6^{\circ})$		
	$\theta = 1.75 \ (100.3^{\circ})$	B 1	FT only if in 2 nd or 3 rd quad
3(a)	$\alpha + \beta = -\frac{1}{2}, \alpha\beta = 1$	B1	
	Δ		
	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$	M1	
	$- (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$		
	$=\frac{\alpha + \beta + \alpha + \beta}{\alpha \beta}$	M1A1	
	$=\frac{(-1/2)^3 - 3 \times 1 \times (-1/2)}{1}$		
	=1	A1	
	$=\frac{11}{8}$		
(b)	8 Consider		
		M1A1	
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = 1$	WIIAI	
	The required equation is		
	$x^{2} - \frac{11}{8}x + 1 = 0$ (8 $x^{2} - 11x + 8 = 0$) cao	B 1	
	8		

4(a)(i)			
4(a)(i)	Cofactor matrix = $\begin{bmatrix} -13 & 9 & 1 \\ -18 & 13 & 1 \\ 14 & -10 & -1 \end{bmatrix}$	M1 A1	Award M1 if at least 5 cofactors are correct.
	Adjugate matrix = $\begin{bmatrix} -13 & -18 & 14 \\ 9 & 13 & -10 \\ 1 & 1 & -1 \end{bmatrix}$	A1	No FT on cofactor matrix.
(ii)	Determinant = $3(7 - 20) + 4(16 - 7) + 2(5 - 4)$ = -1	M1 A1	
	Inverse matrix = $\begin{bmatrix} 13 & 18 & -14 \\ -9 & -13 & 10 \\ -1 & -1 & 1 \end{bmatrix}$	A1	FT the adjugate
(b)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 13 & 18 & -14 \\ -9 & -13 & 10 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \\ 10 \end{bmatrix}$	M1	
	$= \begin{bmatrix} -1\\0\\2 \end{bmatrix}$	A1	FT their inverse matrix.
5(a)	By reduction to echelon form, $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$	M1	
	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -5 \\ 0 & -2 & -10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ k-6 \end{bmatrix}$ It follows now that $k-6 = -2$	A1 A1 M1	
(b)	$k = 4$ Put $z = \alpha$.	A1 M1	
(b)	Then $y = 1 - 5\alpha$ And $x = 7\alpha$	A1 A1	
6	Putting $n = 1$, the expression gives 3 which is divisible by 3 so the result is true for $n = 1$ Assume that the formula is true for $n = k$.	B1 M1	Award this M1 only if it is
	$(k^3 + 2k$ is divisible by 3 or $k^3 + 2k = 3N$)). Consider (for $n = k + 1$)		clearly stated that this is an assumption
	$(k+1)^3 + 2(k+1)$	M1	Do not award the second M1 if
	$= k^{3} + 3k^{2} + 3k + 1 + 2k + 2$ = 3N - 2k + 3k^{2} + 3k + 1 + 2k + 2	A1 A1	this is stated as an assumption but the three A1s may be
	$= 3(N+k^2+k+1)$	A1	awarded if either of the M1s is
	(This is divisible by 3), therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the		awarded
	result is proved by induction.	A1	

7(a)	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		
, (a)	Ref matrix in $y = x = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in x-axis = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 1 & 0 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}$		
(b)	$\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	M1	
	y-2 = x, -x-2 = y x = -2, y = 0 cao	A1 A1A1	

8 (a)	Taking logs,		
	$\ln f(x) = x \ln x$	B1	
	Differentiating, $f'(x)$	B1B1	B1 for LHS, B1 for RHS
	$\frac{f'(x)}{f(x)} = \ln x + 1$		
	$f'(x) = x^x(\ln x + 1)$	B1	
(b)	At a stationary point, $f'(x) = 0$	M1	
	$\ln x = -1$	A1	
	$x = \frac{1}{e}; y = \left(\frac{1}{e}\right)^{1/e}$ (0.368, 0.692)	. 1	
	e, y (e) (0.500, 0.072)	A1	
	Differentiating the expression in (a),		
(c)	$f''(x) = x^{x}(\ln x + 1)(\ln x + 1) + x^{x} \times \frac{1}{x}$	B1B1	B1 each term
	$= x^{x-1} + x^{x} (1 + \ln x)^{2}$		
	f''(1/e) = 1.88	D1	Accept 'Since the first term is
	Since this is positive it is a minimum.	B1 B1	positive and the second term
			zero, it is a minimum'
			FT the final B1 on the line above
9(a)	$x + iy = \frac{1}{u + iv}$	M1	
		A1	
	$=\frac{u-iv}{u^2+v^2}$		
	$x = \frac{u}{u^2 + v^2}$		
	••• •• •		
	$y = -\frac{v}{\mu^2 + v^2}$	A1	
(b)(i)	We are given that $u' + v$		
	$-\frac{v}{u^2+v^2} = \frac{mu}{u^2+v^2} + 1$	M1	
	$u^{2} + v^{2} \qquad u^{2} + v^{2} - v = mu + u^{2} + v^{2}$	A 1	
	$-v = mu + u + v$ $u^2 + v^2 + mu + v = 0$	A1 A1	
	(This is the equation of a circle).		
(ii)	Completing the square or quoting the standard	M1	FT on their circle equation
	results, $1 \sqrt{\frac{2}{2}+1}$	A 1	
	Radius $=\frac{1}{2}\sqrt{m^2+1}$	A1	
	Centre $\left(-\frac{1}{2}m,-\frac{1}{2}\right)$	A1	
(iii)	$v = -\frac{1}{2}$	A1	$A_{ccent} = 1$
	2		Accept $y = -\frac{1}{2}$

Solution	Mark	Notes
Putting $x = 2, 4a - 8 = 8 - 2b$	M1A1	
The two derivatives are $2ax$ and $3x^2 - b$		
	A1	
-		
	A1	
$u - e^x \rightarrow du - e^x dx$	B1	
$I = \int \frac{\mathrm{d}u / u}{\mathrm{d}u}$	M1	
$\int_{1}^{1} u + 4/u$		
^e du		
$=\int \frac{du}{u^2 + 4}$	A1	
1		
$-\frac{1}{\tan^{-1}(u)}$	A1	
$=\frac{-2}{2} \tan(\frac{-2}{2}) _{1}$		
= 0.236	A1	
Put $t = \tan(x/2)$ $\frac{3 \times 2t}{1+t^2} = t$ $t(t^2 - 5) = 0$ $t = 0$ giving $x/2 = n\pi \rightarrow x = 2n\pi$ (360 n°) $t = \sqrt{5}$ giving $x/2 = 1.15026 + n\pi$ $\rightarrow x = 2.30 + 2n\pi$ (360 $n^\circ - 132^\circ$) $t = -\sqrt{5}$ giving $x/2 = -1.15026 + n\pi$ $\rightarrow x = -2.30 + 2n\pi$ (360 $n^\circ - 132^\circ$)	M1 A1 M1A1 M1 A1 A1	
	Putting $x = 2$, $4a - 8 = 8 - 2b$ The two derivatives are $2ax$ and $3x^2 - b$ Putting $x = 2$, $4a = 12 - b$ Solving, a = 2, $b = 4$ cao $u = e^x \Longrightarrow du = e^x dx,$ $[0,1] \rightarrow [1, e]$ $I = \int_1^e \frac{du/u}{u + 4/u}$ $= \int_1^e \frac{du}{u^2 + 4}$ $= \frac{1}{2} \left[\tan^{-1}(\frac{u}{2}) \right]_1^e$ $= 0.236$ Put $t = \tan(x/2)$ $\frac{3 \times 2t}{1 + t^2} = t$ $t(t^2 - 5) = 0$ $t = 0 \text{ giving } x/2 = n\pi \rightarrow x = 2n\pi (360n^e)$ $t = \sqrt{5} \text{ giving } x/2 = -1.15026 + n\pi$ $\rightarrow x = 2.30 + 2n\pi (360n^e + 132^e)$ $t = -\sqrt{5} \text{ giving } x/2 = -1.15026 + n\pi$	Putting $x = 2$, $4a - 8 = 8 - 2b$ The two derivatives are $2ax$ and $3x^2 - b$ Putting $x = 2$, $4a = 12 - b$ Solving, a = 2, $b = 4$ cao $u = e^x \Rightarrow du = e^x dx$, $[0,1] \rightarrow [1, e]$ $I = \int_{1}^{e} \frac{du/u}{u + 4/u}$ $= \int_{1}^{e} \frac{du}{u^2 + 4}$ = 0.236 Put $t = \tan(x/2)$ $\frac{3 \times 2t}{1 + t^2} = t$ $t(t^2 - 5) = 0$ $t = 0$ giving $x/2 = n\pi \rightarrow x = 2n\pi$ (360 n°) $t = \sqrt{5}$ giving $x/2 = -1.15026+n\pi$ $\rightarrow x = 2.30 + 2n\pi$ (360 n° + 132°) $t = -\sqrt{5}$ giving $x/2 = -1.15026+n\pi$ M1 MIA1 MIA1 MIA2 MIA1 MIA1 MIA2 MIA3 M

