

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2015

© WJEC CBAC Ltd.

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE MATHEMATICS - C1-C4 & FP1-FP3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
C1	1
C2	6
C3	11
C4	18
FP1	23
FP2	28
FP3	32

1.	(<i>a</i>)	(i)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1
			Gradient of $AB = -\frac{1}{3}$ (or equivalent)	A1
		(ii)	A correct method for finding the equation of <i>AB</i> using candidate's gradient for <i>AB</i> Equation of <i>AB</i> : $y-3 = -\frac{1}{3}[x-(-7)]$ (or equivalent)	M1
			(f.t. candidate's gradient of AB)	A1
			Equation of AB : $x + 3y - 2 = 0$ (convincing)	A1
		(iii)	Use of $m_L \times m_{AB} = -1$	M1
			A correct method for finding the equation of <i>L</i> using	
			candidate's gradient for L	(M1)
			(to be awarded only if corresponding M1 is not awarde	ed in
			part (ii) Equation of L: $y-5=3[x-(-3)]$ (or equivalent	nt)
			(f.t. candidate's gradient of AB)	,
		Note:	Total mark for part (a) is 7 marks	
	(<i>b</i>)		tempt to solve equations of AB and L simultaneously 4, $y = 2$ (convincing) (c.a.o	M1 .) A1
	(c) A correct method for finding at least one coordinate of the mid-po			oint of M1
		<i>AB</i>	rdinate of the mid-point of $AB = 1.5$ (or x-coordinate = -2.5	
		•	is not the mid-point of <i>AB</i> or)
			s not the perpendicular bisector of <i>AB</i> or	
			e mid-point does not lie on L	A1
			native Mark Scheme	
			rect method for finding the lengths of two of AB, AD, BD	M1
			of $AB = \sqrt{90}$, $AD = \sqrt{10}$, $BD = \sqrt{40}$	
			is not the mid-point of AB or	
			s not the perpendicular bisector of AB or AB or AB	Λ 1
		\rightarrow the	e mid-point does not lie on L	A1

(<i>d</i>)	A correct method for finding the length of <i>BD</i> (<i>CD</i>)		
	$BD = \sqrt{40}$	(or equivalent)	A1
	$CD = \sqrt{10}$		A1
	Substitution of candidate's derived values in $tan ABC = \underline{CD}$		m1
		BD	
	$\tan ABC = \underline{1}$	(c.a.o.)	A1
	2		

Special Case

A candidate who has been awarded M0 A0 A0 m0 A0 may be awarded SC1 for one of $AB = \sqrt{90}$, $AC = \sqrt{20}$, $BC = \sqrt{50}$

2. (a)
$$\frac{4\sqrt{2} - \sqrt{11}}{3\sqrt{2} + \sqrt{11}} = \frac{(4\sqrt{2} - \sqrt{11})(3\sqrt{2} - \sqrt{11})}{(3\sqrt{2} + \sqrt{11})(3\sqrt{2} - \sqrt{11})}$$
 M1

Numerator:
$$12 \times 2 - 4 \times \sqrt{2} \times \sqrt{11} - 3 \times \sqrt{11} \times \sqrt{2} + 11$$
 A1

Denominator:
$$18 - 11$$
 A1
 $\frac{4\sqrt{2} - \sqrt{11}}{3\sqrt{2} + \sqrt{11}} = 5 - \sqrt{22}$ (c.a.o.) A1

Special case If M1 not gained, allow SC1 for correctly simplified numerator or denominator following multiplication of top and bottom by $3\sqrt{2} + \sqrt{11}$

(b)
$$\frac{7}{2\sqrt{14}} = p\sqrt{14}$$
, where p is a fraction equivalent to $\frac{1}{4}$ B1
 $\left(\frac{\sqrt{14}}{2}\right)^3 = q\sqrt{14}$, where q is a fraction equivalent to $\frac{7}{4}$ B1
 $\frac{7}{2\sqrt{14}} + \left(\frac{\sqrt{14}}{2}\right)^3 = 2\sqrt{14}$ (c.a.o.) B1

