

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
C1	1
C2	6
C3	11
C4	16
FP1	21
FP2	26
FP3	32

C1

1.	(<i>a</i>)	(i)	Gradient of BC	= <u>increase in y</u> increase in x			M1	
		(ii)	Gradient of <i>BC</i> = A correct methor for <i>BC</i>	= -4 od for finding th	or e) (or e equation of M1	equivalent) of <i>BC</i> using	, candida	A1 ate's gradient
			Equation of <i>BC</i>	: $y - (-5) = -$	4(x-6) (conditional)	or equivalen	t)	Δ1
		(:::)	Equation of <i>BC</i>	$\therefore \qquad 4x + y - 1$	-19=0	(convincin	g)	A1
		(111)	A correct methor for AD (to be awarded	BC = -1 od for finding th	e equation of (M1) (M1)	of <i>AD</i> using	candida	ate's gradient
			Equation of <i>AD</i>	y - 4 = 1	$\frac{1}{4}(x-8)$	(or equi	ivalent)	A 1
		Note:	Total mark for	(1.1. part (a) is 7 ma	rks	gradient of I	BC)	AI
	(<i>b</i>)	An atter $x = 4, y$	$\begin{array}{l} \text{empt to solve equa}\\ y = 3 \end{array}$	ations of <i>BC</i> and	AD simultar (convincing)	neously)	M1 (c.a.o.)	A1
	(c)	A correspondence $BD = \gamma$	ect method for fin √68	iding the length o	of <i>BD</i>		M1	A1
	(<i>d</i>)	A corre <i>E</i> (0, 2)	ect method for fin	nding <i>E</i>			M1	A1
2.	(<i>a</i>)	$\frac{2+5\sqrt{2}}{4+\sqrt{2}}$	$\frac{7}{7} = \frac{(2+5\sqrt{7})(4-1)}{(4+\sqrt{7})(4-1)}$	$\frac{-\sqrt{7}}{\sqrt{7}}$				M1
		4 + v/ Numer	$(4 + \sqrt{7})(4 - 1)$	$8 - 2\sqrt{7} + 20\sqrt{7}$	- 35			A1
		Denom $\frac{2+5\sqrt{2}}{4+\sqrt{7}}$	$\frac{1}{7} = -3 + 2\sqrt{7}$	16 – 7	(c.a.o.)	A1	A1
		Specia	l case	-		a		

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4 + \sqrt{7}$

(<i>b</i>)	$\sqrt{360} = 6\sqrt{10}$	B1
	$\sqrt{2} \times (\sqrt{5})^3 = 5\sqrt{10}$	B1
	$\sqrt{30 \times \sqrt{8}} = 2\sqrt{10}$	B1
	$\sqrt{6}$	

$$\sqrt{360} - \sqrt{2} \times (\sqrt{5})^3 - \frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}} = -\sqrt{10}$$
 (c.a.o.) B1

3.	(<i>a</i>)	dy = 4x - 10 (an attempt to differentiate,	
		dx at least one non-zero term correct)	MI
		An attempt to substitute $x = 3$ in candidate's expression for <u>dy</u> m1	
		dx	
		Value of dy at $P = 2$ (c a o)	A 1
		dx (c.a.o.) T	
		Use of gradient of normal = -1	m1
		candidate's value for dy	
		dr	
		\mathbf{u}	
		Equation of normal at P: $y - (-5) = -\frac{1}{2}(x - 3)$ (or equivalent)	
		(f.t. candidate's value for <u>dy</u> provided M1 and both m1's awarded)	A1
		dx	
	(b)	An attempt to put candidate's expression for $dv = 0$	M1
		dr	
		r coordinate of $Q = 2.5$	
		$(f_{t} = 1) = \frac{1}{2} \frac{1}{2$	
		(i.t. one error in candidate s expression for \underline{ay}) Al	
		dx	
4	(a)	$2(x-4)^2 - 40$ B1 B1 F	31
т.	(u)		1

(b)least value =
$$-20$$
(f.t. candidate's value for c)B1x-coordinate = 4(f.t. candidate's value for b)B1

5. (a)
$$(1+2x)^7 = 1 + 14x + 84x^2 \dots$$
 B1 B1 B1

(b)
$$(1-4x)(1+2x)^7 = 1-4x+14x-56x^2+84x^2$$

Constant term and terms in x B1
Terms in x^2 (f.t. candidate's expression in (a))
 $(1-4x)(1+2x)^7 = 1+10x+28x^2$ (c.a.o.) B1

6.	(<i>a</i>)	(i) An expression for $b^2 - 4ac$, with at least two of a, b, c correct M1	
		$b^{2} - 4ac = (4k + 1)^{2} - 4 \times (k + 1) \times (k - 5)$	A1
		Putting $b^2 - 4ac = 0$	m1
		$4k^2 + 8k + 7 = 0 \qquad (convincing) A1$	
	(ii)	An expression for $b^2 - 4ac$, with at least two of a, b, c correct	
		(M1)	
		(to be awarded only if corresponding M1 is not awarded in	n part (i))
		$b^2 - 4ac = 64 - 112 \ (= -48)$	A1
		$b^2 - 4ac < 0 \Rightarrow$ no real roots	A1
		Note: Total mark for part (a) is 6 marks	
	(<i>b</i>)	Finding critical values $x = -\frac{3}{4}$, $x = 3$	B1
		A statement (mathematical or otherwise) to the effect that	
		$x \le -\frac{3}{4}$ or $3 \le x$ (or equivalent)	
		(f.t. candidate's derived critical values)	B2
		Deduct 1 mark for each of the following errors	
		the use of strict inequalities	
		the use of the word 'and' instead of the word 'or'	
_			
7.	(<i>a</i>)	$y + \delta y = 5(x + \delta x)^2 + 8(x + \delta x) - 11$	B1
		Subtracting y from above to find δy	M1
		$\delta y = 10x\delta x + 5(\delta x)^2 + 8\delta x$	A1
		Dividing by δx and letting $\delta x \to 0$	M1
		$\underline{dy} = \lim_{x \to \infty} t \underline{\delta y} = 10x + 8 \tag{c.a.}$	o.) A1
		$dx = \delta x \rightarrow 0 \delta x$	

(b) $\underline{dy} = 6 \times \underline{2} \times x^{-1/3} + 5 \times -2 \times x^{-3}$ (completely correct answer) B2 (If B2 not awarded, award B1 for at least one correct non-zero term)

8.	Attempting to find $f(r) = 0$ for	some value of r	M1	
	$f(-1) = 0 \implies x + 1$ is a factor			A1
	$f(x) = (x+1)(8x^2 + ax + b)$ with	th one of <i>a</i> , <i>b</i> correct		M1
	$f(x) = (x+1)(8x^2 - 10x + 3)$			A1
	f(x) = (x+1)(2x-1)(4x-3)	(f.t. only $8x^2 + 10x + 3$ in abo	ove line)	A1
	$x = -1, \frac{1}{2}, \frac{3}{4}$	(f.t. for factors $2x \pm 1$, $4x \pm 3$)	A1	

9. (*a*)

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)

10. (a) (i)
$$(2x \times x) + (2x \times x) + (2x \times y) + (2x \times y) + (x \times y) + (x \times y)$$

$$= 108 \qquad M1$$
 $6xy + 4x^2 = 108 \Rightarrow xy = 18 - 2x^2 \qquad (convincing) \qquad A1$
(ii) $V = 2x \times x \times y = 2x(xy) \Rightarrow V = 36x - 4x^3 \qquad (convincing) \qquad B1$
(b) $\frac{dV}{dx} = 36 - 3 \times 4x^2$
 3
Putting derived $\frac{dV}{dx} = 0$
 dx
 $x = 3, (-3)$
(f.t. candidate's $\frac{dV}{dx}$
A1
 dx

Stationary value of V at x = 3 is 72 (c.a.o) A1 A correct method for finding nature of the stationary point yielding a maximum value (for 0 < x) B1

0 0.50.50.470588235 1 0.333333333 1.50.186046511 2 0.1(5 values correct) B2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with h = 0.5**M**1 $I \approx 0.5 \times \{0.5 + 0.1 + 2(0.470588235 + 0.333333333 + 0.186046511)\}$ $I \approx 2.579936152 \times 0.5 \div 2$ $I \approx 0.644984038$ $I \approx 0.645$ (f.t. one slip) A1 **Special case** for candidates who put h = 0.40.50 0.40.484496124 0.80.398089172 1.20.268240343 1.60.164041994 2 0.1(all values correct) **B**1 Correct formula with h = 0.4**M**1 $I \approx \underline{0.4} \times \{0.5 + 0.1 + 2(0.484496124 + 0.398089172 +$ 0.268240343 + 0.164041994)2 $I \approx$ $3.229735266 \times 0.4 \div 2$ $I \approx 0.645947053$ $I \approx 0.646$ (f.t. one slip) A1 Note: Answer only with no working earns 0 marks Correct use of $\tan \theta = \sin \theta$ M1 *(a)* (i) (o.e.) $\cos\theta$ Correct use of $\cos^2\theta = 1 - \sin^2\theta$ M1 $6(1 - \sin^2\theta) + 5\sin\theta = 0 \Longrightarrow 6\sin^2\theta - 5\sin\theta - 6 = 0$ (convincing) A1 (ii) An attempt to solve given quadratic equation in sin θ , either by using the quadratic formula or by getting the expression into the form $(a \sin \theta + b)(c \sin \theta)$ $\theta + d$, with $a \times c = 6$ and $b \times d = -6$ M1 $6\sin^2\theta - 5\sin\theta - 6 = 0 \implies (3\sin\theta + 2)(2\sin\theta - 3) = 0$ $(\sin\theta = \frac{3}{2})$ $\Rightarrow \sin \theta = -\underline{2},$ (c.a.o.) A1 3 $\theta = 221.81^{\circ}, 318.19^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range from $3\sin\theta + 2 = 0$, ignore roots outside range. $\sin \theta = -$, f.t. for 2 marks, $\sin \theta = +$, f.t. for 1 mark *(b)* $2x - 60^\circ = -38^\circ, 38^\circ, 322^\circ$ (one value) B1 $x = 11^{\circ}, 49^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range,

C2

ignore roots outside range.

1.

2.

3.

4.

(<i>a</i>)	Either: Or:	$(x+2)^{2} = x^{2} + (x-2)^{2} - 2 \times x \times (x-2)^{2}$ $\cos B\hat{A}C = \frac{x^{2} + (x-2)^{2} - (x+2)^{2}}{2 \times x \times (x-2)}$	$) imes \cos B\hat{A}C$	
		(substituting the correct expressions in	the correct places	
		(substituting the confect expressions in	in the cos rule) N	[1
	Either:	$\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4x}{2 \times x \times (x - 2)}$	$\underline{4}$ (o.e.)	
	Or:	$\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4x}{2x^2 - 4x}$	<u>4</u> (o.e.) A	1
	$\cos R\hat{A}$	C = r - 8	(convincing)	A 1
	C 05 D 1	$\frac{1}{2r-4}$	(convincing)	111
(b)	(i)	r = 8 - 1		M1
(b)	(1)	$\frac{x-8}{2x-4} = -\frac{1}{2}$		111
		2x - 4 $2x - 5$		Δ 1
	(;;)	x = 3		AI
	(11)			
		$\frac{\sin ABC}{2} = \frac{\sin 120^{\circ}}{7}$		
		3 /		
		(substituting the correct values in the c	correct places in the	
		sin rule, f.t. candidate's value for x ,	provided $x > 2$) N	11
		$ABC = 21 \cdot 8^{\circ}$		
		(f.t. candidate's value for <i>x</i> ,	provided $x > 2$) A	.1
		Or:		
		$3^2 = 5^2 + 7^2 - 2 \times 5 \times 7 \times \cos ABC$		
		(substituting the correct values in the corr	correct places in the	
		cos rule, f.t. candidate's value for x , pr	rovided $x > 2$)	M1
		$ABC = 21.8^{\circ}$,	
		(ft candidate's value for x t	provided $x > 2$)	A1
		(i.e. culturate 5 value for x, j	510 Videa x > 2)	
(a)	S = a	+ [a + d] + + [a + (n - 1)d]		
(u)	$S_n - u$	+ $[u + u] + \ldots + [u + (n - 1)u]$ (at least 3 te	arms one at each and) B 1
	$\mathbf{S} = \mathbf{I} \mathbf{a}$	(a reast 5 to (n-1)d] + [a + (n-2)d] + a	ernis, one at each end) DI
	$S_n - [a]$	a + (n - 1)a] + [a + (n - 2)a] + + a		
	Enther:			Л
	$2S_n = [$	[a + a + (n - 1)a] + [a + a + (n - 1)a] + [a + a + (n - 1)a]	$a_{1} + [a + a + (n - 1)]$	[a]
	(at leas	st three terms, including those derived i	from the first pair an	a the last pair plus
	one of	her pair of terms)		
	Or:			2.61
	$2S_n = [$	$[a + a + (n - 1)d] + \dots$ (<i>n</i> times)		MI
	$2S_n = r$	n[2a + (n-1)d]		
	$S_n = \underline{n}$	[2a + (n-1)d]	(convincing)	A1
	2			

(b) Either:

Index.
$$10 (2a + 9d) = 115$$
B1 2 $S_{14} = 115 + 130$ M1 $14 (2a + 13d) = 245$ A1 2 A1An attempt to solve the candidate's equations simultaneously by eliminating one
unknownM1 $a = -2, d = 3$ (both values)(c.a.o.) $A1$ Or: $10 (2a + 9d) = 115$ B1 2 $(a + 10d) + (a + 11d) + (a + 12d) + (a + 13d) = 130$ M1 $4a + 46d = 130$ (seen or implied by later work)A1An attempt to solve the candidate's equations simultaneously by eliminating one
unknownM1 $a = -2, d = 3$ (both values)M1

5. (a) r = 0.8 B1 $S_{18} = \frac{100(1 - 0.8^{18})}{1 - 0.8}$ M1

$$S_{18} \approx 490.992 = 491$$
 (c.a.o.) A1

(b) (i)
$$ar = -20$$
 B1
 $\frac{a}{1-r} = 64$ B1

An attempt to solve these equations simultaneously by eliminating a M1

(ii)
$$16r^2 - 16r - 5 = 0$$
 (convincing) A1
(*i*i) $r = -\frac{1}{4}$ (c.a.o.) B1
| $r | < 1$ E1