4(a)	Let		
	$\frac{3x^2 - 4x + 1}{(x - 2)(x^2 + 1)} \equiv \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 1}$		
	$A(x^{2}+1) + (Bx+C)(x-2)$	N/T1	
	$=\frac{A(x^2+1)+(Bx+C)(x-2)}{(x-2)(x^2+1)}$	M1	
	x = 2 gives $A = 1$	A1	
	Coeff of x^2 gives $A + B = 3, B = 2$	A1	
	Const term gives $A - 2C = 1$, $C = 0$	A1	
(b)	$\int_{-2}^{4} f(x) dx = \int_{-2}^{4} \frac{1}{x-2} dx + \int_{-2}^{4} \frac{2x}{x^{2}+1} dx$	M1	
	$\int_{3}^{3} \int (x) dx - \int_{3}^{3} x - 2 dx + \int_{3}^{3} x^{2} + 1 dx$	TAT	
	$= \left[\ln(x-2) \right]_{3}^{4} + \left[\ln(x^{2}+1) \right]_{3}^{4}$	A1A1	
	$= \ln 2 - \ln 1 + \ln 17 - \ln 10$	A1	
	$-\ln\left(34\right)$ or $\ln\left(17\right)$		
	$= \ln\left(\frac{34}{10}\right) \text{ or } \ln\left(\frac{17}{5}\right)$	A1	
5(a)	Consider $f(-x) = (-x)^2 \sin(-x)$	M1	Accept a specific value for <i>x</i> .
	$= -x^2 \sin x = -f(x)$	A1	
	f is therefore odd.	A1	
(b)	sin x is odd and x^n is even if n is even and odd if	M1	For a valid attempt.
	<i>n</i> is odd. si	1,11	Accept a specific value for <i>x</i> .
	So g is even if n is odd	A1	
	and g is odd when n is even.	A1	

6(a)	Putting $x = 0$ gives $(0, -20/3)$	B1	
	Putting $y = 0$,	M1	
	$\frac{2}{x-3} = 6 - x$	A1	
	(x-3)(6-x) = 2		
	$x^2 - 9x + 20 = 0$	A1	
	giving (4,0); (5,0) cao	A1	
(b)	Differentiating,	M1	
	$-\frac{2}{(x-3)^2}+1=0$	A1	
		A1	
	$(x-3)^2 = 2$		
	$x = 3 + \sqrt{2}(4.41), y = 2\sqrt{2} - 3(-0.172)$	A1	Award A1A0 for the 2 x values
	$x = 3 - \sqrt{2}(1.59), y = -3 - 2\sqrt{2}(-5.83)$	A1	only.
(c)	The asymptotes are $x = 3$		
	$\begin{array}{c} x = 5 \\ y = x - 6 \end{array}$	B1 B1	
		DI	
	у .		
(d)			
		G 1	General shape of both branches.
		G1	Correct shape including
		01	asymptotic behaviour.

7(a)(i)	Completing the square,	M1	
/(a)(1)	$(y-1)^2 = 8x - 24$	A1	
		A1	FT on 1 arithmetic slip
(ii)	The vertex is therefore $(3,1)$ In the usual notation, $a = 2$ si	B 1	F
	The focus is $(5,1)$	B 1	
(iii)	The equation of the directrix is $x = 1$	B1	
	The equation of the uncertainties $x = 1$		
(b)(i)	Substituting $y = mx$,	M1	
	$m^2 x^2 - 2mx - 8x + 25 = 0$	A1	
(ii)	For coincident roots,	M1	
	$(2m+8)^2 = 100m^2$	A1	
	$3m^2 - m - 2 = 0$	A1	
	Solving using a valid method,		
	m = 1, -2/3	M1	
	<i>m</i> = 1, 2, 5	A1	
8(a)	The result is true for $n = 1$ since it gives		
0(a)	$(\cos\theta + i\sin\theta)^{1} = \cos 1\theta + i\sin 1\theta$	B1	
	Let the result be true for $n = k$, ie		
		M1	
	$(\cos\theta + \mathrm{i}\sin\theta)^k = \cos k\theta + \mathrm{i}\sin k\theta$		
	Consider $(k+1) = (k+1) + (k+$		
	$(\cos\theta + i\sin\theta)^{k+1} = (\cos\theta + i\sin\theta)^k (\cos\theta + i\sin\theta)$	M1	
	$=(\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$	A1	
	$\cos k\theta \cos \theta - \sin k\theta \sin \theta$	4.1	
	$+i(\sin k\theta\cos\theta+\cos k\theta\sin\theta)$	A1 A1	
	$= \cos(k+1)\theta + i\sin(k+1)\theta$	AI	
	True for $n = k \Longrightarrow$ true for $n = k + 1$ and since true	A1	
	for $n = 1$ the result is proved by induction.		
(b)(i)	Consider		
	$\left(w(\cos 2\pi/3 + i\sin 2\pi/3)^3\right)$	M1	
	$= w^3(\cos 2\pi + i\sin 2\pi)$	A1	
	$= z \times 1 = z$	A1	
	Showing that $(w(\cos 2\pi/3 + i \sin 2\pi/3))$ is a cube		
	root of <i>z</i> .		
(ii)	The real cube root of -8 is -2 .	B1	
	The other cube roots are		
	$-2(\cos 2\pi/3 + i\sin 2\pi/3) = 1 - \sqrt{3}i$	M1A1	
	$-2(\cos 4\pi/3 + i\sin 4\pi/3) = 1 + \sqrt{3}i$		
	$-2(\cos 4\pi / 3 + 1\sin 4\pi / 3) = 1 + \sqrt{3}$	A1	

Ques	Solution	Mark	Notes
1	$\begin{bmatrix} 1 & 1 \\ rsinh rdr - [rcosh r] & cosh rdr \end{bmatrix}$	M1 4 1	
	$\int_{0}^{1} x \sinh x dx = \left[x \cosh x \right]_{0}^{1} - \int_{0}^{1} \cosh x dx$	M1A1	
	$=\cosh 1 - [\sinh x]_0^{\mu}$	A1A1	
	$= \cosh 1 - \sinh 1$	A1	Do not accept an argument which evaluates this as
			0.367879 and shows that this
	$=\frac{e^{1}+e^{-1}}{2}-\frac{e^{1}-e^{-1}}{2}$	A1	is also the numerical value of 1/e.
	$=\frac{1}{2}$		
2(a)	e The equation can be rewritten as		
-(u)	$\sinh^2 x - \sinh x + 1 - k = 0$	M1A1	
	The condition for no real roots is 1-4(1-k) = 4k-3 < 0	m1	
	$k < \frac{3}{4}$		
(b)	4	A1	
(0)	sinh2 x - sinh x - 2 = 0 (sinh x - 2)(sinh x + 1) = 0	M1	
	$\sinh x = 2$	A1	
	$x = \sinh^{-1} 2 = \ln(2 + \sqrt{5})$	A1 A1	
3	Let $f(x) = \tan^{-1} x$	B 1	
	$p = f(1) = \frac{\pi}{4}$		
	$f'(x) = \frac{1}{1+x^2}; q = f'(1) = \frac{1}{2}$	M1A1	
	2r $f''(1) = 1$		
	$f''(x) = -\frac{2x}{(1+x^2)^2}; r = \frac{f''(1)}{2} = -\frac{1}{4}$	M1A1	
	$f'''(x) = \frac{-2(1+x^2)^2 + 2(1+x^2) \cdot 4x^2}{(1+x^2)^4}; s = \frac{f'''(1)}{6} = \frac{1}{12}$	M1A1	

4(a)	Consider		
+(a)			
	$y = r\sin\theta$	M1	
	$= 2\sin\theta\cos\theta - \sin^2\theta$	1011	
	$dy = 2\cos^2 \theta = 2\sin^2 \theta = 2\sin \theta \cos \theta$	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos^2\theta - 2\sin^2\theta - 2\sin\theta\cos\theta$	AI	
	$= 2\cos 2\theta - \sin 2\theta$	A 1	
		A1	
	The tangent is parallel to the initial line where	M1	
	$2\cos 2\theta = \sin 2\theta$	1411	
	$\tan 2\theta = 2$	A1	
		A1	A count 21.7°
	$\theta = 0.554, r = 1.18$		Accept 31.7°
(b)			
(~)	The curves intersect where	M1	
	$2\cos\theta - \sin\theta = 1 + \sin\theta$		
	$2\cos\theta - 2\sin\theta = 1$	A1	
	EITHER		
	Putting $t = tan(\theta/2)$	M1	
	$2(1-t^2)$ $4t$		
	$\frac{2(1-t^2)}{1+t^2} - \frac{4t}{1+t^2} = 1$	A1	
		A1	
	$3t^2 + 4t - 1 = 0$	111	
	$\tan(\theta/2) = \frac{-4 + \sqrt{28}}{6} (0.21525)$	A1	
	$\tan(\theta/2) =$	AI	
	$\theta = 0.424, r = 1.41$	A 1	
	OR	A1	Accept 24.3°
	Putting $2 \cos \theta = 2 \sin \theta = \cos \theta (\theta + x)$	2.61	
	$2\cos\theta - 2\sin\theta = r\cos(\theta + \alpha)$	M1	
	$lpha=\pi/4$	A1	
	$r = 2\sqrt{2}$	A1	
	$(a, \mu) = 1$		
	$\cos(\theta + \pi/4) = \frac{1}{2\sqrt{2}}$	A1	
	$\theta = 0.424, r = 1.41$	A 1	A accent 24.29
	0 - 0.424,7 - 1.41	A1	Accept 24.3°
L		1	