(<i>a</i>)	y-coordinate of $P = -4$ $dy = 3x^2 - 2x - 13$	B1
	dx (an attempt to differentiate, at least one non-zero term correct) An attempt to substitute $x = 2$ in candidate's expression for $\frac{dy}{dx}$	M1 m1
	Value of $\frac{dy}{dx}$ at $P = -5$ (c.a.o.)	A1
	Gradient of normal = $\frac{-1}{\text{candidate's value for } \frac{dy}{dy}}$	m1
	Equation of normal to <i>C</i> at <i>P</i> : $y - (-4) = \frac{1}{5}(x-2)$ (or equival (f.t. candidate's value for $\frac{dy}{dx}$ and the candidate's derived <i>y</i> -value at $\frac{dx}{dx}$	-
	x = 2 provided M1 and both m1's awarded)	A1
<i>(b)</i>	Putting candidate's expression for $\frac{dy}{dx} = -8$	M1
	An attempt to collect terms, form and solve quadratic equation in <i>a</i> (or <i>x</i>) either by correct use of the quadratic formula or by getti the equation into the form $(ma + n)(pa + q) = 0$, with $m \times p =$	ng
	candidate's coefficient of a^2 and $n \times q$ = candidate's constant	m1
	$3a^2 - 2a - 5 = 0 \Rightarrow a = -1 \text{ or } \frac{5}{2}$ (both values) (c.a.o.)	A1

4. (a)
$$4(x-3)^2 - 225$$
 B1 B1 B1

(b)
$$4(x-3)^2 = 225$$

 $(x-3) = (\pm) \frac{15}{2}$
(f.t. candidate's values for a, b, c) M1
(f.t. candidate's values for a, b, c) m1
 $x = \frac{21}{2}, -\frac{9}{2}$
(both values) A1

5. (a) An expression for
$$b^2 - 4ac$$
, with at least two of a , b or c correct M1
 $b^2 - 4ac = (2k-5)^2 - 4 \times k \times (k-6)$ A1
Putting $b^2 - 4ac < 0$ m1
 $k < -\frac{25}{4}$ (or equivalent) A1

(b)
$$k = -\frac{25}{4}$$
 [f.t. the end point(s) of the candidate's range in (a)] B1

3.

6.	(<i>a</i>)	$(1-\underline{x})^8 =$	$1-4x+7x^2-7x^3+\ldots$	B1 B1 B1 B1
		L 2J	(-1 for further in)	ncorrect simplification)

(<i>b</i>)	First term $= 2^n$		B 1
	$2^n = 32 \Longrightarrow n = 5$		B1
	Second term = $n \times 2^{n-1} \times ax$		B1
	a = -3	(f.t. candidate's value for <i>n</i>)	B1

7.	(<i>a</i>)	$y + \delta y = 9(x + \delta x)^2 - 8(x + \delta x) - 3$		B1
		Subtracting <i>y</i> from above to find δy		M1
		$\delta y = 18x\delta x + 9(\delta x)^2 - 8\delta x$		A1
		Dividing by δx and letting $\delta x \rightarrow 0$		M 1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 18x - 8$	(c.a.o.)	A1

(b)
$$\underline{dy} = 3 \times (-6) \times x^{-7} - 4 \times \frac{5}{3} \times x^{2/3}$$
 B1 B1

8. (a) Use of
$$f(3) = 0$$
 M1
 $27p - 117 - 57 + 12 = 0 \Rightarrow p = 6$ (convincing) A1
Special case
Candidates who assume $p = 6$ and show $f(3) = 0$ are awarded B1
(b) $f(x) = (x - 3)(6x^2 + ax + b)$ with one of a, b correct M1

$$f(x) = (x - 3)(6x^{2} + ax + b) \text{ with one of } a, b \text{ correct} \qquad \text{MI}$$

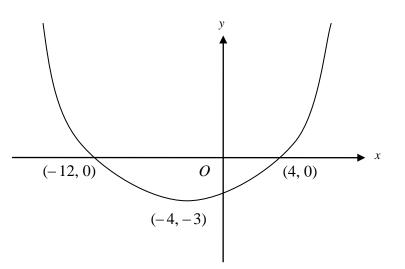
$$f(x) = (x - 3)(6x^{2} + 5x - 4) \qquad \text{A1}$$

$$f(x) = (x - 3)(2x - 1)(3x + 4) \quad \text{(f.t. only } 6x^{2} - 5x - 4 \text{ in above line)} \quad \text{A1}$$

$$\text{Roots are } x = 3, \frac{1}{2}, -\frac{4}{3} \qquad \text{(f.t. for factors } 2x \pm 1, 3x \pm 4) \qquad \text{A1}$$

Special case

Candidates who find one of the remaining factors, (2x - 1) or (3x + 4), using e.g. factor theorem, are awarded B1 **9.** (*a*)



Concave up curve and <i>y</i> -coordinate of minimum $=$ -3	B1
<i>x</i> -coordinate of minimum $= -4$	B1
Both points of intersection with <i>x</i> -axis	B1