6. (a)
$$\frac{x^{5/4}}{5/4} + 2 \times \frac{x^{-4}}{-4} + c$$
 (-1 if no constant present) B1,B1
(b) (i) $x^2 + 3 = 4x$ M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = 3$ m1
 $(x - 1)(x - 3) = 0 \Rightarrow x = 1, x = 3$ (both values, c.a.o) A1
Note: Answer only with no working earns 0 marks
(ii) Area of small triangle = 2
(any method, f.t. candidate's value for x_A) B1
Use of integration to find the area under the curve M1
 $\int x^2 dx = (1/3)x^3$, $\int 3 dx = 3x$ (correct integration) B1
Correct method of substitution of candidate's limits m1

$$[(1/3)x^3 + 3x]_1^3 = (9+9) - (1/3+3) = 44/3$$

Use of candidate's values for x_A and x_B as limits and trying to find total area by adding area under curve to area of triangle

m1

Shaded area =
$$44/3 + 2 = 50/3$$
 (c.a.o.) A1

7. *(a)*

Let $p = \log_a x$, $q = \log_a y$ Then $x = a^p$, $y = a^q$ $xy = a^p \times a^q = a^{p+q}$ (the relationship between log and power) **B**1 (the laws of indices) **B**1 $\log_a xy = p + q$ (the relationship between log and power) $\log_a xy = p + q = \log_a x + \log_a y$ (convincing) B1

(b) Either:

$$(2-3x) \log_{10} 5 = \log_{10} 8$$

$$(taking logs on both sides and using the power law) M1$$

$$x = 2 \log_{10} 5 - \log_{10} 8$$

$$3 \log_{10} 5$$

$$x = 0.236 (f.t. one slip, see below) A1$$
Or:

$$2-3x = \log_5 8 (rewriting as a log equation) M1$$

$$x = 2 - \log_5 8$$

$$x = 0.236 (f.t. one slip, see below) A1$$
Note: an answer of $x = -0.236$ from $x = \frac{\log_{10} 8 - 2 \log_{10} 5}{3 \log_{10} 5}$

$$earns M1 A0 A1$$
an answer of $x = 1.097$ from $x = 2 \log_{10} 5 + \log_{10} 8$

$$3 \log_{10} 5$$

$$earns M1 A0 A1$$
an answer of $x = 0.708$ from $x = 2 \log_{10} 5 - \log_{10} 8$

$$\log_{10} 5$$

$$earns M1 A0 A1$$

Note: Answer only with no working shown earns 0 marks

	(<i>c</i>)	$\frac{1}{2}\log_a 144x^8 = \log_a 12x^4 \qquad (\text{power law})$	B1
		$\log_a 90x^2 - \log_a \left(\frac{5}{5} \right) = \log_a \left(\frac{90x^2 \times x}{5} \right) \qquad \text{(subtraction law)} \qquad B1$	
		$\frac{90x^2 \times x}{5} = 12x^4$ (removing logs, f.t one incorrect term)	B1
		x = 1.5 (c.a.o.)	B1
8.	(<i>a</i>)	A(-1, 3) A correct method for finding the radius M1	B1
		Radius = 5	Al
	(b)	(i) Showing that the coordinates of A do not satisfy the equation of L (f.t. candidate's coordinates for A) B1 (ii) An attempt to substitute $(9 - x)$ for y in the equation of C_1 $x^2 - 5x + 6 = 0$ (or $2x^2 - 10x + 12 = 0$) A1 x = 2, x = 3 (correctly solving candidate's quadratic, both values) A1 Points of intersection are (2, 7), (3, 6) (c.a.o.) A1	M1
	(c)	Distance between centres of C_1 and $C_2 = 13$ (f.t. candidate's coordinates for A) Use of the fact that the shortest distance between the circles = distance between centres – sum of the radii M1 Shortest distance between the circles = 2 (f.t. candidate's coordinates for A and radius for C_1 .)	B1 A1
9.	(a) Area =	Substitution of values in area formula for triangle $1/2 \times 7 \cdot 2^2 \times \sin 1 \cdot 1 = 23 \cdot 1 \text{ cm}^2$. A1	M1
	(b)	Let $B\hat{O}C = \phi$ radians $\frac{1}{2} \times 7 \cdot 2^2 \times \phi = 19 \cdot 44$ $\phi = 0 \cdot 75$ (o.e.) Length of arc $BC = 7 \cdot 2 \times 0 \cdot 75 = 5 \cdot 4$ cm (f.t. candidate's value for ϕ)	M1 A1 A1

1.

2.

(a)

1	1.945910149		
1.5	2.238046572		
2	2.63905733		
2.5	3.073850053		
3	3.496507561	(5 values correct)	B2
(If B2 not awarded, a	ward B1 for either 3 of	or 4 values correct)	

Correct formula with
$$h = 0.5$$
 M1
 $I \approx 0.5 \times \{1.945910149 + 3.496507561$
 $3 + 4(2.238046572 + 3.073850053) + 2(2.63905733)\}$
 $I \approx 31.96811887 \times 0.5 \div 3$
 $I \approx 5.328019812$
 $I \approx 5.328$ (f.t. one slip) A1

Note: Answer only with no working earns 0 marks

(b)
$$\int_{1}^{3} \ln \sqrt{x^{3}+6} \, dx \approx 2.664$$
 (f.t. candidate's answer to (a)) B1

(a)
$$4(\csc^2\theta - 1) - 8 = 2\csc^2\theta - 5\csc\theta$$

(correct use of $\cot^2\theta = \csc^2\theta - 1$) M1
An attempt to collect terms, form and solve quadratic equation
in cosec θ , either by using the quadratic formula or by getting the
expression into the form ($a \csc \theta + b$)($c \csc \theta + d$),
with $a \times c = \text{coefficient}$ of $\csc^2\theta$ and $b \times d = \text{candidate's constant}$
 $m1$
 $2\csc^2\theta + 5\csc\theta - 12 = 0 \Rightarrow (2\csc\theta - 3)(\csc\theta + 4) = 0$
 $\Rightarrow \csc\theta = \frac{3}{2}, \csc\theta = -4$
 $\Rightarrow \sin\theta = \frac{2}{2}, \sin\theta = -\frac{1}{4}$ (c.a.o.) A1
 $\theta = 41.81^\circ, 138.19^\circ$ B1
 $\theta = 194.48^\circ, 345.52^\circ$ B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore
roots outside range.
 $\sin\theta = +, -, \text{ f.t. for 3 marks}, \quad \sin\theta = -, -, \text{ f.t. for 2 marks}$
 $\sin\theta = +, +, \text{ f.t. for 1 mark}$

(b) Correct use of sec
$$\phi = 1$$
 and $\tan \phi = \frac{\sin \phi}{\cos \phi}$ (o.e.) M1

$$\sin \phi = -\frac{1}{2}$$

$$\phi = 210^{\circ}, 330^{\circ}$$
(f.t. for $\sin \phi = -a$) A1

<i>(a)</i>	Use of product formula yielding $x^3 \times 2y \times \underline{dy} + 3x^2 \times y^2$ B1 B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3x^2y^2}{2x^3y} \tag{c.a.o.}$	B1
(b)	(i) Putting candidate's expression for $dy = 3$ and an attempt to dx	
	simplify	M1
	$-\frac{3a^2b^2}{2a^3b} = 3 \Longrightarrow b = -2a \qquad \text{(convincing)}$	A1
	(ii) Substituting <i>a</i> for <i>x</i> and $-2a$ for <i>y</i> in the equation for <i>C</i> M1 a = 2, b = -4	A1
(<i>a</i>)	Differentiating ln <i>t</i> and $5t^4$ with respect to <i>t</i> , at least one correct M1 candidate's <i>x</i> -derivative = $\underline{1}$,	
	candidate's y-derivative = $20t^3$ (both values) A1 dy = candidate's y-derivative	M1
	$\frac{dy}{dx} = \frac{candidate \ 5y}{derivative}$ $\frac{dy}{dx} = 20t^4$ (c.a.o.)	A1
<i>(b)</i>	$\frac{d}{dt} \left[\frac{dy}{dt} \right] = 80t^3 $ (f.t. candidate's expression for $\frac{dy}{dt}$) B1	
	$\frac{dt}{dx} = \underline{d} \left[\frac{dy}{dx} \right] + \text{candidate's } x \text{-derivative} \qquad M1$	
	$\frac{dx^2}{dx^2} = 80t^4 $ (f.t. one slip)	A1
	$\frac{d^2 y}{dx^2} = 0.648 \Longrightarrow t = 0.3 $ (c.a.o.)	A1
		2.61
(<i>a</i>)	$\frac{dy}{dx} = 5 \times (7 - 9x^2)^4 \times f(x), \qquad (f(x) \neq 1)$	MI
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -90x \times (7 - 9x^2)^4 $ A1	
<i>(b)</i>	$\frac{dy}{dx} = \frac{6}{1 + (6x)^2}$ or $\frac{1}{1 + (6x)^2}$ or $\frac{6}{1 + (6x)^2}$	M1
	$\frac{dy}{dx} = \frac{6}{1+36x^2}$	A1

(c)
$$\frac{dy}{dx} = e^{4x} \times m \sec^2 2x + \tan 2x \times ke^{4x} \qquad (m = 1, 2, k = 1, 4) \qquad M1$$

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4e^{4x} \qquad (at least one correct term) \qquad B1$$

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4e^{4x} \qquad (c.a.o.) \qquad A1$$

© WJEC CBAC Ltd.

3.

4.

5.

(d)
$$\frac{dy}{dx} = \frac{(2 + \cos x) \times m \cos x - (3 + \sin x) \times k \sin x}{(2 + \cos x)^2} \quad (m = 1, -1 \ k = 1, -1) \quad M1$$
$$\frac{dy}{dx} = \frac{(2 + \cos x) \times (\cos x) - (3 + \sin x) \times (-\sin x)}{(2 + \cos x)^2} \quad A1$$
$$\frac{dy}{dx} = \frac{2 \cos x + 3 \sin x + 1}{(2 + \cos x)^2} \quad A1$$

(a)

(i)

$$\int \cos (3x + \pi/2) \, dx = k \times \sin (3x + \pi/2) + c$$

$$\int (k = 1, 3, \frac{1}{3}, -\frac{1}{3}) \quad M1$$

$$\int \cos (3x + \pi/2) \, dx = \frac{1}{3} \times \sin (3x + \pi/2) + c \quad A1$$

(ii)
$$\int_{1}^{1} e^{3-4x} dx = k \times e^{3-4x} + c \qquad (k = 1, -4, \frac{1}{4}, -\frac{1}{4}) \qquad M1$$

$$\int_{0}^{3} e^{3-4x} dx = -\frac{1}{4} \times e^{3-4x} + c$$
 A1

(iii)
$$\int \frac{7}{8x+5} dx = 7 \times k \times \ln |8x+5| + c \quad (k = 1, 8, \frac{1}{8})$$
M1
$$\int \frac{7}{8x+5} dx = 7 \times \frac{1}{8} \times \ln |8x+5| + c$$
A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (2x-1)^{-4} dx = k \times (2x-1)^{-3} \qquad (k = 1, 2, \frac{1}{2}) \qquad M1$$
$$\int_{1}^{2} 9 \times (2x-1)^{-4} dx = \begin{bmatrix} 9 \times \frac{1}{2} \times (2x-1)^{-3} \\ 1 \end{bmatrix}_{1}^{2} \qquad A1$$

Correct method for substitution of limits in an expression of the form $m \times (2x - 1)^{-3}$ M1

$$\int_{1}^{2} 9 \times (2x-1)^{-4} dx = \frac{13}{9} = 1.44$$
 (f.t. for $k = 1, 2$ only) A1

Note: Answer only with no working earns 0 marks

7.	(<i>a</i>)	Choice of $a \neq -1$ and $b = -a - 2$ Correct verification that given equation is sa	M1	Δ1
	(<i>b</i>)	Trying to solve either $x^2 - 10 \le 6$ or $x^2 - 10$	≥ -6 M1	AI
		$x^{2} - 10 \le 6 \Longrightarrow x^{2} \le 16$ $x^{2} - 10 \ge -6 \Longrightarrow x^{2} \ge 4$	(both inequalities)	A1
		At least one of: $2 \le x \le 4, -4 \le x \le -2$	(f.t. one slip)	A1
		Required range: $2 \le x \le 4$ or $-4 \le x \le -2$	(c.a.o.)	A1
		Alternative mark scheme		

$(x^2 - 10)^2 \le 36$ (forming and trying to	solve quadratic in x^2)M1	
Critical values $x^2 = 4$ and $x^2 = 16$		A1
At least one of: $2 \le x \le 4, -4 \le x \le -2$	(f.t. one slip)	A1
Required range: $2 \le x \le 4$ or $-4 \le x \le -2$	(c.a.o.)	A1

 $x_{0} = -1.5$ $x_{1} = -1.666394263$ (x₁ correct, at least 5 places after the point) B1 $x_{2} = -1.676625462$ $x_{3} = -1.677198866$ $x_{4} = -1.677230823 = -1.67723$ (x₄ correct to 5 decimal places) B1 Let $f(x) = x^{2} + e^{x} - 3$ An attempt to check values or signs of f(x) at x = -1.677225, x = -1.677235M1 $f(-1.677225) = -2.44 \times 10^{-5} < 0, f(-1.677235) = 7.26 \times 10^{-6} > 0$ A1 Change of sign $\Rightarrow \alpha = -1.67723$ correct to five decimal places A1

9.

8.

Concave down curve and <i>y</i> -coordinate of maximum $= 4$	B1
x-coordinate of maximum $= -1$	B1
Both points of intersection with x-axis	B1

10.	(<i>a</i>)	$y - 6 = e^{5 - x/2}$.		B1
		$x = 2 [5 - \ln (y - 6)]$ (c.a.o.)		M1 A1
		$f^{-1}(x) = 2 [5 - \ln (x - 6)]$ (f.t. one slip in candidate's expression for x)	A1
	(<i>b</i>)	$D(f^{-1}) = [7, \infty)$	B1	B1

<i>(a)</i>	(i)	$D(fg) = (0, \pi/4]$	B1	
	(ii)	$R(fg) = (-\infty, 0]$	B1 B1	
<i>(b)</i>	(i)	$fg(x) = -0.4 \Rightarrow \tan x = e^{-0.4}$		M1
		x = 0.59		AI
	(ii)	Equation has solution only if $k \in R(fg)$.		
		: choose any $k \notin R(fg)$ (f.t. candidate's $R(fg)$)	B1	

11.