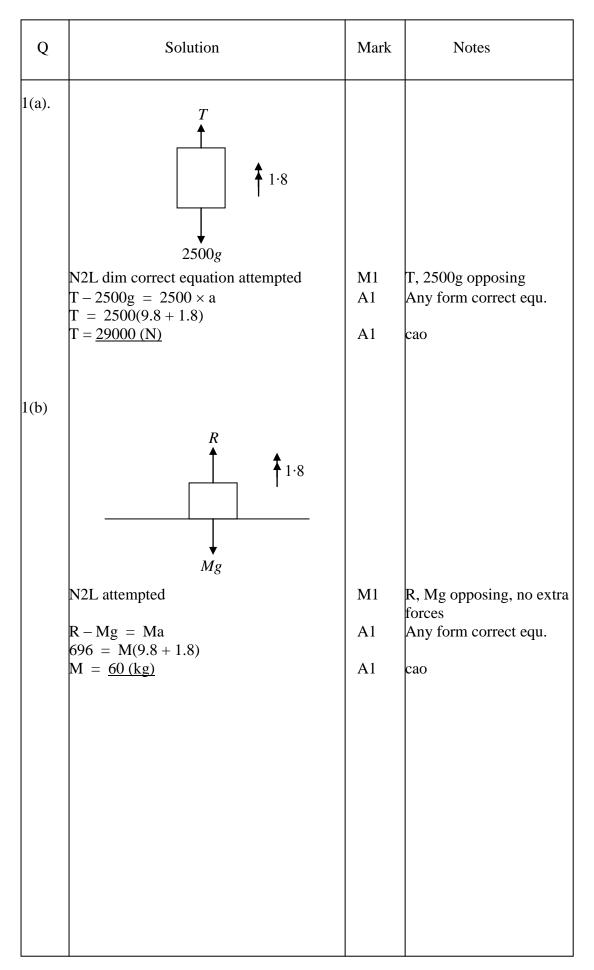
5			
	Putting $t = \tan(x/2)$ gives $dx = \frac{2dt}{1+t^2}$	B1	
	$(0,\pi/2) \rightarrow (0,1)$	B1	
	$I = \int_{0}^{1} \frac{2dt/(1+t^{2})}{4(1-t^{2})/(1+t^{2})+3}$	M1	
	$=2\int_{0}^{1}\frac{\mathrm{d}t}{7-t^{2}}$	A1	
	$= 2 \times \frac{1}{2\sqrt{7}} \left[\ln \left \frac{\sqrt{7} + t}{\sqrt{7} - t} \right \right]_0^1 \text{ or } \frac{2}{\sqrt{7}} \left[\tanh^{-1} \left(\frac{t}{\sqrt{7}} \right) \right]_0^1$	A1	
	$=\frac{1}{\sqrt{7}}\left(\ln\left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)-\ln(1)\right)$	A1	
	or $\frac{2}{\sqrt{7}}\left(\tanh^{-1}\left(\frac{1}{\sqrt{7}}\right) - \tanh^{-1}(0)\right)$ = 0.301	A1	
6(a)	$I_n = \left[\theta^n \sin \theta\right]_0^{\pi/2} - n \int_0^{\pi/2} \theta^{n-1} \sin \theta \mathrm{d}\theta$	M1A1	
	$= \left(\frac{\pi}{2}\right)^n - n \int_0^{\pi/2} \theta^{n-1} \sin \theta \mathrm{d}\theta$	A1	
	$= \left(\frac{\pi}{2}\right)^{n} + \left[n\theta^{n-1}\cos\theta\right]_{0}^{\pi/2} - n(n-1)I_{n-2}$	M1A1	
	$=\left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$		
(b)(i)	$I_0 = \int_0^{\pi/2} \cos\theta \mathrm{d}\theta = \left[\sin\theta\right]_0^{\pi/2} = 1$	B1	
	$I_4 = \left(\frac{\pi}{2}\right)^4 - 12I_2$	M1	
	$= \left(\frac{\pi}{2}\right)^4 - 12\left(\left(\frac{\pi}{2}\right)^2 - 2I_0\right)$	A1	
	= 0.479	A1	
(b)(ii)	$\int_{0}^{\pi/2} \theta^{5} \sin \theta \mathrm{d}\theta = -\left[\theta^{5} \cos \theta\right]_{0}^{\pi/2} + 5 \int_{0}^{\pi/2} \theta^{4} \cos \theta \mathrm{d}\theta$	M1A1	
	$= 5I_4 = 2.4$	A1	FT their answer from (b)(i)

7(a)	The Newton-Raphson iteration is		
	-	M1A1	
	$x_{n+1} = x_n - \frac{(x_n - 2 \tanh x_n)}{(1 - 2 \operatorname{sech}^2 x_n)}$		
	$x_n - 2x_n \operatorname{sech}^2 x_n - x_n + 2 \tanh x_n$	A1	
	$=\frac{x_n - 2x_n \operatorname{sech}^2 x_n - x_n + 2 \tanh x_n}{1 - 2 \operatorname{sech}^2 x_n}$		
	$-2x_n+2\sinh x_n\cosh x_n$		
	$=\frac{-2x_n+2\sinh x_n\cosh x_n}{\cosh^2 x_n-2}$	A1	
	$=\frac{\sinh 2x_n-2x_n}{\cosh^2 x_n-2}$		
(b)	$-\cosh^2 x_n - 2$	A1	
()	$x_0 = 2$		
	$x_1 = 1.916216399$		
	$x_2 = 1.915008327$	B1	
		D1	
	Rounding to three decimal places gives 1.915 Let $f(x) = x$. 2tophy	B1	
	Let $f(x) = x - 2 \tanh x$ $f(1.9155) = 4.1 \times 10^{-4}$	M1	
	$f(1.9135) = 4.1 \times 10^{-4}$		
	The change of sign shows $\alpha = 1.915$ correct 3dp	A1	The values are required
8(a)	The curve cuts the <i>x</i> -axis where $x = \cosh^{-1} 2 = \alpha$	B1	Seen or implied
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sinh x$	B1	
		DI	
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 x = \cosh^2 x$	B1	
	Arc length = $\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	M1	
	$\int \sqrt{1+\left(\frac{dx}{dx}\right)} dx$	1411	
	$=\int_{\alpha}^{\alpha} \cosh x dx$		
	$=\int_{-\alpha}^{\infty}$	A1	
	$= \left[\sinh x\right]_{-\alpha}^{\alpha}$	A1	
	$= 2\sqrt{3}$ (3.46) cao	A1	
(b)	Curved surface area = $2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	M1	
	$2 = \int_{\alpha}^{\alpha} (2 - \cosh y) \cosh y dy$	A 1	
	$= 2\pi \int_{-\alpha}^{\alpha} (2 - \cosh x) \cosh x dx$	A1	
	$= 4\pi \int_{0}^{\alpha} \cosh x dx - \pi \int_{0}^{\alpha} (\cosh 2x + 1)$	A1	
	$-\alpha$ $-\alpha$		
	$=\pi\left[4\sinh x-\frac{1}{2}\sinh 2x-x\right]_{-\alpha}^{\alpha}$		Minus 1 each error
		A2	
	$=2\pi \left(4\sqrt{3}-2\sqrt{3}-\cosh^{-1}2\right)$	A1	
	=13.5	A1	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced


SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

M1

Q	Solution	Mark	Notes
2(a).	$F = \mu R = \frac{6}{49} \times 3 \times 9 \cdot 8$ $F = \frac{3.6 (N)}{12}$ $Resolve retrically R = 3g$ $F = \frac{6}{49} \times 3 \times 9 \cdot 8$ $F = \frac{3.6 (N)}{12}$ $R = 12 (mc^{-2})$	B1 M1	May be implied used
2(b)	a = $\frac{-1.2 \text{ (ms}^{-2})}{\text{Using } v^2 = u^2 + 2as \text{ with } u=9, v=0,a=(-)1.2}$ 0 = $9^2 + 2 \times (-1.2) \text{ s}$ s = $\frac{33.75 \text{ (m)}}{100000000000000000000000000000000000$	M1 A1	needs to see - allow sign errors, oe allow -33.75

Q	Solution	Mark	Notes
3.			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Conservation of momentum $6 \times 7 + 2 \times (-3) = 6v_A + 2v_B$ $v_B = 2 v_A$	A1	dim correct equation used
	$42-6 = 6v_{A} + 2 \times 2v_{A}$ $36 = 10 v_{A}$ $v_{A} = 3.6$ $v_{B} = \underline{7.2 \ (ms^{-1})}$	A1	
3(b)	Restitution equation		attempted, ft c's vs, e on correct side. No more
	7.2 - 3.6 = -e(-3 - 7) 3.6 = 10e	A1	than one sign error.
	e = 0.36	A1	cao
3(c)	$I = 2 \times 7.2 - 2 \times (-3)$ I = 14.4 + 6	M1	allow 6(7-3.6)
	I = 20.4 (Ns)	A1	cao

Q	Solution	Mark	Notes
4.			
	$T \qquad \qquad \downarrow 0.4g$ $T \qquad \qquad$		
	Apply N2L to B Mg $- T = Ma$	M1 A1	dim correct equation
	Apply N2L to A T $- 3g = 3a$	M1 A1	dim correct equation
	Adding Mg - 3g = 0.4g(M + 3)	m1	correct method. dep on both M's
	M - 3 = 0.4M + 1.2 0.6M = 4.2		
	$M = \underline{7}$	A1	cao
	$T = 3 \times 9.8 + 3 \times 0.4 \times 9.8$ T = <u>41.16 (N)</u>	A1	cao
	Alternative solution Apply N2L to A T - 3g = 3a $T = 3(9.8 + 0.4 \times 9.8)$	M1 A1	dim. correct equation
	$T = \frac{3(9.6 + 0.4 \times 9.6)}{T}$ $T = \frac{41.16 (N)}{100}$	A1	cao
	Apply N2L to B Mg – T = Ma $9.8M - 0.4 \times 9.8M = 41.16$ 5.88M = 41.16	M1 A1 m1	dim correct equation
	$\mathbf{M} = \underline{7}$	A1	cao

Q	Solution	Mark	Notes
5. 5(a)	Resolve perp to plane $R = 39g\cos\alpha$ $R = 39 \times 9 \cdot 8 \times \frac{12}{13} = 352.8 \text{ N}$ $F = \mu R$ $F = 0.3 \times 352.8$ $F = 105.84 \text{ N}$ N2L down slope $39g\sin\alpha - F = 39a$ $39 \times 9 \cdot 8 \times \frac{5}{13} - 105 \cdot 84 = 39a$ $a = 1.0554$ $a = 1.06 \text{ (ms}^{-2})$	M1 m1 A1 A1 A1	allow sin or cos si dim correct equation, -F
	N2L up slope $T - 39gsin\alpha - F = 39a$ $T = 147 + 105.84 + 39 \times 0.4$ T = 268.44 (N)	A1	dim correct equation, all forces, sin/cos, -F cao

Q	Solution	Mark	Notes
	T N 4g Resolve vertically Tsin $\alpha = 4g$ Resolve horizontally Tcos $\alpha = 30$ Dividing tan $\alpha = \frac{4 \times 9 \cdot 8}{30}$ $\alpha = 52.5(7)^{\circ}$ T ² = (4 × 9.8) ² + (30) ² T = <u>49.36 (N)</u>	M1 A1 M1 A1 M1 A1 M1 A1	dep on both M's cao cao

Q	Solution	Mark	Notes
7(a)	Using v = u + at with u=0, a=(±)9.8, t=5 v = 0 + 9.8 × 5 v = 49 (ms^{-1})	M1 A1 A1	accept -49
7(b)	$v \text{ ms}^{-1}$ 49 49 4 0 5 15 120 t s		
		B1 B1 B1 B1	units, labels and correct shape starting (0,0) (0, 0) to (5, v) (5, v) to (15, 4) (15, 4) to (120, 4)
	Distance = Area under graph Distance = $0.5 \times 5 \times 49 + 0.5(4 + 49) \times 10$ $+ 105 \times 4$ Distance = $122.5 + 265 + 420$ Distance = $\underline{807.5 (m)}$	M1 B1 A1	oe any one correct area, ft graph ft graph

Q	Solution	Mark	Notes
8.	$A \qquad x \qquad 1 \cdot 4 - x \qquad B$ $A \qquad x \qquad C \qquad 0 \qquad 0$		
8(a)	Resolve vertically R = 5g + 2g R = 7g (N)	M1 A1	
8(b)	Moments about C 5gx = 2g(1.4 - x) 5x = 2.8 - 2x 7x = 2.8 x = 0.4 AC = 0.4 (m)	M1 A1 A1 A1	dim correct equation, no extra forces rhs correct lhs correct cao
	Alternative solution Moments about A $7gx = 2g \times 1.4$ x = 0.4 (m)	M1 A1 A1 A1 SC1	dim correct equation rhs correct lhs correct cao No marks at all, one correct moment, sc1.

Q	Solution	Mark	Notes
9.	$G \ 2 F$ D		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
9(a)	Area from AG from AB (i) 24 1 6 (ii) 12 5 1 (iii) 18 5 4 Lamina 54 x y	B1 B1	correct distances correct distances correct distances areas all correct
	Moments about AG $54x = 24 \times 1 + 12 \times 5 + 18 \times 5$	M1 A1	ft table if 2 or more B marks for distances gained.
	$x = \frac{29}{9} = 3.22$	A1	cao
	Moments about AB $54y = 24 \times 6 + 12 \times 1 + 18 \times 4$ $y = \frac{38}{9} = 4.22$	M1 A1 A1	ft table cao
9(b)	$\theta = \tan^{-1} \left(\frac{x}{12 - y} \right)$ $= \tan^{-1} \left(\frac{29}{12 \times 9 - 38} \right)$		correct triangle
	$= \tan^{-1}\left(\frac{12 \times 9 - 38}{12 \times 9 - 38}\right)$ $\theta = \underline{22.5^{\circ}}$		correct equation, ft x, y ft x and y
			, , , , , , , , , , , , , , , , , , ,

Q	Solution	Mark	Notes
1.	$s = \int_{0}^{\frac{\pi}{6}} 4\cos 2t dt$	M1	limits not required
	s = [2sin2t]	A1	correct integration
	$s = 2\sin\frac{\pi}{3} - 0$ $s = \sqrt{3} = \underline{1.732}$	A1	cao
2(a)	N2L T = 7.5 g	B1	
	Hooke's Law T = $\frac{245x}{5/3}$ (= 147x)	M1	
	$7.5 \times 9.8 = 147x$ x = <u>0.5</u>	A1	cao
	Elastic Energy = $\frac{1}{2} \times \frac{x^2}{l}$	M1	used
	$EE = \frac{1}{2} \times \frac{245 \times 0.5^2}{5/3}$ $EE = \frac{18.375 \text{ (J)}}{5}$	A1	ft c's x value
3(a).	$\underline{\mathbf{v}} = \frac{dr}{dt}$	M1	used
	$\underline{\mathbf{v}} = (1+4t)\underline{\mathbf{i}} + (3t-2)\underline{\mathbf{j}}$	A1	
	we required $\underline{v}.(-\underline{i} + 2\underline{j}) = 0$ -(1 + 4t) + 2(3t - 2) = 0 -1 -4t + 6t -4 = 0 2t = 5	M1 m1	
	t = 2.5	A1	cao
3(b)	$\underline{\mathbf{a}} = \frac{dv}{dt}$	M1	used
	$\underline{\mathbf{a}} = 4\underline{\mathbf{i}} + 3\underline{\mathbf{j}}$ $\underline{\mathbf{a}}$ is independent of t and constant.	A1	ft c's v provided constant
	$ a = \sqrt{4^2 + 3^2} = \underline{5}$	A1	ft constant a= x i+ y j

Q	Solution	Mark	Notes
4.	600 N $1200g$		
4(a)	$T = \frac{P}{v} = \frac{75 \times 1000}{25}$ T = 3000 N	M1	
	N2L up plane T – 1200gsinα - 600 = 1200a 1200a = 3000 – 1200 × 9.8 × 0.1 - 600	M1	dim correct, all forces A2 -1 each error
	$a = \frac{1.02 \text{ (ms}^{-2})}{2}$	A1	cao
4(b)	$T = \frac{90 \times 1000}{v}$	M1	
	N2L up plane T – 1200gsinα - 600 = 1200a	M1	dim correct, all forces
	a = 0 <u>90000</u> = 1776	m1	si
	$v = \frac{50.7 (\text{ms}^{-1})}{50.7 (\text{ms}^{-1})}$	A1	cao
5.	KE at A = $0.5 \times 0.1 \times v^2$ PE at A = $0.1 \times 9.8 \times 0.5$	B1 M1	
	PE at $A = 0.1 \times 9.8 \times 0.3$ PE at $B = 0.1 \times 9.8 \times 1.4$	A1	both or difference
	WD against resistance $= 6 \times 1.2$	B1	
	Work-energy principle	M1	all terms included
	$0.05 v^{2} = 7.2 + 0.1 \times 9.8 \times 0.9$ $v^{2} = 161.64$	A1	correct equation
	$v = \frac{12.7 (\text{ms}^{-1})}{12.7 (\text{ms}^{-1})}$	A1	cao