1.	(<i>a</i>)	$f(x) \equiv \frac{A}{x^2} + \frac{B}{x} + \frac{C}{(x+2)}$ (correct form)	M1
		$6 + x - 9x^{2} \equiv A(x + 2) + Bx(x + 2) + Cx^{2}$ (correct clearing of fractions and genuine attempt to find coefficients) m1 A = 3, C = -8, B = -1 (all three coefficients correct) A2 If A2 not awarded, award A1 for at least one correct coefficient	
	(b)	(i) $f'(x) = \frac{-6}{x^3} + \frac{1}{x^2} + \frac{8}{(x+2)^2}$ (o.e.) (f.t. candidate's values for A, B, C) (first term) (at least one of last two terms)	B1 B1
		(ii) $f'(2) = 0 \Rightarrow$ stationary value when $x = 2$ (c.a.o.) B1	
2.	$3x^2 - 2$	$2x \times 2y \underline{dy} - 2y^{2} + 3y^{2} \underline{dy} = 0$ $\begin{bmatrix} -2x \times 2y \underline{dy} - 2y^{2} \\ dx \end{bmatrix}$ $\begin{bmatrix} -2x \times 2y \underline{dy} - 2y^{2} \\ dx \end{bmatrix}$ $\begin{bmatrix} 3x^{2}, 3y^{2} \underline{dy} \\ dx \end{bmatrix}$	B1 B1
	Either	$\frac{dy}{dx} = \frac{2y^2 - 3x^2}{3y^2 - 4xy} \text{ or } \frac{dy}{dx} = 2 \qquad (\text{o.e.}) \qquad (\text{c.a.o.})$	B1
	Use of Equati	F grad _{normal} × grad _{tangent} = -1 on of normal: $y - 1 = -1(x - 2)$ [f.t. candidate's value for $\frac{dy}{dx}$] 2 [$\frac{dy}{dx}$]	M1 A1
3.	(<i>a</i>)	$8(2\cos^2\theta - 1) + 6 = \cos^2\theta + \cos\theta$ (correct use of $\cos 2\theta = 2\cos^2\theta - 1$) An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a\cos\theta + b)(c\cos\theta + d)$, with $a \times c$ = candidate's coefficient of $\cos^2\theta$ and $b \times d$ = candidate's com-	M1 nstant
		$15\cos^2\theta - \cos\theta - 2 = 0 \Longrightarrow (5\cos\theta - 2)(3\cos\theta + 1) = 0$	

C4

$$\Rightarrow \cos \theta = \underline{2}, \quad \cos \theta = -\underline{1}, \quad (c.a.o.) \quad A1$$

$$\theta = 66 \cdot 42^{\circ}, 293 \cdot 58^{\circ} \qquad B1$$

$$\theta = 109 \cdot 47^{\circ}, 250 \cdot 53^{\circ} \qquad B1 \quad B1$$

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta = +, -, \text{ f.t. for 3 marks}, \quad \cos \theta = -, -, \text{ f.t. for 2 marks}$

 $\cos \theta = +, +, \text{ f.t. for 1 mark}$

(b) R = 4

B1

Correctly expanding $\cos (\theta + \alpha)$, correctly comparing coefficients and using either 4 $\cos \alpha = \sqrt{15}$ or $4 \sin \alpha = 1$ or $\tan \alpha = -1$ to find α

$$\sqrt{15}$$
(f.t. candidate's value for *R*) M1
$$\alpha = 14.48^{\circ}$$
(c.a.o.) A1
$$\cos (\theta + 14.48^{\circ}) = 3 = 0.75$$

$$4$$
(f.t. candidate's values for *R*, α , $0^{\circ} < \alpha < 90^{\circ}$) B1
$$\theta + 14.48^{\circ} = 41.41^{\circ}$$
, 318.59°
(at least one value, f.t. candidate's values for *R*, α , $0^{\circ} < \alpha < 90^{\circ}$) B1
$$\theta = 26.93^{\circ}$$
, 304.11°
(c.a.o.) B1

$$Volume = \pi \int_{\pi/6}^{\pi/2} \sin^2 2x \, dx \qquad B1$$

$$\sin^2 2x = \frac{(1 - \cos 4x)}{2}$$
B1

$$\int_{a}^{b} (a+b\cos 4x) dx = ax + \frac{1}{4}b\sin 4x, \qquad a \neq 0, b \neq 0$$
B1

Correct substitution of candidate's limits in candidate's integrated expressionof form $mx + n \sin 4x$ $m \neq 0, n \neq 0$ M1Volume = 1.985(c.a.o.)A1

Note: Answer only with no working earns 0 marks

5.

(a)

(i)
$$(1+6x)^{1/3} = 1 + 2x - 4x^2$$

(1+2x) B1
(-4x²) B1

(ii)
$$|x| < \frac{1}{6} \text{ or } -\frac{1}{6} < x < \frac{1}{6}$$
 B1

(b) $2 + 4x - 8x^2 = 2x^2 - 15x \Rightarrow 10x^2 - 19x - 2 = 0$ M1 (An attempt to set up and use a correct method to solve quadratic using candidate's expansion for $(1 + 6x)^{1/3}$) x = -0.1 (f.t. only candidate's range for x in (a)) A1

6. *(a)* candidate's x-derivative = acandidate's y-derivative = $-\underline{b}_{2}$ (at least one term correct) **B**1 dy = candidate's y-derivativeM1 dx candidate's x-derivative $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b}{at^2}$ (c.a.o.) A1 Tangent at P: $y - \underline{b} = -\underline{b}(x - ap)$ $p = -\underline{b}(x - ap)$ (o.e.) (f.t. candidate's expression for dy) **M**1 dx $ap^{2}y - abp = -bx + abp$ $ap^{2}y + bx - 2abp = 0.$ (convincing) A1 *(b)* $y = 0 \Longrightarrow x = 2ap$ **B**1 (o.e.) $x = 0 \Longrightarrow y = 2b/p$ **B**1 (o.e.) Area of triangle AOB = 2ab**B**1 (c.a.o.) $p^2 - 2p + 2 = 0$ ($abp^2 - 2abp + 2ab = 0$) *(c)* **B**1 Attempting either to use the formula to solve the candidate's quadratic in p or to find the discriminant of the candidate's quadratic or to complete the square M1

Either discriminant < 0 (\Rightarrow no real roots) \Rightarrow no such *P* can exist or $(p - 1)^2 + 1 = 0$ ($\Rightarrow (p - 1)^2 = -1$)) \Rightarrow no such *P* can exist (c.a.o.) A1

7. (a) $u = 3x - 1 \Rightarrow du = 3dx$ (o.e.) B1 $dv = \cos 2x \, dx \Rightarrow v = \frac{1}{2} \sin 2x$ (o.e.) B1 B1

$$\int (3x-1)\cos 2x \, dx = (3x-1) \times \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \times 3 \, dx \qquad M1$$

$$\int (3x-1)\cos 2x \, dx = 1 \ (3x-1)\sin 2x + 3\cos 2x + c \qquad (c.a.o.) \qquad A1$$

$$\frac{(c-1)\cos 2x \, dx = 1}{2} \frac{(3x-1)\sin 2x + 3\cos 2x + c}{4}$$
 (c.a.o.)

© WJEC CBAC Ltd.

J

(b)
$$\int \frac{x}{(2x+1)^3} dx = \int \frac{f(u)}{u^3} \times k \, du$$

(f(u) = pu + q, p \neq 0, q \neq 0 and k = ¹/₂ or 2) M1

$$\int \frac{x}{(2x+1)^3} dx = \int \frac{(u-1)}{\sqrt{2}} \times \frac{1}{u^3} \times \frac{du}{2}$$

$$\int (au^{-2} + bu^{-3}) du = \frac{au^{-1}}{-1} + \frac{bu^{-2}}{-2} \qquad (a \neq 0, b \neq 0) \qquad B1$$

Either: Correctly inserting limits of 1, 3 in candidate's $cu^{-1} + du^{-2}$ ($c \neq 0, d \neq 0$) **or:** Correctly inserting limits of 0, 1 in candidate's $c(2x+1)^{-1} + d(2x+1)^{-2}$ ($c \neq 0, d \neq 0$) m1

$$\int_{0}^{1} \frac{x}{(2x+1)^{3}} dx = \frac{1}{18}$$
 (= 0.055...) (c.a.o.) A1

Note: Answer only with no working earns 0 marks

8. (a)
$$\frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A}$$
 B1

(b)
$$\int \frac{dA}{\sqrt{A}} = \int k \, dt$$
 M1
$$\frac{A^{1/2}}{2} = kt + c$$
 A1

$$\frac{A}{\frac{1}{2}} = kt + c$$
 A1

Substituting 64 for A and 3 for t and 196 for A and 5.5 for t in candidate's derived equation m116 = 3k + c, 28 = 5.5k + c (both equations) (c.a.o.) A1

Attempting to solve candidate's derived simultaneous linear equations in k and c m1

$$A = (2 \cdot 4t + 0 \cdot 8)^2$$
 (o.e.) (c.a.o.) A1

9. (a)
$$AB = 8i - 4j + 12k$$
 B1
(b) $OC = -i + 3j - 7k + \frac{3}{4}(8i - 4j + 12k)$ (o.e.) M1
 $OC = 5i + 2k$ A1

(c) (i) Use of
$$\mathbf{OA} + \mu(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$$
 on r.h.s. M1
 $\mathbf{r} = -\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} + \mu(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ (all correct) A1
(ii) $-1 + \lambda \times (-4) = 7$
(an equation in λ from one set of coefficients) M1
 $\lambda = -2$
 $1 + (-2) \times 1 = -1$
 $11 + (-2) \times 3 = 5$ (both verifications) A1
An attempt to evaluate $\mathbf{AB}.(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ M1
 $\mathbf{AB}.(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 0$ (convincing) A1

B lies on L, AB is perpendicular to L and thus B is the foot of the perpendicular from A to L (c.a.o.) A1

10. Assume that there is a real value of x such that $(5x-3)^2 + 1 < (3x-1)^2$. $25x^2 - 30x + 9 + 1 < 9x^2 - 6x + 1 \Rightarrow 16x^2 - 24x + 9 < 0$ B1 $(4x-3)^2 < 0$ B1 This contradicts the fact that x is real and thus $(5x-3)^2 + 1 \ge (3x-1)^2$. B1

Ques	Solution	Mark	Notes
1	$S_n = \sum_{r=1}^n (2r-1)^2 = \sum_{r=1}^n 4r^2 - \sum_{r=1}^n 4r + \sum_{r=1}^n 1$	M1A1	M1A0 for 2 correct terms
	$=\frac{4n(n+1)(2n+1)}{6}-\frac{4n(n+1)}{2}+n$	A1A1	Award A1 for 2 correct
	$= \frac{n}{6} \left(8n^2 + 12n + 4 - 12n - 12 + 6 \right)$	A1	FT line above if at least 2 terms present
	$=\frac{4n^3}{3}-\frac{n}{3}$ cao	A1	Penalise 1 mark if <i>n</i> used as dummy variable in summations
2(a)	FITHER $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$		
	$w = \frac{1 - i}{1 + 2i} + \frac{1 + 2i}{2i} = \frac{1 + 2i + 1 - i}{(1 - i)(1 + 2i)}$	M1A1	
	$= \frac{2+i}{3+i}$	A1	
	$w = \frac{3+i}{2+i} \times \frac{2-i}{2-i}$	M1	
	$=\frac{7-i}{5}$	A1A1	1 each for num and denom
	OR $\frac{1}{1-i} = \frac{1+i}{1-i^2} = \frac{1+i}{2}$	M1A1	
	1 - 1 - 2i - 1 - 2i	A1	
	$\frac{1}{1+2i} - \frac{1}{1-4i^2} - \frac{1}{5}$ $\frac{1}{w} = \frac{5+5i+2-4i}{10} = \frac{7+i}{10}$	A1	
	$w = \frac{10}{7+i} \times \frac{7-i}{7-i}$	M1	
(b)	$=\frac{7-i}{5}$	A1	1 each for num and denom
	$M_{od}(w) = \sqrt{50}$ ($\sqrt{2}$)	B1	FT on their w
	$\operatorname{Arg}(w) = -0.142 (-8.13^{\circ})$	B1	Accept 351.9° or 6.14 Do not FT arg if in 1 st quadrant

3 (a)	$\alpha + \beta + \gamma = 2, \beta \gamma + \gamma \alpha + \alpha \beta = 2, \alpha \beta \gamma = -1$	B1	
	$\frac{\beta\gamma}{\alpha} + \frac{\gamma\alpha}{\beta} + \frac{\alpha\beta}{\gamma} = \frac{\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2}{\alpha\beta\gamma}$	M1	
	$(\beta \gamma + \gamma \alpha + \alpha \beta)^2 - 2\alpha \beta \gamma (\alpha + \beta + \gamma)$	A1	
	$=\frac{\alpha\beta\gamma+\gamma\alpha+\beta\gamma-2\alpha\beta\gamma+\alpha+\gamma\gamma}{\alpha\beta\gamma}$		
	$(2)^2 - 2 \times (-1) \times 2$	A1	Convincing
(b)	$=\frac{-1}{-1}=-8$		
(0)	Consider		
	$\frac{\gamma\alpha}{\beta} \times \frac{\alpha\beta}{\gamma} + \frac{\alpha\beta}{\gamma} \times \frac{\beta\gamma}{\alpha} + \frac{\beta\gamma}{\alpha} \times \frac{\gamma\alpha}{\beta}$	M1	
	$= \alpha^2 + \beta^2 + \gamma^2$	A1	
	$= (\alpha + \beta + \gamma)^2 - 2(\beta\gamma + \gamma\alpha + \alpha\beta)$	A1	
	$=4-2 \times 2 = 0$	A1	
	Consider		
	$\frac{\beta\gamma}{\alpha} \times \frac{\gamma\alpha}{\beta} \times \frac{\alpha\beta}{\gamma} = \alpha\beta\gamma = -1$	M1A1	
	The required equation is	R1	FT their coefficients
	$x^3 + 8x^2 + 1 = 0$	DI	

4(a)	Rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in $y = x = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$		
(b)	Fixed points satisfy $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	M1	
		A1	
	x = x + 1, $(y = -y + 2)These equations are not consistent so there are no fixed points.$	A1	Accept equivalent reason
5	Putting $n = 1$, the formula gives 6 which is divisible by 6 so the result is true for $n = 1$ Assume formula is true for $n = k$, ie	B1	
	7^{κ} -1 is divisible by 6 or $7^{\kappa} = 6N+1$ Consider for $n = k + 1$	M1	
	$7^{k+1} - 1 = 7.7^k - 1$	M1	
	= 7(6N+1)-1	A1	
	= 42N + 6	AI	
	true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	