Q	Solution	Mark	Notes
	$u_{\rm H} = V\cos\alpha \ (= 0.8V)$ $u_{\rm V} = V\sin\alpha \ (= 0.6V)$	M1 A1	attempt to resolve both answers correct
6(b)	Consider horizontal motion $0.8V \times T = 12$ VT = 15	M1 A1	correctly obtained
	Consider vertical motion $s = ut + 0.5at^{2}$ with $s=(\pm)5.4$, $u=0.6V$, $t=T$ $a=(\pm)9.8$ $-5.4 = 0.6VT - 4.9T^{2}$ $-5.4 = 0.6 \times 15 - 4.9T^{2}$ $4.9T^{2} = 14.4$ $T = \frac{12}{7}$ 12	M1 A1 A1	cao
	$\frac{12}{7} \mathbf{V} = 15$ $\mathbf{V} = \underline{8.75}$	A1	cao
	Using v = u + at with u=5.25, a=(±)9.8, $t=\frac{12}{7}$ v = 5.25 - 9.8 × $\frac{12}{7}$	M1	
	v = -11.55 u _H = $0.8 \times 8.75 = 7$ Speed = $\sqrt{11.55^2 + 7^2}$ Speed = $\underline{13.5 \text{ (ms}^{-1})}$	A1 B1 M1 A1	si, cao

Q	Solution	Mark	Notes
7.	$\frac{3v^2}{r}$		
7(a)	Resolve vertically $T\cos\theta = mg$ $\theta = \cos^{-1}\left(\frac{3 \times 9 \cdot 8}{88 \cdot 2}\right)$	M1 A1	
	$\theta = \underline{70.5^{\circ}}$	A1	cao
	N2L towards centre $T\sin\theta = ma$ $a = r\omega^2$ $r = \frac{T\sin\theta}{m\omega^2}$ length of string $= l$ $l\sin\theta = r$ $l = \frac{r}{\sin\theta}$ $l = \frac{T}{m\omega^2} = \frac{88 \cdot 2}{3 \times 2 \cdot 8^2}$	A1	attempted used
	$m\omega^2 = 3 \times 2 \cdot 8^2$ l = 3.75 (m)	A1	cao
	Alternative Solution N2l towards centre $T\sin\theta = ma$ $a = r\omega^2$ $88.2\sin\theta = 3 \times r \times 2.8^2$ r = 3.53553 m $AP = \frac{r}{\sin\theta}$	A1 m1 m1	attempted used
	$AP = 3.75 (\mathrm{m})$	A1	cao

Q	Solution	Mark	Notes
8(a)	$\underline{\mathbf{v}} = \frac{1}{3} [(14\underline{\mathbf{i}} - 5\underline{\mathbf{j}}) - (8\underline{\mathbf{i}} + 7\underline{\mathbf{j}})]$ $\underline{\mathbf{v}} = \frac{1}{3} (6\underline{\mathbf{i}} - 12\underline{\mathbf{j}})$	M1	
	$\underline{\mathbf{v}} = \frac{1}{3} (\underline{0}_{\underline{\mathbf{i}}} - 1_{\underline{\mathbf{j}}})$ $\underline{\mathbf{v}} = (2\underline{\mathbf{i}} - 4\underline{\mathbf{j}})$	A1	
	$\underline{\mathbf{r}}_{\underline{\mathbf{S}}} = (8\underline{\mathbf{i}} + 7\underline{\mathbf{j}}) + (2\underline{\mathbf{i}} - 4\underline{\mathbf{j}})\mathbf{t}$ $\underline{\mathbf{r}}_{\underline{\mathbf{S}}} = (8 + 2\mathbf{t})\underline{\mathbf{i}} + (7 - 4\mathbf{t})\underline{\mathbf{j}}$	M1 A1	
	$\underline{\mathbf{r}}_{\underline{\mathbf{B}}} = (\mathbf{x}\underline{\mathbf{i}} + \mathbf{y}\underline{\mathbf{j}})(\mathbf{t} - 10)$ $\underline{\mathbf{r}}_{\underline{\mathbf{B}}} = \mathbf{x}(\mathbf{t} - 10)\underline{\mathbf{i}} + \mathbf{y}(\mathbf{t} - 10)\underline{\mathbf{j}}$	M1 A1	
	$At t = 50 \qquad \underline{\mathbf{r}}_{\underline{\mathbf{S}}} = \underline{\mathbf{r}}_{\underline{\mathbf{B}}}$ $8 + 2t = x(t - 10)$ $40x = 108$	M1 m1	
	x = 2.7	A1	cao
	$7 - 4 \times 50 = 40y$ y = <u>-4.825</u>	A1	cao
	Alternative solution		
	At t = 50 $\underline{\mathbf{r}}_{\underline{\mathbf{S}}} = 108\underline{\mathbf{i}} - 193\underline{\mathbf{j}}$ $\underline{\mathbf{r}}_{\underline{\mathbf{B}}} = 40x\underline{\mathbf{i}} + 40y\underline{\mathbf{j}}$	M1 A1	
	$\underline{\mathbf{r}}_{\mathbf{S}} = \underline{\mathbf{r}}_{\mathbf{B}}$		si
	40x = 108	m1	
	x = 2.7	A1	cao
	40y = -193 y = -4.825	A1	cao

Q	Solution	Mark	Notes
9(a).	Conservation of energy	M1	
	$\frac{1}{2}\mathrm{mu}^2 = \frac{1}{2}\mathrm{mv}^2 + \mathrm{mgl}(1 - \cos\theta)$	A1 A1	
	At max height, v=0, $\cos\theta = \frac{2}{3}$, l=1.2	m1	
	$\frac{1}{2}u^2 = 9.8 \times 1.2(1 - \frac{2}{3})$		
	$u^2 = 2 \times 9.8 \times 1.2 \times \frac{1}{3}$		
	$u = 2.8 (ms^{-1})$	A1	cao
	$v^{2} = u^{2} - 2gl(1 - \cos\theta)$ $v^{2} = 2.8^{2} - 2 \times 9.8 \times 1.2(1 - \cos\theta)$		
	$v^2 = 23.52\cos\theta - 15.68$	A1	cao
9(b)	N2L towards centre	M1 A1	
	$T - mg\cos\theta = mv^{2}/l$ $T = 3 \times 9.8\cos\theta + \frac{3}{1.2} (23.52\cos\theta - 15.68)$		
	$T = 29.4\cos\theta + 58.8\cos\theta - 39.2$ $T = \underline{88.2\cos\theta - 39.2}$		cao
9(c)	Greatest value of T when $\cos\theta = 1$ T = 88.2 - 39.2	D1	
	$T = \underline{49 (N)}$	B1	
	Least value of T when $\cos\theta = \frac{2}{3}$		
	$T = 88.2 \times \frac{2}{3} - 39.2$		
	T = 19.6 (N)	B1	

Q	Solution	Mark	Notes
1(a)	N2L $\frac{27000}{(t+3)^2} = 600a$	M1	+/-, no additional terms
	$\frac{45}{(t+3)^2} = \frac{dv}{dt}$ $v = -\frac{45}{(t+3)} (+C)$	m1	use of dv/dt
	$\mathbf{v} = -\frac{45}{(t+3)} (+\mathbf{C})$	A1	k/(t+3)
	When $t = 0$, $v = 0$ C = 15	A1 m1	completely correct use of initial conditions
	$v = 15 - \frac{45}{(t+3)}$	A1	
	As $t \to \infty$, $v \to 15$	A1	ft similar expression
1(b)	$\mathbf{v} = \frac{dx}{dt} = 15 - \frac{45}{(t+3)}$	M1	
	$x = 15t - 45 \ln(t + 3) (+ C)$ $t = 0, x = 0 \qquad C = 45 \ln 3$ $x = 15t + 45 \ln\left(\frac{3}{t+3}\right)$	A1 A1	ft similar expressions ft
	When t = 6 x = 90 + 45 $\ln\left(\frac{3}{9}\right)$	m1	
	$ x = 90 - 45 \ln(3) x = 40.56 (m) $	A1	cao