(ii) $Puting \lambda = 2, \lambda = 18 \lambda + 16 = 0$ So A is singular. Puting $\lambda = 2, \lambda = 20 = 36 + 16 = 0$ So A is singular. Puting $\lambda = 2, \lambda = 16 \times 5$ So the other root is $8/5$ B1 (b)(i) $\frac{x + 2y + 3z = 2}{2x + y + 2z = 1}$ 5x + 4y + 7z = 4 Attempting to use row operations, x + 2y + 3z = 2 3y + 4z = 3 6y + 8z = 6 Since the 3^{rd} equation, it follows that the equations are consistent. (ii) Let $z = \alpha$ $y = 1 - \frac{4}{3}\alpha$ $x = -\frac{1}{3}\alpha$ (c)(ii) Let $z = \frac{3}{2} - \frac{9}{3} - \frac{3}{5}$ $x = -\frac{1}{3}\alpha$ (c)(ii) $A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ si At an Attain A ward M1 if at least 5 correct elements (iii) Determinant = 3 Inverse matrix = $\frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) Determinant = 3 Inverse matrix = $\frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ At an Attain A the set of the set of the set and the se	6(a)(i)	$Det(\mathbf{A}) = 7 - 4\lambda + \lambda(5\lambda - 14) + 3(8 - 5)$	M1	
(ii) For A is singular. Putting det(A) = 0, product of roots is 16/5 So the other root is 8/5 (b)(i) $\begin{array}{c} x + 2y + 3z = 2\\ 2x + y + 2z = 1\\ 5x + 4y + 7z = 4\end{array}$ Attempting to use row operations, $\begin{array}{c} x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6\end{array}$ Since the 3 rd equation is twice the 2 rd equation, it follows that the equations are consistent. (ii) Let $z = a$ $\begin{array}{c} y = 1 - \frac{4}{3}a$ $x = -\frac{1}{3}a$ (c) requivalent) (c)(i) A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix} Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ si Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix = $\frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1\\ 2\\ 1\\ 4\end{bmatrix}$ MIA1 At I HIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix FT from incorrect adjugate FT from inverse matrix $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ -9 & -8 & -2$	(ii)	$= 5\lambda - 18\lambda + 16$ Putting $\lambda = 2$ det = 20 - 36 + 16 = 0	AI B1	
(b)(i) Putting det(A) = 0, product of roots is 16/5 So the other root is 8/5 (b)(i) $\begin{array}{c} x + 2y + 3z = 2\\ 2x + y + 2z = 1\\ 5x + 4y + 7z = 4\end{array}$ Attempting to use row operations, $x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6\end{array}$ Since the 3 rd equation is twice the 2 rd equation, it follows that the equations are consistent. (ii) Let $z = a$ $y = 1 - \frac{4}{3}a$ $x = -\frac{1}{3}a$ (or equivalent) (or equivalent) $A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ si Adjugate matrix $= \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix $= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x\\ y\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}$ $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}$ $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x\\ 1\\ 4\\ \end{bmatrix}$ HIAI Avard M1 if at least 5 correct elements No FT from incorrect cofactor matrix HIAI FT from incorrect adjugate HIAI FT from inverse matrix	(11)	So A is singular.	DI	
(b)(i) So the other root is 8/5 $\begin{array}{c} x + 2y + 3z = 2\\ 2x + y + 2z = 1\\ 5x + 4y + 7z = 4 \end{array}$ Attempting to use row operations, $\begin{array}{c} x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6 \end{array}$ Since the 3 rd equation is twice the 2 rd equation, it follows that the equations are consistent. (ii) Let $z = a$ $\begin{array}{c} y = 1 - \frac{4}{3}\alpha$ $x = -\frac{1}{3}\alpha$ (or equivalent) (c)(i) A = $\begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ -2 & 5 & -1 \end{bmatrix}$ (iii) Determinant = 3 Inverse matrix = $\frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{array}{c} x \\ y \\ z \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix}$ MIA1 Avard M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate FT from inverse matrix $\begin{array}{c} x \\ y \\ z \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix}$		Putting det(\mathbf{A}) = 0, product of roots is 16/5		
(b)(i) $\begin{vmatrix} x + 2y + 3z = 2\\ 2x + y + 2z = 1\\ 5x + 4y + 7z = 4 \end{vmatrix}$ Attempting to use row operations, $x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6 \end{aligned}$ Since the 3 rd equation is twice the 2 rd equation, it follows that the equations are consistent. (ii) $Let z = a$ $y = 1 - \frac{4}{3} \alpha$ $x = -\frac{1}{3} \alpha$ (or equivalent) (c)(i) $A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ is Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ MIAI Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 HT from incorrect adjugate $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ A1 FT from inverse matrix $\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ A1 FT from inverse matrix		So the other root is $8/5$	B1	
(b)(i) $\begin{array}{c} x + 2y + 3z = 2\\ 2x + y + 2z = 1\\ 5x + 4y + 7z = 4\end{array}$ Attempting to use row operations, $x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6\end{aligned}$ Since the 3^{ii} equation is twice the 2^{nd} equation, it follows that the equations are consistent. (ii) Let $z = a$ $y = 1 - \frac{4}{3} \alpha$ $x = -\frac{1}{3} \alpha$ $x = -\frac{1}{3} \alpha$ (c)(i) $A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ (ii) Cofactor matrix $= \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ MIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix (iii) Determinant = 3 Inverse matrix $= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iv) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iv) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iv) $\begin{bmatrix} x\\ z\\ z\end{bmatrix} = \frac{1}{3} \begin{bmatrix} x\\ z\end{bmatrix} = \frac{1}{$				
$\begin{aligned} \begin{array}{c} 2x + y + 2z = 1\\ 5x + 4y + 7z = 4 \end{aligned} & \text{MI} \\ \text{Attempting to use row operations,} \\ x + 2y + 3z = 2\\ 3y + 4z = 3\\ 6y + 8z = 6 \end{aligned} & \text{MI} \\ \text{equation, it follows that the equations are consistent.} \end{aligned} & \text{MI} \\ \text{equation, it follows that the equations are consistent.} \end{aligned} & \text{A1} \\ \begin{array}{c} \text{Or because the next step gives a row of zeroes} \end{aligned} & \text{A1} \\ x = -\frac{1}{3}\alpha & \text{A1} \\ x = -\frac{1}{3}\alpha & \text{A1} \\ \text{(or equivalent)} \\ \text{(c)(i)} & \text{A} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix} & \text{A1} \\ \begin{array}{c} \text{Cofactor matrix} = \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \text{Adjugate matrix} = \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} & \text{MIA1} \\ \begin{array}{c} \text{Award M1 if at least 5 correct} \\ \text{elements} \\ \text{No FT from incorrect cofactor matrix} \\ \text{Inverse matrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \begin{array}{c} \text{M1} \\ \text{M1} \\ \text{M2} \\ \text{M1} \\ \text{A1} \\ \text{Avard M1 if at least 5 correct} \\ \text{elements} \\ \text{M1} \\ \text{M1} \\ \text{FT from incorrect adjugate} \\ \text{M1} \\ \text{M2} \\ \text{M2} \\ \text{M1} \\ \text{M2} \\ \text{M3} \\ \text{M4} \\ $	(b)(i)	x + 2y + 3z = 2		
(ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii)		2x + y + 2z = 1		
(ii) (ii) (ii)		5x + 4y + 7z = 4		
(ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii		Attempting to use row operations	M1	
(ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii		r + 2v + 3z - 2	IVII	
(i) (i) (i) (ii) (ii) (iii)		x + 2y + 3z = 2 3y + 4z = 3	A1	
Since the 3^{nd} equation is twice the 2^{nd} equation, it follows that the equations are consistent. (ii) Let $z = \alpha$ $y = 1 - \frac{4}{3}\alpha$ $x = -\frac{1}{3}\alpha$ (or equivalent) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ si $Adjugate matrix = \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ MIA1 Award M1 if at least 5 correct elements A1 MIA1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		6y + 8z = 6	A1	
(ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii)		Since the 3^{rd} equation is twice the 2^{nd}		
(ii) (iii) Let $z = a$ $y = 1 - \frac{4}{3}a$ $x = -\frac{1}{3}a$ (or equivalent) (c)(i) A = $\begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ si Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ si Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2\\ 1\\ 4\end{bmatrix}$ M1 M1 FT from incorrect adjugate M1 FT from inverse matrix		equation, it follows that the equations are		Or because the next step gives a
(ii) Let $z = \alpha$ $y = 1 - \frac{4}{3}\alpha$ $x = -\frac{1}{3}\alpha$ (or equivalent) $A = \begin{bmatrix} 1 & 1 & 3\\ 2 & 1 & 1\\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix $= \begin{bmatrix} 3 & -9 & 3\\ 5 & -8 & 1\\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix $= \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix $= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix}$ MIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 B1 FT from incorrect adjugate M1 FT from inverse matrix		consistent.	A1	row of zeroes
(ii) $y = 1 - \frac{4}{3}\alpha$ $y = 1 - \frac{4}{3}\alpha$ $x = -\frac{1}{3}\alpha$ (or equivalent) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix $= \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix $= \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ MIA1 Au Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate M1 A1 FT from inverse matrix	(ii)	Let $z = \alpha$		
(c)(i) $\begin{aligned} y &= 1 - \frac{1}{3} \alpha \\ x &= -\frac{1}{3} \alpha \\ (or equivalent) \\ A &= \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix} \\ Cofactor matrix &= \begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix} si \\ Adjugate matrix &= \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ Adjugate matrix &= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ Inverse matrix &= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \\ M1 \\ H1 \\ FT from incorrect adjugate \\ M1 \\ FT from inverse matrix \end{bmatrix} $	(11)	4		
(c)(i) $\begin{aligned} x &= -\frac{1}{3}\alpha \\ \text{(or equivalent)} \\ A &= \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix} \\ \text{Cofactor matrix} &= \begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix} \text{ si} \\ \text{Alt} \\ \text{Award M1 if at least 5 correct elements} \\ \text{Cofactor matrix} &= \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \text{Adjugate matrix} &= \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \text{Determinant} = 3 \\ \text{Inverse matrix} &= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \\ \text{M1} \\ \text{FT from inverse matrix} \end{aligned}$		$y = 1 - \frac{1}{3}\alpha$	AI	
(c)(i) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ (c)(i) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1A1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate M1 FT from inverse matrix		$r = -\frac{1}{2}\alpha$	A1	
(c)(i) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix $= \begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ si Adjugate matrix $= \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant $= 3$ Inverse matrix $= \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ MIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate MI FT from inverse matrix		$x - 3^{\alpha}$		
(c)(i) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix = $\frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1A1 Award M1 if at least 5 correct elements A1 No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate M1A1 Award M1 if at least 5 correct elements M1A1 FT from incorrect adjugate A1 FT from inverse matrix		(or equivalent)		
(c)(i) $\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1A1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate M1 FT from inverse matrix	() (•)	1 1 3		
(ii) $\begin{bmatrix} 5 & 4 & 7 \end{bmatrix}$ Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (ii) Determinant = 3 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1A1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 FT from incorrect adjugate M1 FT from inverse matrix	(c)(i)	$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		
(ii) (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$ MIA1 Award M1 if at least 5 correct elements MIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 B1 B1 B1 B1 B1 B1 B1 B1		5 4 7		
(ii) Cofactor matrix = $\begin{bmatrix} 3 & -9 & -3 \\ 5 & -8 & 1 \\ -2 & 5 & -1 \end{bmatrix}$ si Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ Al MIA1 Award M1 if at least 5 correct elements No FT from incorrect cofactor matrix B1 B1 B1 B1 B1 B1 B1 B1 B1 B1				
(ii) (ii) (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ isi $\begin{bmatrix} MIMI \\ MI \\ M$			M1A1	Award M1 if at least 5 correct
(ii) (ii) $\begin{bmatrix} -2 & 5 & -1 \end{bmatrix} \\ Adjugate matrix = \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ Determinant = 3 \\ Inverse matrix = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \\ M1 \\ FT from inverse matrix \\ H1 \\ H1$		Cofactor matrix = $\begin{bmatrix} 5 & -8 & 1 \end{bmatrix}$ si		elements
(ii) Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ Determinant = 3 (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B		$\begin{bmatrix} -2 & 5 & -1 \end{bmatrix}$		
(ii) Adjugate matrix = $\begin{bmatrix} -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ Determinant = 3 (iii) Determinant = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix A1 No FT from incorrect cofactor matrix		$\begin{bmatrix} 3 & 5 & -2 \end{bmatrix}$		
(ii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ B1 B1 B1 B1 B1 B1 B1 B1		Adjugate matrix $= -9 - 8 - 5$	A1	No FT from incorrect cofactor
(ii) Determinant = 3 (iii) Determinant = 3 Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix A1				matrix
(ii) Determinant = 3 Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ (iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix A1			D1	
(iii) Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ B1 FT from incorrect adjugate M1 FT from inverse matrix	(II)	Determinant = 3	BI	
(iii) Inverse matrix = $\frac{1}{3}\begin{bmatrix} -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & 5 & -2\\ -9 & -8 & 5\\ 3 & 1 & -1 \end{bmatrix}\begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix}$ M1 FT from inverse matrix		$\begin{vmatrix} 3 & 5 & -2 \end{vmatrix}$	B1	FT from incorrect adjugate
(iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix		Inverse matrix $=\frac{1}{3} - 9 - 8 = 5$	<i>D</i> 1	i i nom meoneet aujugate
(iii) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix				
$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ M1 FT from inverse matrix	(iii)	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 3 & 5 & -2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$		
$\begin{bmatrix} y \\ z \end{bmatrix}^{-\frac{1}{3}} \begin{bmatrix} -y & -3 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix}$		$\begin{vmatrix} n \\ n \end{vmatrix} = \frac{1}{2} \begin{vmatrix} n \\ n \end{vmatrix} = \frac{1}{2} \begin{vmatrix} n \\ n \end{vmatrix} = \frac{1}{2} \begin{vmatrix} n \\ n \end{vmatrix}$	M1	FT from inverse matrix
$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 5 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$		$\begin{vmatrix} y \\ -3 \end{vmatrix} = -3 = -5 = -5 = -5 = -5 = -5 = -5 = -5$		
		$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 5 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$		
			A1	

	$= \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$		
7	Taking logs, $\ln f(x) = \ln \sqrt{1 + \sin x} - \ln(1 + \tan x)^2$ $= \frac{1}{2} \ln(1 + \sin x) - 2 \ln(1 + \tan x)$ Differentiating, $\frac{f'(x)}{f(x)} = \frac{\cos x}{2(1 + \sin x)} - \frac{2 \sec^2 x}{(1 + \tan x)}$ Putting $x = \pi/4$, $f'(\pi/4) = -0.586 \text{ cao}$	M1A1 A1 B3 M1 A2	B1 for each correct term
8(a) (b)	$u + iv = (x + iy)^{2}$ $= x^{2} - y^{2} + 2ixy$ Equating real and imaginary parts, $u = x^{2} - y^{2}$ $v = 2xy$ Substituting for y, $u = x^{2} - (2x^{2} + 1) = -1 - x^{2}$ $v^{2} = 4x^{2}(2x^{2} + 1)$ Eliminating x, $x^{2} = -(u + 1)$ So that $v^{2} = 4(u + 1)(2u + 1) \text{ cao}$	M1 A1 M1 A1 M1 A1 A1 M1 A1	FT their expressions from (a)

Ques	Solution	Mark	Notes
1	$u = x^2 \Longrightarrow \mathrm{d}u = 2x\mathrm{d}x$,	B1	
	$[1,2] \rightarrow [1,4]$	B1	
	$I = \frac{1}{2} \int_{1}^{4} \frac{\mathrm{d}u}{\sqrt{25 - u^2}}$	M1	
	$=\frac{1}{2}\left[\sin^{-1}\left(\frac{u}{5}\right)\right]_{1}^{4}$	A1	
	= 0.363 cao	A1	
2(a)	Substituting $t = \tan(\theta/2)$ $\frac{2t}{1+t^2} + \frac{3(1-t^2)}{1+t^2} = 2$ $2t + 3 - 3t^2 - 2 + 2t^2$	M1A1	
	$5t^{2} - 2t - 1 = 0$	A1	Convincing.
(b)	$t = \frac{2 \pm \sqrt{24}}{10} = 0.68989, -0.28989$	M1A1	
	$t = 0.68989$ giving $\theta/2 = 0.6039$	B1	FT their roots from (a)
	The general solution is $\theta = 1.21 + 2n\pi$	B1 P1	Accept 2,859
	$t = -0.28989$ giving $\theta / 2 = -0.2821$	B1 B1	Accept $5.72 + 2n\pi$

3 (a)	$-1 = \cos \pi + is$	inπ	B1	
	$\sqrt[4]{-1} = \cos \pi/4 + i \sin \pi/4 = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$			
	$Root2 = \cos 3\pi/4 + isi$	$n 3\pi/4 = -\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$	A1	
	$Root3 = \cos 5\pi/4 + isi$	$n 5\pi/4 = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$	A1	Special case : Award 2/6 if they misread –1 as 1.
	Root4 = $\cos 7\pi/4 + is$	$\sin 7\pi/4 = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$	A1	
	×	×		
(b)(i)			B1	FT their roots if possible
	×	×		
(••)				
(11)	Length of side = $\frac{2}{\sqrt{2}}$		B1	
	$\sqrt{2}$ Area of square = 2		B1	

4 (a)	$f'(x) = \frac{2(x-1) - (2x+3)}{(x-1)^2}$	M1	
	$=-\frac{5}{5}$	A1	
	$(x-1)^2$ This is negative for all $x > 1$ therefore f is strictly		
	decreasing.	Al	
(b)(i)	f(4) = 11/3, f(5) = 13/4	М1	
	f(S) = [13/4, 11/3]	A1	A0 if wrong way around but penalise only once.
(ii)	2x+3 $y+3$	M1A1	1 2
	$y = \frac{1}{x-1} \Rightarrow x = \frac{1}{y-2}$	A1	
	$f^{-1}(4) = 7/2, f^{-1}(5) = 8/3$. 1	A0 if wrong way around
	$f^{-1}(S) = [8/3, 7/2]$	AI	no ii wiong way around.
	$\frac{2x+3}{2} = 4 \rightarrow x = \frac{7}{2}$	M1A1	M1A1 for the first and then A1
	$\begin{array}{ccc} x-1 & 2 \\ 2x+3 & 8 \end{array}$. 1	for the second.
	$\frac{2x+2}{x-1} = 5 \rightarrow x = \frac{3}{3}$	AI	40.0
	$f^{-1}(S) = [8/3, 7/2]$	A1	A0 II wrong way around.
5(a)(i)	Completing the square,		
	$(x-2)^2 + 2(y+1)^2 = 4$ The control is therefore (2 - 1)	M1A1 A1	
(ii)	In standard form, the equation is		
	$\frac{(x-2)^2}{4} + \frac{(y+1)^2}{2} = 1$ so $a = 2, b = \sqrt{2}$ si	B 1	FT their equation in (ii), (iii) and
	$4 \frac{2}{4-2} 1$	M1A1	(iv)
(•••)	$e = \sqrt{\frac{4}{4}} = \frac{1}{\sqrt{2}}$		
(111)	The foci are $(2+\sqrt{2},-1)$ and $(2-\sqrt{2},-1)$	B1B1	
(iv)	The equations of the directrices are $x = 2 \pm 2\sqrt{2}$	B1	
(b)(i)	EITHER	M1	
	Putting $x = 0$, $(y + 1) = 0$ This has a repeated root, hence $x = 0$ is a tangent	A1	
	OR	M1	
<i>(</i> !!)	This equality shows that $x = 0$ is a tangent	A1	
(11)	Substituting $y = mx$, $x^2(1 + 2m^2) = x(4 - 4m) + 2 = 0$	M1 A1	
	Use of the condition for tangency, ie $b^2 = 4ac'$	M1	
	$16(1-m)^2 = 8(1+2m^2)$	A1	
	$2 - 4m + 2m^2 = 1 + 2m^2 \Longrightarrow m = \frac{1}{4}$	A1	

7(a)	Consider		
	$f(-x) = \frac{(2(-x)^2 + 1)^2}{(2(-x)^2 + 1)^2} = -f(x)$	M1A1	
	$f(x) = (-x)^3 = f(x)$	A1	
	Therefore f is odd		
(b)	FITHER		
	Differentiating,		
	$2(2x^2+1).4x.x^3-3x^2(2x^2+1)^2$		
	$f(x) = \frac{x^6}{x^6}$	M1A1	
	At a stationary point, putting $f'(x) = 0$,		Condone the cancellation of $r^2(2r^2 + 1)$
	$8x^2 = 3(2x^2 + 1)$	m1	x (2x + 1)
	$r = \pm \sqrt{3}$		
	$x = \pm \sqrt{\frac{2}{2}}$	A1	
	OR		
	Consider $f(x) = 4x + \frac{4}{3} + \frac{1}{3}$	M1	
	$\begin{array}{c} x & x^{3} \\ 1 & 3 \end{array}$		
	$f'(x) = 4 - \frac{4}{r^2} - \frac{5}{r^4}$	Al	
	At a stationary point, putting $f'(x) = 0$,		
	$4x^4 - 4x^2 - 3 = 0$	m1	
	. 3		
	$x = \pm \sqrt{\frac{2}{2}}$	A1	
(c)			
	The asymptotes are	B1	
	x = 0 y = 4x	B1	
	$y = \pm \lambda$		
(a)			
		G1	
	×		
		~ 1	
		G1	

8	EITHER		
	Consider		
	$\cos 5\theta + i\sin 5\theta = (\cos \theta + i\sin \theta)^5$	M1	
	Expanding and taking real parts,		
	$\cos 5\theta = \cos^5 \theta + 10\cos^3 \theta (i\sin\theta)^2$	m1A1	
	$+5\cos\theta(i\sin\theta)^4$		
	$=\cos^{5}\theta - 10\cos^{3}\theta(1 - \cos^{2}\theta) + 5\cos\theta(1 - \cos^{2}\theta)^{2}$	A1	
	$=\cos^5\theta-10\cos^3\theta+10\cos^5\theta+5\cos\theta$	A1	
	$-10\cos^3\theta + 5\cos^5\theta$	A 1	
	$= 16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta$	AI	
	OR		
	Let $z = \cos \theta + i \sin \theta$	M1	
	So that $z + \frac{1}{z} = 2\cos\theta$ and $z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	
	Consider		
	$\left(z+\frac{1}{z}\right)^5 = z^5 + 5z^3 + 10z + \frac{10}{z} + \frac{5}{z^3} + \frac{1}{z^5}$	A1	
		Δ1	
	$32\cos^{\circ}\theta = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$		
	$\cos 5\theta = 16\cos^5 \theta - 5\cos 3\theta - 10\cos \theta$	4.1	
	$= 16\cos^5\theta - 5(4\cos^3\theta - 3\cos\theta) - 10\cos\theta$		
	$= 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	AI	

Ques	Solution	Mark	Notes
1	Using $\cosh 2x = 2\cosh^2 x - 1$, the eqn becomes	M1	
	$2\cosh^2 x - 7\cosh x + 6 = 0$	Al	
	Solving the quadratic equation,		
	$\cosh x = 2, 1.5$	AI	
	The positive roots are therefore	A 1	
	$x = \cosh^{-1} 2 = 1.32$		F1 their roots
	and $x = \cosh^{-1}(1.5) = 0.96$		
2(a)(i)	The Newton-Raphson iteration is		
	$x_{n+1} = x_n - \frac{(x_n^3 - a)}{3x_n^2}$	M1	
	$=\frac{2x_n^3+a}{3x_n^2}$	A1	Convincing
(ii)	$x_0 = 2$		
	$x_1 = 2.1666666667$	M1A1	
	$x_2 = 2.154503616$		
	$x_3 = 2.154434692$		
	$x_4 = 2.15443469$		
	$\sqrt[3]{10} = 2.1544$ correct to 4 decimal places.	A1	
(b)			
	Consider		
	$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{a}{r^2}\right) = -\frac{2a}{r^3}$	M1A1	M0 if $a = 10$
	$= -2 \text{ when } x = \sqrt[3]{a}$	A1	
	The sequence diverges because this exceeds 1 in	A1	
3 (a)	$2 \circ^x$		
5(u)	$f'(x) = \frac{2e}{2e^x - 1}$	B1	
	$f''(x) = \frac{2e^{x}(2e^{x}-1) - 2e^{x}.2e^{x}}{(2e^{x}-1)^{2}}$	M1	
(h)	$=\frac{-2e^x}{\left(2e^x-1\right)^2}$	A1	convincing
(0)	$f''(x) = -2e^{x}(2e^{x}-1)^{2} + 2e^{x}\cdot 2e^{x}\cdot 2(2e^{x}-1)$	M1A1	
	$\int (x) = \frac{(2e^x - 1)^4}{(2e^x - 1)^4}$		
	f(0) = 0, f'(0) = 2, f''(0) = -2, f'''(0) = 6	B 2	Award B1 for 2 correct values
	The Maclaurin series is	N <i>T</i> 1 A 1	ET on their values of $f^{(n)}(\Omega)$
	$2x - x^2 + x^3 + \dots$	MIAI	$\int f(0) f(0) = \int f(0) f(0)$
l		1	

4	Completing the square,		
	$3 + 2x - x^2 = 4 - (x - 1)^2$	M1A1	
	so $I = \int_{-\infty}^{2} \sqrt{4 - (x - 1)^2} dx$		
	Put $x - 1 = 2\sin\theta$	M1	Allow $x - 1 = 2\cos\theta$
	$dx = 2\cos\theta d\theta, \ [1,2] \rightarrow [0,\pi/6]$	A1A1	
	$I = \int_{0}^{\pi/6} \sqrt{4 - 4\sin^2\theta} .2\cos\theta \mathrm{d}\theta$	m1	
	$=4\int_{0}^{\pi/6}\cos^2\theta\mathrm{d}\theta$	A1	
	$= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) \mathrm{d}\theta$	A1	
	$=2\left[\theta+\frac{\sin 2\theta}{2}\right]^{\pi/6}$	A1	
		A1	
5(a)	$I_{n} = \left[x^{n} \cosh x\right]_{0}^{1} - n \int_{0}^{1} x^{n-1} \cosh x dx$	M1A1	
	$= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$	A1	
	$= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{1} + n(n-1)I_{n-2}$	M1A1	
(b)	$= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$		
	$I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1$	M1A1	M1A1 for evaluating I_0 at any
	$I_{1} = \cosh 1 - 4 \sinh 1 + 12 I_{2}$	M 1	stage
	$= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0)$	A1	FT their I_0 if substituted here
	$= 13\cosh 1 - 28\sinh 1 + 24(\cosh 1 - 1)$ = 37\cosh1 - 28\sinh1 - 24 \cosh	A1	

6 (a)	Consider		
o (a)	$r = r \cos \theta$	M1	
	$= \sin^2 \theta \cos \theta$	A1	
	dx $2 \cdot a \cdot 2 a \cdot 3 a$		
	$\frac{1}{d\theta} = 2\sin\theta\cos^2\theta - \sin^2\theta$	M1A1	
	The tangent is perpendicular to the initial line		
	where $\frac{dx}{dt} = 2\sin\theta\cos^2\theta - \sin^3\theta = 0$	M1	Do not penalise the removal of
	$\mathrm{d}\theta$. 1	the factor $\sin\theta$
	$\tan^2 \theta = 2$		
	$\theta = \tan^{-1}\sqrt{2} = 0.955$		
	r = 0.667	711	
(h)			
	Area = $\frac{1}{2}\int r^2 d\theta$	M1	
	$\frac{2}{\pi/2}$		
	$=\frac{1}{2}\int (1-\sin\theta)^2 d\theta$	A1	
	$2 \frac{1}{9}$		
	$-\frac{1}{2}\int_{0}^{\pi/2}(1-2\sin\theta+\sin^{2}\theta)d\theta$	A1	
	$-\frac{1}{2}\int_{0}^{1}(1-2\sin\theta + \sin\theta)d\theta$		
	$1^{\pi/2}$	A1	
	$=\frac{1}{4}\int (3-4\sin\theta-\cos2\theta)d\theta$		
	1Γ $1 \pi/2$	A1	
	$=\frac{1}{4}\left[3\theta+4\cos\theta-\frac{1}{2}\sin 2\theta\right]$		
	$4 $ $2 $ $_0$	A 1	
	$=\frac{3\pi-8}{2}$ (0.178) cao	AI	
	8		
7(a)(i)	$D(\operatorname{cosech} x) = D\left(\frac{1}{\sinh x}\right)$	M1	
---------------	---	----------	------------
	$=\frac{-1}{\sinh^2 x} \times \cosh x$	A1	
	$= -\operatorname{cosech}x\operatorname{coth}x$		
	$D(\coth x) = D\left(\frac{\cosh x}{\sinh x}\right)$	M1	
	$= \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$	A1	
(ii)	$= -\operatorname{cosech}^2 x$ $D\ln(\operatorname{cosech} x + \operatorname{coth} x)$		
	$=\frac{-(\operatorname{cosech} x \operatorname{coth} x + \operatorname{cosech}^2 x)}{(\operatorname{cosech} x + \operatorname{coth} x)}$	M1 A1	
	$=-\operatorname{cosech} x$		convincing
(b)(i)	$L = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$	M1	
	$= \int_{1}^{e} \sqrt{1 + \left(\frac{1}{x}\right)^2} dx$	A1	
(ii)	$=\int_{1}^{e}\frac{\sqrt{1+x^{2}}}{x}\mathrm{d}x$		
	Putting $x = \sinh u$, $dx = \cosh u du$, [1,e] $\rightarrow [\sinh^{-1}1, \sinh^{-1}e]$ ([α, β])	B1B1	
	Arc length = $\int_{\alpha}^{\beta} \frac{\sqrt{1 + \sinh^2 u}}{\sinh u} \cdot \cosh u du$	M1	
	$= \int_{\alpha}^{\beta} \frac{\cosh^2 u}{\sinh u} \mathrm{d}u$	A1	
	$= \int_{\alpha}^{\beta} \frac{1 + \sinh^2 u}{\sinh u} \mathrm{d}u$	A1	
	$= \int^{\beta} (\operatorname{cosech} u + \sinh u) \mathrm{d} u$		
(iii)	α	M1A1	
	$= \left[-\ln(\operatorname{cosech} u + \operatorname{coth} u) + \operatorname{cosh} u \right]_{\alpha}^{\beta}$ $= 2.00$	A2	
	- 2.00		