Q	Solution	Mark	Notes
	Using $v^2 = \omega^2(a^2 - x^2)$ $0.09 \times 3 = \omega^2(a^2 - 0.6^2)$ $0.04 \times 5 = \omega^2(a^2 - 0.8^2)$ $0.07 = 0.28\omega^2$ $\omega = 0.5$ $0.2 = 0.25(a^2 - 0.64)$ a = 1.2	M1 A1 A1 m1	used
	Period = $\frac{2\pi}{\omega}$ Period = 4π	M1 A1	used
	$\begin{aligned} \ddot{x} &= -\omega^2 \mathbf{x} \\ \ddot{x} &= 0.5^2 \times 0.6 \\ \ddot{x} &= 0.15 \text{ (ms}^{-2}) \end{aligned}$	M1 A1	used
	x = $1.2\sin(0.5t)$ At A, $0.6 = 1.2\sin(0.5t)$ t = $2\sin^{-1}(0.5) = 1.0472$ At B, $0.8 = 1.2\sin(0.5t)$ t = $2\sin^{-1}(0.667) = 1.4595$ Required t = $1.4595 - 1.0472$ Required t = 0.412 (s)	M1 A1 A1 A1	used, accept cos or 2.0944 or 1.6821 cao
	x = $asin(\omega t)$ x = 1.2sin(0.5t) x = 1.2sin(0.5 × 2 $\pi/3$) x = <u>1.0392 (m)</u>	M1 A1	
	$v = a \omega cos(\omega t)$ $v = 1.2 \times 0.5 cos(0.5t)$ v = 0.6 cos(0.5t) When t = 2\pi/3, v = 0.6 cos(0.5 \times 2\pi/3) $v = 0.6 cos(\pi/3)$	M1 A1	oe
	$v = 0.3 (ms^{-1})$	A1	cao

Q	Solution	Mark	Notes
	Auxiliary equation $2m^2 + 5m + 2 = 0$ (2m + 1)(m + 2) = 0	B1	cao
	m = -0.5, -2 CF is x = Ae ^{-0.5t} + Be ^{-2t}	B1 B1	cao ft solutions for m
	For PI, try x = at + b dx = a	M1	
	$\frac{dx}{dt} = a$ 5a + 2(at + b) = 6t + 5 Comparing coefficients 2a = 6 a = 3	A1 m1	
	a = -5 15 + 2b = 5 b = -5	A1	both answers cao
	General solution is $x = Ae^{-0.5t} + Be^{-2t} + 3t - 5$	B1	ft CF and PI
	When $t = 0$, $x = 3$ 3 = A + B -5 A + B = 8	M1	use of conditions in GS
	$\frac{dx}{dt} = -0.5 \mathrm{Ae}^{-0.5t} - 2\mathrm{Be}^{-2t} + 3$	B1	ft similar expressions
	When t = 0, $\frac{dx}{dt} = 2$ 2 = -0.5A - 2B +3 0.5A + 2B = 1 A + 4B = 2 A + B = 8 3B = -6 B = <u>-2</u> A = <u>10</u>	A1 A1	cao cao

Q	Solution	Mark	Notes
4(a)	N2L F = ma 4 $o = \frac{dv}{dv}$	M1	used, no extra term
	$\frac{4}{2x+1} = 0 \cdot 5v \frac{dv}{dx}$	m1	use of vdv/dx
	$\int \frac{8}{2x+1} dx = \int v dv$	M1	separating variables
	$4\ln 2x+1 = \frac{1}{2}v^2 + C$	A1	kln(2x+1)
	$v^2 = 8\ln 2x+1 + C$	A1	all correct
	When $x = 3$, $v = 4$ 16 = 8ln7 + C	m1	
	$\begin{aligned} & ro = 8 \ln 7 + C \\ C &= 16 - 8 \ln 7 \\ v^2 &= 8 \ln \left \frac{2x + 1}{7} \right + 16 \end{aligned}$	A1	ft kln $(2x+1) + C$
	When $x = 10$ $v^2 = 8 \ln \left \frac{2 \times 10 + 1}{7} \right + 16$		
	$v^{2} = 8\ln 3 + 16$ $v = 4.98 \text{ (ms}^{-1}\text{)}$	A1	cao
4(b)	$v = 6, \ 6^2 = 8\ln\left \frac{2x+1}{7}\right + 16$	M1	allow similar expressions
	$\ln \left \frac{2x+1}{7} \right = \frac{20}{8}$ $2x+1 = 7e^{5/2}$	m1	correct inversion
	$x = 0.5[7e^{5/2} - 1]$ x = <u>42.1 (m)</u>	A1	cao

Q		Solution	Mark	Notes
	$v = 9.8 \times 0.5$	at with u=0, a=(±)9.8, t=2.5	M1	
	$v = 4.9 \text{ ms}^{-1}$		A1	
	Impulse = Cha For A J = 5v For B J = 2		M1 B1 A1	used
	Solving	5v = 9.8 - 2v 7v = 9.8	m1	
		$v = 1.4 (ms^{-1})$	A1	cao
		$J = 5 \times 1.4$ $J = \underline{7 (Ns)}$	A1	cao

Q	Solution	Mark	Notes
	$F = \mu R = \frac{3}{4} R$ Moments about B $R \times 2\cos\alpha + F \times 2\sin\alpha = 2100 \times 1\cos\alpha$	M1 M1 A3	dim correct equation, 3 terms, perp distance -1 each error
	$R \times 2 \times \frac{12}{13} + \frac{3}{4}R \times 2 \times \frac{5}{13} = 2100 \times \frac{12}{13}$ $24R + \frac{15}{2}R = 25200$ $R = \underline{800 (N)}$ Resolve vertically $Tsin\theta = 2100 - R$ $Tsin\theta = 1300$	A1 M1 A1	cao
	Resolve horizontally $T\cos\theta = F$ $T\cos\theta = \frac{3}{4} \times 800$ $T\cos\theta = 600$ $T = \sqrt{1300^2 + 600^2}$	M1 A1 m1	oe
	$T = \frac{1432 \text{ (N)}}{1432 \text{ (N)}}$ $\theta = \tan^{-1} \left(\frac{1300}{600}\right)$ $\theta = \underline{65.2^{\circ}}$	A1 m1 A1	cao oe cao

Ques	Solution	Mark	Notes
1(a)(i)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for using formula
	= 0.8	A1	
(ii)	$P(A \cap B) = P(A)P(B) = 0.5 \times 0.3$	B1	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1	Award M1 for using formula
	$= 0.5 + 0.3 - 0.5 \times 0.3 = 0.65$	A1	
(b)	$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.1$	B1	
	$P(B A) = P(A \cap B)$		
	$P(B A) = \frac{P(A \cap B)}{P(A)}$	M1	
	= 0.2	A1	Award M1 for using formula
2(a)	$E(X^{2}) = Var(X) + [E(X)]^{2}$	M1	Award M1 for using formula
()	= 66	A1	
(b)	E(Y) = 3E(X) + 4	M1	Award M1 for using formula
	= 28	A1	
	$\operatorname{Var}(Y) = 3^2 \operatorname{Var}(X)$	M1	Award M1 for using formula
2(.)	= 18 (4) (6)	A1	
3 (a)	P(no white) = $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ or $\begin{pmatrix} 4\\ 3 \end{pmatrix} \div \begin{pmatrix} 9\\ 3 \end{pmatrix}$	M1	
	9 8 7 (3) (3)	IVII	
	_ 1	A1	
	$=\frac{1}{21}$		
(b)	P(2 minime 5, 4, 4, 2 minime (5), (4), (9)	M1	M0 if 3 omitted.
	P(2 white) = $\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \times 3$ or $\binom{5}{2} \times \binom{4}{1} \div \binom{9}{3}$	M1	Wo'll 5 ollitted.
	$=\frac{10}{21}$	A1	
	EITHER		
(c)			
	P(2 blue) = $\frac{3}{9} \times \frac{2}{8} \times \frac{6}{7} \times 3$ or $\begin{pmatrix} 3\\2 \end{pmatrix} \times \begin{pmatrix} 6\\1 \end{pmatrix} \div \begin{pmatrix} 9\\3 \end{pmatrix}$	M1A1	M0 if 3 omitted
	$=\left(\frac{3}{14}\right)$		
	P(2 the same) = $\frac{10}{21} + \frac{3}{14}$		
	$=\frac{29}{42}$ cao	A1	
	12		
	OR		
	$P(2 \text{ the same}) = \frac{5}{9} \times \frac{4}{8} \times \frac{1}{7} \times 3 + \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$		
	P(2 the same) = $9^{3} 8^{7} 7^{3} 9^{8} 8^{7} 7^{5}$	N#1 A 1	M0 if 3 omitted
	$+\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \times 3 + \frac{3}{9} \times \frac{2}{8} \times \frac{5}{7} \times 3$	M1A1	Accept
	$+\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{7}^{+}\frac{1}{9}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{7}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}^{+}\frac{1}{9}^{+}\frac{1}{8}^{+}\frac{1}{9}\frac$		
	- 29		$\begin{bmatrix} 5\\2 \end{bmatrix} \times \begin{pmatrix} 1\\1 \end{pmatrix} \div \begin{pmatrix} 9\\3 \end{pmatrix} + \begin{pmatrix} 5\\2 \end{pmatrix} \times \begin{pmatrix} 3\\1 \end{pmatrix} \div \begin{pmatrix} 9\\3 \end{pmatrix}$
	$=\frac{29}{42}$ cao	A1	
			$\left + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} \div \begin{pmatrix} 9 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 5 \\ 1 \end{pmatrix} \div \begin{pmatrix} 9 \\ 3 \end{pmatrix}$
			$(2)^{(1)}(3)^{(2)}(1)^{(3)}$