GCE MATHS C1-C4 AND FP1-FP3 MS SUMMER 2013

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
M1	1
M2	9
МЗ	17
S1	23
S2	26
S3	29

2(b)

N2L applied to person

$$64g - R = 64a$$

$$R = 64 \times 9.8 - 64 \times 0.425$$

$$R = 600 \text{ N}$$

- M1 64g and R opposing Dim correct equation
- A1 correct equation
- A1

Q	Solution	Mark	Notes
3(a)	$v^2 = u^2 + 2as, v=0, a=(\pm)9.8, s=18.225$	M1	oe used
	$0 = u^{2} - 2 \times 9.8 \times 18.225$ $u = \underline{18.9}$	Al Al	convincing
3(b)	Use of $s = ut + 0.5at^2$, $s=(\pm)2.8$, $a=(\pm)9.8$, u=18.9 $2.8 = 18.9t + 0.5 \times (-9.8)t^2$	M1	oe
	$4.9t^{2} - 18.9t + 0.5 \times (-5.6)t^{2}$ $4.9t^{2} - 18.9t - 2.8 = 0$ $7t^{2} - 27t - 4 = 0$		
	$(7t+1)(t-4) = 0$ $t = \underline{4s}$	ml solvin Al	correct method for g quad equ seen cao

Solution Mark Notes

4

Q

5 ~ 4(a) N2L applied to B 5g-T = 5aM1 dim correct equation 5g and T opposing. $T = 5 \times 9.8 - 5 \times 1.61$ A1 T = 40.95 N A1 cao R = 9g = (88.2 N)**B**1 si $F = 9\mu g = (88.2\mu)$ **B**1 si N2L applied to A M1 dim correct equation T and F opposing T-F = 9aA1 $T - 88.2\mu = 9 \times 1.61$ $\mu = \underline{0.3}$ A1 cao limiting friction = $9\mu g = 9 \times 0.6g = 5.4g$ 4(b) B1 Limiting friction > 5g

Particle will remain at rest

 $T = 5g = \underline{49 \text{ N}}$

© WJEC CBAC Ltd.

R1

B1

oe

Solution Mark Notes Q

5

5(a)(i) Resolve vertically R + 84 = 12gR = 33.6

5(a)(ii) Moments about C

$$12g \times 0.2 = 84(x - 0.8)$$

84x = 12g × 0.2 + 84 × 0.8
x = 1.08

M1	equation, no extra force
B1 A1	any correct moment correct equation
A1	cao

all forces, no extras

5(b)	When about to tilt about C , $R_D = 0$	Μ
	Moments about <i>C</i>	m
	$Mg \times 0.8 = 12g \times 0.2$	
	$M = \underline{3}$	Α

M1	si
m1	equation, no extra force

.1

M1

A1

A1

cao

6.

- 6(a) Conservation of momentum $2u + 5 \times 0 = 2 \times (-2) + 5 \times 3$ u = 5.56(b) Restitution
 - 3 (-2) = -e(0 5.5) $e = \frac{10}{11} = 0.909$
- 6(c) Impulse = change of momentum I = 5(3-0) $I = \underline{15 (Ns)}$
- 6(d) v' = ev $v' = 0.25 \times 3$ $v' = 0.75 \text{ ms}^{-1}$

M1 equation required, only 1 sign error. A1 correct equation A1 M1 only 1 sign error A1 ft u A1 cao M1 for P or QA1 + required M1 used A1 + required

Q	Solution	Mark	Notes
			_
7.(a)	Resolve	M1	attempted
	$X = 85 - 40 + 75 \cos \alpha$	B1	any correct resolution
	$X = 85 - 40 + 75 \times 0.8$ X = 105	A1	all correct accept cos36.9
	Resolve	M1	attempted
	$Y = 60 - 75 \sin \alpha$		
	$Y = 60 - 75 \times 0.6$	A1	all correct, accept sin 36.9
	Y = 15		
	$R = \sqrt{105^2 + 15^2}$	M1	
	$R = 75\sqrt{2} = 106.066 \text{ N}$	A1	cao
	(15)		
	$\theta = \tan^{-1}\left(\frac{105}{105}\right)$	M1	allow reciprocal
	$\theta = \underline{8.13^{\circ}}$	A1	cao
7(b)	N2L applied to particle	M1	dim correct equation
	$75\sqrt{2} = 5a$		-
	$a = 15\sqrt{2} = 21.21 \text{ ms}^{-2}$	A1	ft R if first 2 M's gained.

Q	Sol	ution		Mark	Notes
8.	Area from	n AD fro	m AB		
	APCD 48	3	4	B1	
	<i>PBC</i> 24	8	8/3	B1	
	Circle 4π	3	3	B1	
	Lamina (72- 4π)	Х	У	B1	areas
8(a)	Moments about Al)		M1	equation
	$48 \times 3 + 24 \times 8 =$	$4\pi \times 3 + (72 +$	$-4\pi x$	A1	ft table
	x = 5.02 cm			A1	cao
	Moments about Al	3		M1	equation
	$48 \times 4 + 24 \times 8/3$	$=4\pi \times 3 + (72)$	2 - 4π)y	A1	ft table
	y = 3.67 cm	·		A1	cao
8(b)	AQ = 3.67 cm			B1	ft y

Q	Solution	Mark	Notes
1(a)	Loss in KE = 0.5mv^2 = $0.5 \times 8 \times 7^2$ = $\underline{196J}$	M1 A1	Corr use of KE formula
1(b)	Work energy principle $196 = F \times 15$ $F = \mu R$ $= 8g\mu = (78.4\mu)$	M1 A1 B1	correct use ft loss in KE
	Therefore $196 = 78.4 \mu \times 15$ $\mu = \frac{1}{6}$	A1	ft loss in KE. Isw
	OR Use of $v^2=u^2+2as$ $0=7^2 + 2a \times 15$ a = -1.633	(M1)	
	Use F = ma -F = 8× -1.633 F = 8µg $\mu = \frac{13 \cdot 067}{8g} = \frac{1}{6}$	(M1) (B1) (A1)p	

M2

Q	Solution	Mark	Notes
$2(\mathbf{a})$	$\mathbf{n} = \int u dt$	М1	use of integration
2(a)	$\mathbf{r} = \int V dt$	111	use of integration
	$\mathbf{r} = \int (13t-3) + (2+3t^2) \mathbf{j} dt$		
	$\mathbf{r} = \left(\frac{13}{2}t^2 - 3t\right)\mathbf{i} + \left(2t + t^3\right)\mathbf{j} + (\underline{\mathbf{c}})$	A1 A1	one for each coefficient
	When $t = 0$,	m1	use of initial conditions
	$\mathbf{c} = 2\mathbf{i} + 7\mathbf{j}$ $\mathbf{r} = (6.5t^2 - 3t + 2)\mathbf{i} + (2t + t^3 + 7)\mathbf{j}$	A1	ft r
2(b)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}v}$		M1 use of differentiation
=(0)	dt		
	$= 13\mathbf{i} + 6\mathbf{t}\mathbf{j}$	A1	
_ / \			
2(c)	We require v .(i – 2 j) = 0	M1	used
	$\mathbf{v} \cdot (\mathbf{i} - 2\mathbf{j}) = (13t - 3) - 2(2 + 3t^2)$	MI	allow sign errors
	= -6t + 13t - 7 $6t^2 - 13t + 7 = 0$	AI	any form
	(6t - 7)(t - 1) = 0	m1	method for quad equation Depends on both M's

A1

t = 1, 7/6

© WJEC CBAC Ltd.

Q	Solution	Mark	Notes
3(a)(i)	Initial horizontal speed = $15\cos\alpha$ = 15×0.8 = 12 ms^{-1}	B1	
	Time of flight = $9/12$ = $0.75s$	M1 A1	any correct form
3(a)(ii)	• Initial vertical speed = $15 \sin \alpha$ = 15×0.6 = 9 ms^{-1}	B1	
	Use of s = ut + $0.5at^2$, u=9(c), a=(±)9.8, t=0.75(c) s = $9 \times 0.75 - 0.5 \times 9.8 \times 0.75^2$ s = 3.99375 m Height of B above ground = 4.99375 m	M1 A1 A1	si ft s
3(b)	use of $v^2 = u^2 + 2as$, u=9, a=(±)9.8, s=-1 $v^2 = 9^2 + 2(-9.8)(-1)$ $v^2 = 100.6$	M1 A1	allow sign errors
	$u_{\rm H} = 12$	B1	ft candidate's value
	Speed = $\sqrt{12^2 + 100.6}$ Speed = <u>15.64 ms⁻¹</u>	m1 A1	cao

Q	Solution	Mark	Notes
4(a)	Resolve vertically	M1	dim correct
	$Rsin\theta = Mg$	A1	
	$\sin\theta = \frac{3}{5}$	B1	
	$R = Mg \times \frac{5}{3}$		
	R = 5Mg/3	A1	answer given, convincing.
4(b)	N2L towards centre	M1	dim correct
	$R\cos\theta = Ma$ $\frac{5Mg}{4} \times \frac{4}{3} = M \times \frac{8g}{3}$	A1	
	3 5 3r $CP = r = 2$	A1	
	$\frac{\text{Height}}{r} = \frac{4}{3}$	M1	use of similar triangles
	Height = $\frac{8}{3}$ m	A1	ft candidate's r if first M1
	-		given.

Q	Solution	Mark	Notes
5(a)	0 < <i>t</i> < 6	B1 B1	
5(b)	Distance t = 6 to t = 9 = $\int_{6}^{9} 2t^2 - 12t dt$	M1	use of integration Limits not required
	Distance = $[2t^3/3 - 6t^2]_6^9$ = 72	A1	correct integration
	Distance t = 0 to t = 6 = $-\int_{0}^{6} 2t^{2} - 12t dt$ Distance = $-[2t^{3}/3 - 6t^{2}]_{0}^{6}$ = $-[-72]$ = 72	A1	or for the other integral
	Required distance = $72 + 72$ = 144	m1 A1	cao

Q	Solution	Mark	Notes
6(a)	T = P/v $T = \frac{60 \times 1000}{1000}$	M1	used
	$T = \frac{20}{3000 \text{ N}}$	A1	
6(b)	Apply N2L to car and trailer	M1	dim correct equation All forces present
	$T - (1500 + 500)gsin\alpha - (170 + 30) = 2000a$	A2	-1 each error
	$3000 - 2000 \times 9.8 \times \frac{1}{14} - 200 = 2000a$		
	$a = 0.7 \text{ ms}^{-2}$	A1	convincing
6(c)	N2L applied to trailer	M1	dim correct, all forces
	$T = 500gsin\alpha - 30 = 500a$	A2	-1 each error
	$T = 500 \times 9.8 \times \frac{1}{14} + 30 + 500 \times 0.7$		
	$T = \underline{730 N}$	A1	
	OR		
	N2L applied to car 2000 ± 1500 minor $\pm 170 = 1500 \times 0.7$	(M1)	dim correct, all forces
	$T = 2000 + 1500 \times 0.7$	(A2)	
	$1 = 5000 - 1500 \times 9.8 \times1/0 - 1500 \times 0.7$ 14		
	$T = \frac{730 \text{ N}}{100000000000000000000000000000000000$	(A1)	

Q	Solution	Mark	Notes
7(a)	PE at start = $-2 \times 9.8 \times 0.7$ = -13.72 J	M1 A1	mgh used allow 0.7, (1.2+x), (0.5+x), 1.2, 0.5, x.
	PE at end = $-2 \times 9.8 \times (1.2 + x)$ = $-23.52 - 19.6x$		
	EE at end = $\frac{1}{2} \times \frac{360}{1 \cdot 2} x^2$	M1	use of formula
	EE at end = $150x^2$	A1	
	Conservation of energy $150x^2 - 19.6x - 23.52 = -13.72$ $150x^2 - 19.6x - 9.8 = 0$	M1 A1	equation, all energies correct equation any form
	$\mathbf{x} = \underline{0.33}$	A1	cao
7(b)	KE at end = $0.5 \times 2v^2$ = v^2	B1	
	PE at end = $-2 \times 9.8 \times 1.2$ = -23.52		
	Conservation of energy $v^2 - 23.52 = -13.72$ $v^2 = 0.8$	M1 A1	equation, no EE correct equation, any form
	v = 9.8 $v = 3.13 \text{ ms}^{-1}$	A1	

Q	Solution	Mark	Notes
8(a)	Conservation of energy $0.5\text{mu}^2 + \text{mgrcos}\alpha = 0.5\text{mv}^2 + \text{mgrcos}\theta$ $0.5 \times 3 \times 5^2 + 3 \times 9.8 \times 4 \times 0.8 =$ $0.5 \times 3 \times v^2 + 3 \times 9.8 \times 4 \times \cos\theta$	M1 A1 A1	equation required KE PE
	$75 + 188.16 = 3v^{2} + 235.2\cos\theta$ $v^{2} = 87.72 - 78.4\cos\theta$ $v = \sqrt{(87.72 - 78.4\cos\theta)}$	A1	cao
8(b)	N2L towards centre mgcos θ - R = ma R = 3 × 9.8cos θ - $\frac{3}{4}$ (87.72 - 78.4cos θ) R = 29.4cos θ - 65.79 + 58.8cos θ R = 88.2cos θ - 65.79	M1 A1 m1	dim correct, all forces substitute, v ² /r

Q	Solution	Mark	Notes
1(a)(i)	Apply N2L to particle ma = -mg - 3v $2\frac{dv}{dt} = -19.6 - v$	M1 A1	dim correct equation
1(a)(ii	$\int \frac{2\mathrm{d}v}{19.6+v} = -\int \mathrm{d}t$	M1	sep. of variables
	$2\ln 19.6+v = -t + (C)$	A1	correct integration
	t = 0, v = 24.5	m1	use of initial conditions
	$C = 2\ln 44.1 $	A1	ft no 2,1/2.
	$-t = 2\ln\left \frac{19.6 + \nu}{44.1}\right $		
	$e^{-t/2} = \frac{19.6 + v}{1000000000000000000000000000000000000$	m1	inversion ln to e
	$\frac{44.1}{v = 44.1 \mathrm{e}^{-t/2} - 19.6}$	A1	cao
1(b)	At maximum height, $v = 0$ $t = -2\ln \left \frac{19.6}{1100} \right $	M1	si
	$ 44.1 = 2\ln(2.25) = 1.62 \text{ s}$	A1	ft similar expression
1(c)	$\frac{dx}{dt} = 44.1 e^{-t/2} - 19.6$ x = -88.2 e ^{-t/2} - 19.6t (+ C) When t = 0, x = 0	M1 A1 m1	$v = \frac{dx}{dt}$ used ft correct integration use of initial conditions
	C = 88.2 r = 88.2	Δ 1	ft one clin
	x = 60.2 - 80.2 e - 19.01	AI	it one sup

Q	Solution	Mark	Notes
2(a)	Amplitude $a = 0.5$	B1	
2(b)	Period = $\frac{2\pi}{\omega} = 2$	M1	si
	$\omega = \pi$ Maximum acceleration $= a\omega^2 = 0.5 \times \pi^2$ Occurs at end points of motion	A1 B1 B1	ft amplitude <i>a</i> .
2(c)	Let $x = a\cos(\omega t)$ $-0.25 = 0.5\cos(\pi t)$ $\cos(\pi t) = -0.5$ $\pi t = \frac{2\pi}{3}$	M1 m1	
	$t = \frac{2}{3}$	A1	cao
2(d)	$v^{2} = \omega^{2}(a^{2} - x^{2}), x = 0.3, \omega = \pi$ $v^{2} = \pi^{2}(0.5^{2} - 0.3^{2})$ $v^{2} = \pi^{2} \times 0.4^{2}$ $v = (\pm)0.4\pi$	M1 A1	ft
	speed = 0.4π	A1	cao

Q	Solution	Mark	Notes
3(a)(i)	Apply N2L to P 2a = -8x - 10v $\frac{d^2x}{dt^2} = -4x - 5\frac{dx}{dt}$	M1 A1	
3(a)(ii)	$\frac{d^{2}x}{dt^{2}} + 5\frac{dx}{dt} + 4x = 0$ Auxiliary equation m ² + 5m +4 = 0 (m + 4)(m + 1) = 0 m = -4, -1	B1 B1	
	$CF \qquad x = Ae^{-t} + Be^{-4t}$	B 1	ft values of roots
	When $t = 0, x = 2, \frac{dx}{dt} = 3$ 2 = A + B	M1	use of initial conditions
	$\frac{\mathrm{d}x}{\mathrm{d}x} = -A\mathrm{e}^{-t} - 4 B\mathrm{e}^{-4t}$	B1	
	$ \begin{array}{l} dt \\ 3 = -A - 4B \end{array} $	A1	both equations correct
	Adding $5 = -3B$	m1	solving simultaneously
	$B = -\frac{5}{3}$ $A = 2 + -\frac{5}{3} = \frac{11}{3}$ $x = \frac{11}{3} e^{-t} - \frac{5}{3} e^{-4t}$	A1	сао
3(b)	$Try x = at + b$ $\frac{dx}{dt} = a$	M1	
	dt 5a + 4(at + b) = 12t - 3 4a = 12 a = 3	A1 m1	comparing coefficients
	$5a + 4b = -3 15 + 4b = -3 4b = -18 b = -\frac{9}{2}$		
	General solution $x = Ae^{-t} + Be^{-4t} + 3t - \frac{9}{2}$	A1	cao

Q	Solution	Mark	Notes
4	Initial speed of A just before impact $=$ v		
	$v^2 = u^2 + 2as, u=0, a=(\pm)9.8, s=(1.8-0.2)$	M1	
	$v^2 = 0 + 2 \times 9.8 \times 1.6$	A1	
	$v = 5.6 \text{ ms}^{-1}$	A1	cao
	Impulse = Change in momentum Applied to B	M1	used
	J = 3v	B1	
	Applied to A		
	$J = 5 \times 5.6 - 5v$	A1	ft c's answer in (a)
	Solving		
	3v = 28 - 5v	m1	
	8v = 28		
	$v = 3.5 \text{ ms}^{-1}$	A1	cao
	J = 10.5 Ns	A1	cao

Q	Solution	Mark	Notes
5(a)	N2L applied to particle		
	$0.25 a = \frac{5}{2x+1}$	M1	
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{20}{2x+1}$	M1	$a = v \frac{\mathrm{d}v}{\mathrm{d}x}$
	$\int v \mathrm{d}v = 10 \int \frac{2}{2x+1} \mathrm{d}x$	M1	separating variables
	$\frac{1}{2}v^2 = 10\ln 2x+1 + C$	A1	correct integration ln
	When $x = 0$, $v = 4$	A1 m1	LHS correct use of boundary cond. All 3 M's awarded
	$8 = 10 \ln(1) + C$ C = 8		
	$v^2 = 20 \ln 2x + 1 + 16$		
	$\ln 2x+1 = \frac{20}{20} (v - 10)$		
	$2x + 1 = e^{0.05(v^2 - 16)}$	m1	inversion, 3 M's awarded
	$x = 0.5(e^{0.05(v^2 - 16)} - 1)$	A1	cao any equivalent exp.
5(b)	v = 6 $x = 0.5(e^{0.05(36 - 16)} - 1)$ x = 0.5(e - 1)	M1	exp. with v^2 needed
	$x = \underline{0.86} \text{ m}$	A1	cao
5(c)	<i>a</i> = 5		
- (-)	$\frac{20}{2x+1} = 5$	M1	
	20 = 10x + 5 x = 1.5	A1	
	$v^2 = 20\ln(3+1) + 16$	m1	substitution in expression with v^2 .
	$= 20 \ln 4 + 16$ v = <u>6.61 ms⁻¹</u>	A1	cao

Resolve horizontally $T\cos\theta = X$

$$X = \frac{35}{4} g \times \frac{4}{5}$$

X = 7g = 68.6 N

6(b)(i) Magnitude of reaction at wall

$$= \sqrt{68 \cdot 6^{2} + 36 \cdot 75^{2}}$$

= 77.82 N
6(b)(ii) $\mu = \frac{Y}{X}$
 $\mu = \frac{15}{4 \times 7} = \frac{15}{28}$

M1 A1 ft X and Y M1 used

cao

equation, all forces,

No extra force

M1

A1

A1 ft X and Y if answer<1.

Ques	Solution	Mark	Notes
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for using formula
	P(B) = 0.4 - 0.25 = 0.15	A1	
(b)	$P(A \cup B) = P(A) + P(B) - P(A)P(B)$	M1	Award M1 for using formula
	0.4 = 0.25 + P(B) - 0.25P(B)	A1	
	P(B) = 0.15/0.75 = 0.2	A1	
2(a)			
2(a)	P(1 of each) =		
	5 - 2 - 2 = (5) - (3) - (2) - (10)		
	$\left \frac{3}{10} \times \frac{3}{10} \times \frac{2}{10} \times \frac{2}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{2}{10} \right $	M1A1	M1A0A0 if 6 omitted
	$10 \ 9 \ 8 \ (1) \ (1) \ (1) \ (3)$		Special case : if they use an
	$-\frac{1}{2}$	A1	incorrect total, eg 9 or 11, FT
	4		their incorrect total but subtract
(b)	P(2 war) = 5 4 3 ar (5) (10)	M1	2 marks at the end
	$P(3 \text{ war}) = \frac{1}{10} \times \frac{1}{9} \times \frac{1}{8} \times \frac{1}{8} \text{ or } (3) \div (3)$		
	1		
	$=\frac{1}{12}$	Al	
	3 2 1 (3) (10)		
(C)	$P(3 \text{ cowboy}) = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{9} \text{ or } \begin{vmatrix} 3 \\ 2 \end{vmatrix} \div \begin{vmatrix} 10 \\ 2 \end{vmatrix}$		
	$10 \ 9 \ 8 \ (3) \ (3)$	D1	
	= <u> </u>	BI	
	120		
	$P(3 \text{ the same}) = \frac{1}{2} + \frac{1}{2} = \frac{11}{2}$	M1A1	
	12 120 120		F1 previous values
3	E(X) = 20	B1	
_	Var(X) = 4 (SD = 2)	B1	
	E(Y) = 20a + b = 65	B1	
	$Var(Y) = 4a^2 = 36$	B1	Accept $SD(Y) = 2a = 6$
	a=3	B1	Must be justified by solving the
	<i>b</i> = 5	B1	two equations
4(a)(i)	B(20,0.25)	B1	B must be mentioned and the
(ii)	$P(3 \le X \le 9) = 0.9087 - 0.0139 \text{ or } 0.9861 - 0.0913$	B1B1	parameters n and p must be seen
	= 0.8948	B1	or implied somewhere in the
(iii)	$P(Y-6) = \binom{20}{2} \times 0.25^{6} \times 0.75^{14}$		question
	$1(X = 0) = \begin{pmatrix} 6 \end{pmatrix}^{(X-0)}$	M1	FT an incorrect <i>p</i> except for the
	= 0.169	4.1	last three marks
		AI	MO II no working seen
(b)(i)	Let <i>Y</i> denote the number of throws giving '8'		
	Then <i>Y</i> is $B(160, 0.0625) \approx Poi(10)$.	B1	
	$P(V = 12) = e^{-10} \times 10^{12}$	N/1	
	$r(1 - 12) - e \times \frac{12!}{12!}$	IVI I	M0 if no working seen
	= 0.0948	A1	Accept the use of tables
(11)	$P(6 \le Y \le 14) = 0.9165 - 0.0671 \text{ or } 0.9329 - 0.0835$	B1B1	Correct values only (no FT)
	= 0.8494 cao	B1	

© WJEC CBAC Ltd.

5(a)	$P(1) = \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2}$	M1A1	M1 Use of Law of Total Prob (Accept tree diagram)
	$=\frac{13}{36}$ (0.361)	A1	
(b)	1/12		
	$P(A 1) = \frac{1/12}{13/36}$	B1B1	FT denominator from (a) B1 num, B1 denom
	$=\frac{3}{13}$ cao (0.231)	B 1	
6(a)	The sequence is MMMH si Prob = $0.3 \times 0.3 \times 0.3 \times 0.7 = 0.0189$	B1 M1A1	
(b)	The sequence is MHH or HMH si Prob = $0.3\times0.7\times0.7\pm0.7\times0.3\times0.7=0.294$	B1 M1A1	Award B1 for 0 147
	1100 - 0.3×0.7×0.7 + 0.7×0.3×0.7 - 0.234		
7(a)			
/(a)	$\sum p_x = k \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) = 1$	M1	
	$k\left(\frac{8+4+2+1}{8}\right) = 1 \longrightarrow k = \frac{8}{15}$	A1	Convincing
(b)	$F(X) = \frac{8}{2} \times 1 + \frac{4}{2} \times 2 + \frac{2}{2} \times 4 + \frac{1}{2} \times 8$		
	$\frac{2(x)^{-}}{15} \frac{15}{15} \frac{15}{15$	M1	
	$=\frac{1}{15}$ (2.13)	Al	
	$E(X^{2}) = \frac{8}{15} \times 1 + \frac{4}{15} \times 4 + \frac{2}{15} \times 16 + \frac{1}{15} \times 64 (8)$	M1A1	
(c)(i)	$\operatorname{Var}(X) = 8 - \left(\frac{32}{15}\right)^2 = 3.45 (776/225)$	A1	Accept 3.46
	The possibilities are (1,1); (2,2); (4,4); (8,8) si $(2)^2$ $(4)^2$ $(2)^2$ $(1)^2$	B1	
	$P(X_1 = X_2) = \left(\frac{8}{15}\right) + \left(\frac{4}{15}\right) + \left(\frac{2}{15}\right) + \left(\frac{1}{15}\right)$	M1	
(ii)	$=\frac{17}{45}$ (0.378)	A1	
	It follows that $P(X_1 \neq X_2) = \frac{28}{45}$	M1	FT their answer from (c)(i)
	And therefore by symmetry $P(X_1 > X_2) = \frac{14}{45}$	A1	Do not accept any other method.

8 (a)	Let <i>X</i> denote the number of calls between 9am and		
	10 am so that X is Po(5)	B1	
	$P(Y-7) = \frac{e^{-5} \times 5^7}{2}$		
	1(x - 7) =		M0 no working
(h)	= 0.104	AI	
(0)	We require		
	P(calls betw 9 and $10=7$ calls betw 9 and $11=10$)		
	$= \frac{P(c b 9 \text{and} 10 = 7 \text{AND} c b 9 \text{and} 11 = 10)}{P(c b 9 \text{and} 11 = 10)}$	M1	
	P(calls between 9 and 11=10)		
	$= \frac{P(c b 9 and 10 = 7) \times P(c b 10 and 11 = 3)}{P(c b 9 and 10 = 7) \times P(c b 10 and 11 = 3)}$	A 1	
	P(calls between 9 and 11=10)		
	$e^{-5} \times 5^7$ $e^{-5} \times 5^3$ $e^{-10} \times 10^{10}$ (100 cm or 125)	A1A1	A1 numerator, A1 denominator
	$= -\frac{7!}{7!} \times \frac{3!}{3!} \div \frac{10!}{10!}$ (denom = 0.125)		The denominator A1 can be
	= 0.117	A1	awarded if the M1 is awarded
9(a)	$\int_{1}^{2} t \left(1 - x^{2} \right) dx = 1$		
	$\int_{0}^{\infty} k \left(1 - \frac{1}{4} \right) dx = 1$	M1	M1 for $\int f(x) dx$, limits not
			required until next line
	$k \left x - \frac{x^3}{1 - x^3} \right = 1$	A1	-
	$k\left(2-\frac{8}{2}\right) = 1$	A1	
	(2 12)		
	$k = \frac{3}{2}$		
	$\kappa = \frac{1}{4}$		
(0)	$E(X) = \int_{-\infty}^{2} r(3 - 3x^2) dr$	M1A1	M1 for the integral of $xf(x)$, A1
	$E(x) = \int_{0}^{x} x(-\frac{1}{4} - \frac{1}{16}) dx$		for completely correct although
	$\begin{bmatrix} 2 & 2 & 2 & 4 \end{bmatrix}^2$	Al	limits may be left until 2 nd line.
	$=\left \frac{3x}{2}-\frac{3x}{2}\right $		
		A1	
	= 0.75		_
(c)(i)	$F(x) = \int_{0}^{x} (\frac{3}{2} - \frac{3t^{2}}{2}) dt$	M1	M1 for $\int f(x) dx$
	$\int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{4} = 16^{-34}$		
	$\begin{bmatrix} 2t & t^3 \end{bmatrix}^x$	A1	A1 for performing the
	$=\left \frac{3l}{4}-\frac{l}{16}\right $		integration
		4.1	
	$=\frac{3x}{x}-\frac{x^3}{x}$	AI	A1 for dealing with the limits
	4 16		
(ii)		M1	FT their $F(\mathbf{x})$
	$P(0.5 \le X \le 1.5) = F(1.5) - F(0.5)$	A1	
	= 0.547		