4(a)(i)	(10)		
	$P(X = 4) = {\binom{10}{4}} \times 0.75^4 \times 0.25^6$	M1	Accept 0.9965 – 0.9803 or
(ii)	= 0.0162	A1	0.0197 – 0.0035
	Let Y denote the number of games won by Dave so that Y is $B(10,0.25)$. si	M1	
	We require $P(Y \le 4)$	m1	
(b)	= 0.9219	A1	
	The number of games lasting less than 1 hr, G, is $B(45,0.08) \approx Poi(3.6)$. si	B1	Award M1A0 for use of a discont
	P(G > 6) = 0.0733	M1A1	Award M1A0 for use of adjacent row or column.
5 (a)	6 8 1 3		FT their mean M1 Use of Law of Total Prob
5(a)	$P(CB) = \frac{6}{10} \times \frac{8}{100} + \frac{4}{10} \times \frac{3}{100}$	M1A1	(Accept tree diagram)
	= 0.06	A1	
	$P(F CB) = \frac{12/1000}{0.06}$	B1B1	FT denominator from (a) B1 num, B1 denom
(b)		B 1	BI num, BI denom
	= 0.2 cao	DI	
6(a)	$\frac{1}{6}$		
(b)	6	B 1	
	$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \frac{25}{216}$	M1A1	
(c)	$\frac{1}{6}, \frac{25}{216} \text{ and } \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} \left(\frac{625}{7776}\right)$	M1A1	Award M1A1 if only 3 rd term given.
(d)	1/6		
	$Prob = \frac{1/6}{1 - 25/36}$	M1	FT their answer to (a)
	$=\frac{6}{11}$	A1	
7(a)(i)	$P(X = 10) = \frac{e^{-12} \times 12^{10}}{10}$	M1	Working must be shown.
	$P(x = 10) = \frac{10!}{10!}$	M1 A1	Accept $0.3472 - 0.2424$ or
(ii)	= 0.105		0.7576 – 0.6528
	P(X > 10) = 1 - 0.3472 = 0.6528	M1A1	Award M1 for adjacent row/col
(b)	Using tables, we see that $P(X \le 18) = 0.9626$	M1	
	He needs to take 18 jars.	A1	Award M1A0 for 17 or 19

8 (a)	$0 \le \theta \le 0.3$	B1B1	Accept use of <.
(b)	$E(X) = 2(0.3 - \theta) + 3 \times 2\theta + 4(0.7 - \theta)$	 M1	Use of $\sum xp_x$ with θ
, í	= 3.4	A1	1 ** .
	$E(X)$ is therefore independent of θ		Need not be seen
(c)(i)	$E(X^{2}) = 4(0.3 - \theta) + 9 \times 2\theta + 16(0.7 - \theta).$	M1	Must include θ
	$= 12.4 - 2\theta$	A1	
	$Var(X) = 12.4 - 2\theta - 3.4^2$	M1	FT their $E(X)$ if possible
	$= 0.84 - 2\theta$	A1	
	$0.84 - 2\theta = 0.8^2$		
	$\theta = 0.1$ cao	A1	
(ii)			
()	Possibilities are 3,3; 4,2 si	B 1	Award M1A0 if 2 is missing in
	$P(Sum = 6) = 0.2 \times 0.6 \times 2 + 0.2 \times 0.2$	M1	Award M1A0 if 2 is missing in 1 st term or present in 2 nd term
	= 0.28	A1	FT their value of θ if sensible
			I I then value of 0 if sensible
9(a)(i)	1 2		M1 for the integral of $xf(x)$, A1
	$E(X) = \frac{1}{10} \int_{-\infty}^{2} x(2x + 3x^2) dx$	M1A1	for completely correct although
	1		limits may be left until 2^{nd} line.
	$=\frac{1}{10}\left[\frac{2x^{3}}{3}+\frac{3x^{4}}{4}\right]^{2}$	A1	For evaluating the integral
	$-\frac{10}{3}$ $+\frac{4}{4}$		
	= 1.59	A1	
(;;)	1^{2}		
(ii)	$E(X^{2}) = \frac{1}{10} \int_{1}^{2} x^{2} (2x + 3x^{2}) dx$	B1	Integral and limits
	$=\frac{1}{10}\left[\frac{2x^4}{4}+\frac{3x^5}{5}\right]^2$	B1	Correct evaluation of integral
	$10 \begin{bmatrix} 4 & 5 \end{bmatrix}_{1}$		
	= 2.61		ET their $E(\mathbf{V})$
	$Var(X) = 2.61 - 1.59^2 = 0.08$	M1A1	FT their $E(X)$
(b)(i)	$F(x) = \int_{1}^{x} \frac{1}{10} (2t + 3t^2) dt$	M1	Limits may be left until 2 nd line
	$J_{1} = \frac{1}{10} + \frac$		-
	$= \frac{1}{10} [t^2 + t^3]^x$	A1	
	$=\frac{1}{10}(x^2+x^3-2)$ cao	A1	
	$P(X \le 1.4) = F(1.4)$	M1	FT their $F(x)$ if possible
(ii)	$1(X \le 1.4) = P(1.4)$ = 0.27	A1	
(iii)	The lower quartile is less than 1.4	B1	FT their answer to (a)(ii)
()	since $F(1.4)$ is more than 0.25.	B 1	

Ques	Solution	Mark	Notes
1 (a)	$E(X^{2}) = \operatorname{Var}(X) + [E(X)]^{2}$	M1	Award M1 for using formula
	= 27	A1	
	Similarly, $E(Y^2) = 39$	A1	
(b)			
(b)	$\mathbf{E}(U) = \mathbf{E}(X)\mathbf{E}(Y)$	M1	
	= 30	A1	
	$E(X^{2}Y^{2}) = E(X^{2})E(Y^{2}) = 27 \times 39$	B1	FT their $E(X^2), E(Y^2)$
	$Var(U) = E(X^{2}Y^{2}) - [E(XY)]^{2}$	M1	but not their $E(X), E(Y)$
	$= 27 \times 39 - 30^2 = 153$	A1	Award M1 for using formula
2(a)(i)	4.5.4.4		
2(a)(l)	$z = \frac{4.5 - 4.4}{0.2} = 0.5$	M1A1	
	P(X > 4.5) = 0.3085	A1	
(ii)	95^{th} percentile = $\mu + 1.645\sigma$	M1	Award only for $\mu + z\sigma$
	= 4.73	A1	The first $\mu + 20$
(b)(i)	E(2Y - X) = 0.8	B1	
	$\operatorname{Var}(2Y - X) = 4\operatorname{Var}(Y) + \operatorname{Var}(X)$	M1	
(;;)	= 0.13	A1	
(ii)	$z = \frac{0 - 0.8}{\sqrt{0.13}} = -2.22$ (Accept ±)	M1A1	FT their values from (b)(i)
	We require $P(2Y - X < 0)$ Prob = 0.0132	M1 A1	
(;;;)		AI	
(iii)	Let total weight $=$ S		
	$E(S) = 2 \times 4.4 + 3 \times 2.6 = 16.6$	B1	
	$Var(S) = 2 \times 0.04 + 3 \times 0.0225 = 0.1475$	M1A1	
	$z = \frac{16 - 16.6}{\sqrt{0.1475}} = -1.56$	m1A1	
	Prob = 0.9406	A1	
3 (a)	$\bar{x} = \frac{69.9}{75}$ (= 0.932)	B 1	
	SE of $\overline{X} = \frac{0.1}{\sqrt{75}}$ (= 0.011547)	B1	
	90% conf limits are		
	$0.932 \pm 1.645 \times 0.011547$	M1A1	M1 correct form, A1 correct <i>z</i> .
	giving [0.913, 0.951]	A1	SE must have $\sqrt{75}$ in denom for
(b)			M1.
	If the method for finding the confidence interval is	B1	Award B0 for any solution
	repeated a large number of times, then 90% of the intervals obtained will contain μ (or equivalent)	DI	which suggests that the
	increases obtained will contain μ (or equivalent)		calculated interval contains μ
			with a probability of 0.9
		l	

4 (a)	The total number of errors, <i>X</i> , is Poi(8) P(X < 5) = 1 - 0.9004 = 0.0996	B1 M1A1	Award M1A0 for use of adjacent row/column
4(a) (b)(i) (ii) 5(a) (b)			Ũ

6 (a)			
	$ \begin{array}{c} A\\ \\ \theta\\ B\\ D\\ C \end{array} $		
(b)(i)	Drop a perpendicular from A to BC. $X = 2BD = 2AB\cos\theta = 4\cos\theta$ The probability density function of θ is 2	M1 A1	Accept any valid method Must be convincing
	$f(\theta) = \frac{2}{\pi}$ (for $0 < \theta < \pi/2$) si	B 1	
	$f(\theta) = \frac{2}{\pi} \text{ (for } 0 < \theta < \pi/2 \text{) si}$ $E(X) = \int_{0}^{\pi/2} \frac{2}{\pi} \times 4\cos\theta d\theta$	M1	Limits not required, award M1 for $\int K \times 4\cos\theta d\theta, K \neq 1$
	$=\frac{8}{\pi}\left[\sin\theta\right]_{0}^{\pi/2}$	A1	Limits required here
	$= 8/\pi$ cao	A1	
(ii)	$P(X \le 3) = P(\cos \theta \le 0.75)$ $= P(\theta \ge 0.723)$ $\pi/2 - 0.723$	M1 A1	An answer of 0.46 is given
	$= \frac{\pi/2 - 0.723}{\pi/2} = 0.54$	M1 A1	M1A0M1A0
7(a)	Let <i>X</i> denote the number of white flowers		
	produced. If bag is Type B, X is $B(120,0.7) \approx N(84,25.2)$ P(label A) = P(X < 70)	M1A1	Award M1A0A1A1 for incorrect
	$z = \frac{69.5 - 84}{\sqrt{25.2}}$	M1A1	or no c/c.
	$\sqrt{25.2}$ = -2.89 (Accept ±)	A1	$70.5 \rightarrow z = -2.69, p = 0.00357$ $70 \rightarrow z = -2.79, p = 0.00264$
	Prob = 0.00193	A1	$69 \rightarrow z = -2.99, p = 0.00139$ $68.5 \rightarrow z = -3.09, p = 0.001$
(b)	If bag is of Type A, X is $B(120,0.5) \approx N(60,30)$	M1A1	
	P(label B) = P(X \ge 70) $z = \frac{69.5 - 60}{\sqrt{30}}$	M1A1	Award M1A0A1A1 for incorrect or no c/c.
	= 1.73 (Accept ±) Prob = 0.0418	A1 A1	$70.5 \rightarrow z = 1.92, p = 0.02743$ $70 \rightarrow z = 1.83, p = 0.03362$ $69 \rightarrow z = 1.64, p = 0.0505$ $68.5 \rightarrow z = 1.55, p = 0.06057$

Ques	Solution		Mark	Notes	
1 (a)	The possibilities are				
	Numbers drawn	Mean	Median		
	123	2	2		
	124	7/3	2	B 1	
	125	8/3	2	DI	
	134	8/3	3	B1	B1 each column
	135	3	3 4	21	
	<u>145</u> 234	10/3 3	3	B1	Special case – B2 if one
	234	10/3	3		combination is missing.
	2 3 3	10/3	4		
	345	4	4		
	The sampling distribution	n of the mean	n is		
	\overline{x} 2 7/3 8/3	3 10/3		M1	No FT from earlier work.
	χ 2 $1/3$ $6/3$ Prob $1/10$ $1/10$ $2/10$	2/10 2/10		A1	
(b)	The sampling distribution	n of the medi	ian is		
	Median 2	3	4	M1	
	Prob 3/10		3/10	A1	
2(-)				D1	
2(a)	UE of $\mu = 99.03$			B1 B1	No working need be seen
	$\Sigma x^2 = 98088.11$	11 000 0?		DI	
	UE of $\sigma^2 = \frac{98088}{9}$	$11 - 990.3^2$		N/1	
)	7~10		M1	Answer only no marks
	= 2.08 (2	.0778)		A1	
(b)(i)	$H_0: \mu = 100; H_1: \mu \neq 100$		B 1		
(ii)	$t = \frac{99.03 - 100}{2.0778/100000000000000000000000000000000000$)		M1	M0 if treated as z
	= -2.13			A1	
	DF = 9 si			B1	
	Critical value $= 2.262$			B 1	
	Insufficient evidence to re	eiect the mai	nager's claim		FT their critical value but not
	or Accept the manager's of	•	anger 5 chuini	B1	
	Because $2.13 < 2.262$ or		sing the term		their p-value obtained from using the normal distribution
	'acceptance region' or by	-	0	B1	using the normal distribution

3(a)(i)	$\hat{p} = 0.45$	B1	
(ii)	$ESE = \sqrt{\frac{0.45 \times 0.55}{120}} = 0.0454$ si	M1A1	
(b)(i)	95% confidence limits are $0.45 \pm 1.96 \times 0.0454$ giving [0.361,0.539] This time, $\hat{p} = \frac{0.455 + 0.581}{2} = 0.518$	M1A1 A1 M1A1	
(ii)	Width of CI = $2 \times 1.645 \sqrt{\frac{0.518 \times 0.482}{n}}$ = 0.581 - 0.455 = 0.126 Solving,	M1 A1	
	$n = \left(\frac{3.29}{0.126}\right)^2 \times 0.518 \times 0.482$	M1	Attempting to solve for <i>n</i>
	= 170	A1	
(iii)	$x = 170 \times 0.518 = 88$	B1	FT their <i>n</i>
4 (a)	$H_0: \mu_A = \mu_B: H_1: \mu_A \neq \mu_B$	B1	
(b)	$\bar{x} = 51.3; \bar{y} = 51.8$	B1	
	$s_x^2 = \frac{131659}{49} - \frac{2565^2}{49 \times 50} = 1.5204$	M1A1	
	$s_x^2 = \frac{134232}{49} - \frac{2590^2}{49 \times 50} = 1.3204$ $s_y^2 = \frac{134232}{49} - \frac{2590^2}{49 \times 50} = 1.4285$ [Accept division by 50 giving 1.49 and 1.4]	A1	
	$SE = \sqrt{\frac{1.5204}{50} + \frac{1.4285}{50}}$	M1	
	= 0.2428 (0.2404)	A1	
	Test stat = $\frac{51.3 - 51.8}{0.2428}$	M1	
	0.2428 = 2.06 (2.08)	A1	
	p-value = 0.039 (0.038)	A1	
	Strong evidence for believing there is a difference in mean distances travelled (or that the Model A mean is less than the Model B mean).	A1	FT their p-value

5 (a)	$\sum x = 15, \sum x^2 = 55, \sum y = 345.5, \sum xy = 1131.1$	B2	Minus 1 each error.
	$S_{xy} = 1131.1 - 15 \times 345.5 / 6 = 267.35$ $S_{xx} = 55 - 15^2 / 6 = 17.5$	B1 B1	FT I error in sums.
	$b = \frac{267.35}{17.5} = 15.3$ $a = \frac{345.5 - 15 \times 15.277}{6} = 19.4 \text{ (accept 19.3)}$	M1 A1 M1 A1	
(b)	SE of $b = \frac{0.75}{\sqrt{17.5}}$ (0.179) 99% confidence limits for β are 15.277 ± 2.576 × 0.179 giving [14.8,15.7]	M1A1 M1A1 A1	FT their values from (a)
6(a)	$E(X) = \int_{0}^{a} x \times \frac{2x}{a^{2}} dx$	M1	Limits not required in this line
	$= \left[\frac{2x^3}{3a^2}\right]_0^a$	A1	
	$\begin{bmatrix} 3a^2 \end{bmatrix}_0 = \frac{2a}{3}$	A1	
	$E(X^{2}) = \int_{-1}^{1} x^{2} \times \frac{2x}{a^{2}} dx$	M1	Limits not required in this line
	$= \left[\frac{2x^4}{4a^2}\right]_0^a$ $= \frac{a^2}{2}$	A1	
	$=\frac{a}{2}$	A1	
	$\operatorname{Var}(X) = \frac{a^2}{2} - \frac{4a^2}{9}$	A1	
	$Var(X) = \frac{a^2}{2} - \frac{4a^2}{9}$ = $\frac{a^2}{18}$		

			Penalise the omission of E once
(b)(i)	$E(U) = cE(\overline{X}) \text{ (or } cE(X)) = c \times \frac{2a}{3}$	M1	in the question
	$E(U) = a \Longrightarrow c = \frac{3}{2}$	A1	
	$\operatorname{Var}(U) = \frac{9}{4}\operatorname{Var}(\overline{X})$	M1	
	$=\frac{9}{4}\times\frac{a^2}{18n}$	A1	
	$=rac{a^2}{8n}$	A1	
(ii)	$E(V) = dE(Y) = d \times \frac{2na}{2n+1}$	M1	
	$E(V) = a \Longrightarrow d = \frac{2n+1}{2n}$	A1	
	$\operatorname{Var}(V) = \left(\frac{2n+1}{2n}\right)^2 \operatorname{Var}(Y)$	M1	
	$=\left(\frac{2n+1}{2n}\right)^{2}\times\left(\frac{na^{2}}{(n+1)(2n+1)^{2}}\right)$	A1	
	$=\frac{a^2}{4n(n+1)}$	A1	
(iii)	$\frac{\operatorname{Var}(U)}{\operatorname{Var}(V)} = \frac{a^2}{8n} \div \frac{a^2}{4n(n+1)}$	B1	
	$= \frac{n+1}{2}$ V is the better estimator Because (for $n > 1$) it has the smaller variance	B1 B1	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>