Ques	Solution	Mark	Notes
1(a)(i)	$z = \frac{10.5 - 10}{2} = 0.25$	M1A1	M0 for 2^2 or $\sqrt{2}$ M1A0 for - 0.25 if final answer
	$P(X \le 10.5) = 0.5987$	A1	incorrect M0 no working
(ii)	$x = \frac{x - \mu}{\sigma} = 1.282$ $= 12.564$	M1 A1	M1 for 2.326, 1.645, 2.576 Accept 12.6
(b)(i)		B1	
	E(X + 2Y) = 34 Var(X + 2Y) = Var(X) + 4Var(Y) = 40	B1	
	We require $P(X + 2Y < 36)$		
	$z = \frac{30 - 34}{\sqrt{40}} = 0.32$	M1A1	FT their mean and variance
(ii)	Prob = 0.6255	A1	WO NO WORKING
	Consider $U = X_1 + X_2 + X_3 - Y_1 - Y_2$	B1	
	$E(U) = 3 \times 10 - 2 \times 12 = 0$ Var(U) = 3 × 4 + 2 × 9 = 30	M1A1	
	We require $P(U < 0)$		Do not FT their mean and
	$z = \frac{0-6}{\sqrt{30}} = -1.10$	m1A1	variance
	Prob = 0.136	A1	
2(a)	$\bar{x} = \frac{9980}{1000}$ (= 199.6)	B1	
	50 $ 4$		
	SE of $X = \frac{1}{\sqrt{50}}$ (= 0.5656)	B 1	
	95% conf limits are $199.6 \pm 1.96 \times 0.5656$	M1A1	M1 correct form, A1 correct z.
	giving [198.5, 200.7] cao	A1	M0 no working
(b)	4		
	Width of 95% CI = $3.92 \times \frac{1}{\sqrt{n}}$ si	B 1	FT their z from (a)
	We require		
	$3.92 \times \frac{1}{\sqrt{n}} < 1$	M1	Award M1A0A0 for 1.96
	n > 245.86 Minimum $n = 246$	AI A1	FT from line above if $n > 50$

3(a)	$H_0: \mu_B = \mu_G; H_1: \mu_B \neq \mu_G$	B1	
(b)	$\bar{x}_B = \frac{482}{8} = 60.25; \bar{x}_G = \frac{430}{8} = 53.75$	B1B1	
	SE of diff of means= $\sqrt{\frac{7.5^2}{8} + \frac{7.5^2}{8}}$ (3.75)	M1A1	
	Test statistic (z) = $\frac{60.25 - 53.75}{3.75}$	m1A1	
	= 1.73 Prob from tables = 0.0418 <i>p</i> -value = 0.0836 Insufficient evidence to conclude that there is a difference in performance between boys and girls.	A1 A1 B1 B1	FT their <i>z</i> if M marks gained FT on line above FT their <i>p</i> -value
4(a)	$H_0: p = 0.4; H_1: p > 0.4$	B1	
(b)	Let $X = No.$ supporting politician so that X is B(50,0.4) (under H ₀) si p -value = P($X \ge 25 X$ is B(50,0.4)) = 0.0978 Insufficient evidence to conclude that the support is greater than 40%.	B1 M1 A1 B1	M0 for $P(X = 25)$ or $P(X > 25)$ M0 normal or Poisson approx FT on p-value
(c)	X is now B(400,0.4) (under H ₀) \approx N(160,96) p -value = P(X \geq 181 X is N(160,96))	B1 M1	
	$z = \frac{180.5 - 160}{\sqrt{96}}$	m1A1	Award m1A0A1A1 for incorrect
	= 2.09 <i>p</i> -value = 0.0183 Strong evidence to conclude that the support is	A1 A1	or no continuity correction $181.5 \rightarrow z = 2.19 \rightarrow p = 0.01426$ $181 \rightarrow z = 2.14 \rightarrow p = 0.01618$
	greater than 40%.	B 1	FT on p-value
5(a)	$H_0: \mu = 1.2: H_1: \mu < 1.2$	B1	Must be μ
(D)(I)	Let $X =$ number of accidents in 60 days Then X is Poi(72) (under H ₀) \approx N(72,72) si	B 1	
	Sig level = P(X ≤ 58 H ₀) $z = \frac{58.5 - 72}{\sqrt{72}}$ = -1.59	M1 m1A1	Award m1A0A1A1 for incorrect or no continuity correction $57.5 \rightarrow z = -1.71 \rightarrow p = 0.0436$
(ii)	Sig level = 0.0559 X is now Poi(48) which is approx N(48,48) si P(wrong conclusion) = P(X ≥ 59 μ = 0.8) $z = \frac{58.5 - 48}{\sqrt{48}}$	A1 B1 M1 m1A1	$58 \rightarrow z = -1.65 \rightarrow p = 0.0495$ Award m1A0A1A1 for incorrect or no continuity correction $59.5 \rightarrow z = 1.66 \rightarrow p = 0.0485$
	= 1.52 P(wrong conclusion) = 0.0643	A1 A1	$59.3 \rightarrow z = 1.00 \rightarrow p = 0.0483$ $59 \rightarrow z = 1.59 \rightarrow p = 0.0559$

6(a)(i)	$\mathrm{E}(C) = 2\pi\mathrm{E}(R)$	M1	
	$=2\pi \times 7 = 14\pi$ (43.98)	A1	Accept the use of integration,
	$\operatorname{Var}(C) = 4\pi^2 \operatorname{Var}(R)$	M1	M1 for a correct integral and A1 for the correct answer
($=\frac{4\pi^2}{3}$ (13.16)	A1	
(11)	$P(C \le 45) = P(R \le 45/2\pi)$	M1	
	$-\frac{(45/2\pi-6)}{}$	A1	
	$= \frac{8-6}{= 0.581}$	A1	
(b)(i)	$A = \pi R^2$		
	$\mathbf{P}(A \ge 150) = \mathbf{P}\left(R \ge \sqrt{150/\pi}\right)$	M1A1	
	$=\frac{8-\sqrt{150/\pi}}{8-6}$	A1	
(;;)	$\frac{8-6}{-0.545}$	4.1	
(11)	EITHER	AI	
	$\frac{8}{6}$ a 1		
	$\mathbf{E}(A) = \int_{6} \pi r^2 \times \frac{1}{2} \mathrm{d}r$	M1	
	$= \frac{\pi}{6} [r^3]_6^8$	A1	
	$=\frac{148\pi}{1000}$ (155)	A1	
	3		
	$\begin{array}{c} OR \\ F(A) = F(B^2) = \left(-(B) + (F(B))^2 \right) \end{array}$	M1	
	$\mathbf{E}(A) = \pi \mathbf{E}(R^{-}) = \pi (\operatorname{var}(R) + (\mathbf{E}(R)))$		
	$=\pi\left(rac{1}{3}+7^2 ight)$	A1	
	$=\frac{148\pi}{2}$ (155)	A1	
	5		

Ques	Solution	Mark	Notes
1	$\hat{p} = 0.29$ si	B1	
	$ESE = \sqrt{\frac{0.29 \times 0.71}{300}} \ (= 0.02619) \qquad si$	M1A1	
	95% confidence limits are $0.29 \pm 1.96 \times 0.02619$ giving [0.24,0.34]	m1A1 A1	m1 correct form, A1 1.96
2	The possibilities are <u>3 red, 1 blue for which $X - Y = 2$</u> Therefore, (3) (7)		
	$P(X - Y = 2) = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \times \frac{7}{7} \times 4 \text{ OR } \frac{\binom{3}{3} \times \binom{7}{1}}{\binom{10}{4}}$	M1A1	
	$=\frac{1}{30}$	A1	
	<u>2</u> red, 2 blue for which $ X - Y = 0$		
	$P(X - Y = 0) = \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} \times \frac{6}{7} \times 6 \text{ OR } \frac{\binom{3}{2} \times \binom{7}{2}}{\binom{10}{4}}$ $= \frac{3}{10}$	B1	
	$\frac{1 \text{ red, } 3 \text{ blue for which } X - Y = 2}{P(X - Y = -2)} = \frac{3}{10} \times \frac{7}{9} \times \frac{6}{8} \times \frac{5}{7} \times 4 \text{ OR } \frac{\begin{pmatrix} 3\\1 \end{pmatrix} \times \begin{pmatrix} 7\\3 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}}$		
	$=\frac{1}{2}$	B1	
	<u>0 red, 4 blue for which $X - Y = 4$</u>		
	$P(X - Y = -4) = \frac{7}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7} \text{ OR } \frac{\binom{7}{4}}{\binom{10}{4}} = \frac{1}{6}$	B1	FT if found as 1 - Σprobs
	The distribution of $ X - Y $ is therefore $ X - Y $ 024Prob $3/10$ $8/15$ $1/6$	M1A1	FT their probabilities

S3

3 (a)	LIE of $\mu = 34.3$	R1	No working need be seen
J(a)	$012 \text{ of } \mu = 34.5$	DI D1	No working need be seen
	$\Sigma x^2 = 10609.43$	DI	
	$1060943 9 \times 343^2$		
	UE of $\sigma^2 = \frac{10009119}{2} - \frac{9\times 9119}{2}$	M1	M0 division by 9
	8 8	A1	Answer only no marks
	= 2.6275		This wer only no marks
(b)	DF = 8 si	R1	
()	br = 0 sr	D1 D1	
	t-value = 1.80	R1	
	90% confidence limits are		
	2 6275	M1A1	
	34.3 ± 1.86 , $\frac{2.0275}{1.0275}$	WIIAI	
	V 9		
	giving [33,3,35,3] cao	A1	Answer only no marks
	8		2
(c)	ETHER		
	2.6275		
	Width of interval = $2t_1 / \frac{2.0275}{2} = 3.2$	M1	
	V 9		
	So <i>t</i> = 2.96	Al	
	For a 99% confidence interval $t = 3.355$	B1	
	Final 2.06 \times 2.255, the confidence level is less	A1	
	Since 2.90 < 5.555, the confidence level is less		
	than 99%		
	OR		
	For 99% confidence interval $t = 3.355$	B1	
	$101 \frac{1}{100}$ confidence interval, $t = 5.555$		
	99% confidence fiffits are		
	2.6275		
	$34.3 \pm 3.355 \sqrt{-2}$	M1	
	V 9	Δ1	
	giving [32.5,36.1]		
	The given confidence interval is narrower than		
	this therefore its confidence level is less than 90%	A1	
	uns therefore its confidence level is less than 99%		
4(a)	2554		
	The 5% critical value = $2000 + 1.645 \times \sqrt{\frac{-500}{120}}$		
	V 120	M1	$M1 \wedge 0$ for
	= 2007.6	A1	MIA0 IOF –
	2554		
	The 10% critical value = $2000 + 1.282 \times \frac{2334}{2334}$		
	$120 1000 \text{ cm}^{-1}$	M1	M1A0 for –
	- 2005 9	A 1	
	= 2005.7	AI	
	The required range is therefore		
	(2005.9,2007.6)	AI	
(b)	No because of the Central Limit Theorem	B1	
	AND THEN EITHER		
	which ansures the normality of the complement		
	which ensures the normality of the sample mean	D1	
	OR	R1	
	which can be used because the sample is large		

5(a) (b)	$H_{0}: \mu_{A} = \mu_{B}; H_{1}: \mu_{A} \neq \mu_{B}$ $\bar{x} = 55.25; \bar{y} = 55.75$ si $s_{x}^{2} = \frac{183345}{59} - \frac{3315^{2}}{59 \times 60} = 3.2415$ $s_{y}^{2} = \frac{186651}{59} - \frac{3345^{2}}{59 \times 60} = 2.8347$ [Accept division by 60 giving 3.1875 and 2.7875] $SE = \sqrt{\frac{3.2415}{60} + \frac{2.8347}{60}}$ = (0.3182, 0.3155) si Test stat $= \frac{55.75 - 55.25}{0.3182}$ = 1.57 (1.58) p-value = 0.116 (0.114) cao Insufficient evidence for believing that the mean weights are unequal.	B1 B1 M1A1 A1 M1 A1 A1 A1 A1 B1	FT 1 error in the means Answer only no marks FT their p-value
6(a) (b)	$\sum x = 175, \sum x^2 = 5075, \sum y = 118.1, \sum xy = 3170$ $S_{xy} = 3170 - 175 \times 118.1/7 = 217.5$ $S_{xx} = 5075 - 175^2/7 = 700$ $b = \frac{217.5}{700} = 0.311$ $a = \frac{118.1 - 175 \times 0.311}{7} = 9.10$ SE of $a = \sqrt{\frac{0.1^2 \times 5075}{7 \times 700}}$ (0.1017) 95% confidence limits for α are 9.10 ± 1.96 × 0.1017 giving [8.9,9.3]	B2 B1 B1 M1 A1 M1 A1 M1A1 m1A1 A1	Minus 1 each error FT 1 error in sums FT their value of <i>a</i> M1 correct form, A1 1.96

7(a)	$E(\hat{p}) = \frac{E(X)}{E(X)} = \frac{np}{p} = p$	M1	
	n n Therefore unbiased.	AI	This line need not be seen
	$\operatorname{SE}(\hat{p}) = \sqrt{\frac{\operatorname{Var}(X)}{n^2}} = \sqrt{\frac{np(1-p)}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$	M1 A1	Accept q for $1 - p$
(b)(i)	$\mathrm{E}(\hat{p}^2) = \frac{\mathrm{E}(X^2)}{n^2}$	M1	
	$= \frac{\operatorname{Var}(X) + [\operatorname{E}(X)]^2}{n^2}$	m1	
	$= \frac{np(1-p) + n^2 p^2}{n^2}$	A1	
	$(=p^2+\frac{p(1-p)}{n})$		This line need not be seen
(ii)	$\neq p^2$ therefore not unbiased	A1	
	$E[X(X-1)] = E(X^2) - E(X)$	M1	
	$= np(1-p) + n^2p^2 - np$		
	$= n(n-1)p^2$	AI	
	X(X-1)	A 1	
	n(n-1)	AI	
(c)(i)	is an unbiased estimator for p^2 .		
	By reversing the interpretation of success and	M1	
	failure, it follows that $(n - V)(n - V - 1)$	A 1	
	$\frac{(n-X)(n-X-1)}{n(n-1)}$		
	is an unbiased estimator for q^2 .		
	OR 2 (1)2 1 2 2	M1	
	$q^{z} = (1-p)^{z} = 1-2p+p^{z}$ Therefore an unbiased estimator for a^{2} is		
(••)	2X = X(X-1)	A1	This expression need not be
(11)	$1 - \frac{1}{n} + \frac{1}{n(n-1)}$	M1	simplified
	Since $pq = p(1-p) = p - p^2$		
	It follows that an unbiased estimator for pq X = X(X-1)	A1	
	$=$ $\frac{1}{n}$ $ \frac{1}{n(n-1)}$		
	$=\frac{X(n-X)}{(n-X)}$	A1	
	n(n-1)		

GCE MATHEMATICS M1-M3 and S1-S3 MS SUMMER 2013

© WJEC CBAC Ltd.

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>