(*b*) **Either:**

Any graph of the form y = af(x) (with $a \neq 0$) will intersect the *x*-axis at (-6, 0) and (2, 0) and thus not pass through the origin. **Or:** $f(0) \neq 0$ and since $a \neq 0$, $af(0) \neq 0$. Thus any graph of the form

y = af(x) will not pass through the origin. E1

10.	(<i>a</i>)	L = x + 2y			
		800 = xy	(both equations)		M 1
		L = x + 1600		(convincing)	A1
		X			
	(<i>b</i>)	$\underline{\mathrm{d}L} = 1 + 1600 \times (-1)$	$\times x^{-2}$		B 1
		dx			
		Putting derived $\underline{dL} = 0$)		M1
		dx			
		x = 40, (-40)		(f.t. candidate's <u>dL</u>)	A1
				dx	
		Stationary value of L	at $x = 40$ is 80	(c.a.o)	A1
		A correct method for	finding nature of the s	tationary point yieldin	g a
		minimum value (for x	x > 0	·	B1

0·111111111 0·1709352011

	0 1/0/001011		
2	0.2329431339		
2.5	0.2969522777		
3	0.3628469322	(5 values correct)	B2
(If B2 not aw	arded, award B1 for either	3 or 4 values correct)	
Correct formula with	h = 0.5		M 1
$I \approx \underline{0.5} \times \{0.1111111$	111 + 0.3628469322 +		
2	2(0.1709352011 + 0.23294	431339 + 0.2969522777)}
$I\approx 1.875619269\times 0.$	$5 \div 2$		
$I \approx 0.4689048172$			
$I \approx 0.4689$		(f.t. one slip)	A1
Special case for cand	idates who put $h = 0.4$		
1	0.1111111111		
1.4	0.1587880562		
1.8	0.2078915826		
$2 \cdot 2$	0.2583141854		
$2 \cdot 6$	0.3099833063		
3	0.3628469322	(all values correct)	B1
Correct formula with	h = 0.4		M1
$I \approx \underline{0.4} \times \{0.111111111111111111111111111111111111$	111 + 0.3628469322 + 2(0.12)	1587880562 + 0.207891	15826
2	+0.2583	3141854 + 0.309983306	53)}
$I \approx 2.343912304 \times 0.$	$4 \div 2$		
$I \approx 0.4687824609$			
$I \approx 0.4688$		(f.t. one slip)	A1
		· · · · · ·	

Note: Answer only with no working shown earns 0 marks

1.

1 1·5 2.

(a)
$$4(1 - \sin^2\theta) - 2\sin^2\theta - \sin\theta + 8 = 0,$$

(correct use of $\cos^2\theta = 1 - \sin^2\theta$) M1
An attempt to collect terms, form and solve quadratic equation
in sin θ , either by using the quadratic formula or by getting the
expression into the form $(a \sin \theta + b)(c \sin \theta + d),$
with $a \times c =$ candidate's coefficient of $\sin^2\theta$ and $b \times d =$ candidate's
constant ml
 $6\sin^2\theta + \sin\theta - 12 = 0 \Rightarrow (2\sin\theta + 3)(3\sin\theta - 4) = 0$
 $\Rightarrow \sin\theta = -\frac{3}{2}, \sin\theta = \frac{4}{3}$ (c.a.o.) A1
 $-1 \le \sin\theta \le 1 \Rightarrow$ no such θ can exist
(f.t. only if candidate has 2 real values for sin θ , **neither** of which
satisfies $-1 \le \sin\theta \le 1$) E1
(b) $2x - 75^\circ = -31^\circ, 211^\circ, 329^\circ,$ (one value) B1
 $x = 22^\circ, 143^\circ$ B1 B1
Note: Subtract (from final two marks) 1 mark for each additional root
in range, ignore roots outside range.
(c) $4 \sin\phi + 7 \sin\phi \cos\phi = 0$ or $4 \tan\phi + 7 \tan\phi \cos\phi = 0$
or $\sin\phi \left[\frac{4}{\cos\phi} + 7\right] = 0$ M1
 $\sin\phi = 0$ (or $\tan\phi = 0$), $\cos\phi = -\frac{4}{7}$ (both values) A1
 $\phi = 124 \cdot 85^\circ$ (c.a.o.) A1
Note: Subtract a maximum of 1 mark for each additional root in range
for each branch, ignore roots outside range.
(a) $\frac{\sin ACB}{2} = \frac{\sin 25^\circ}{12}$
(substituting the correct values in the correct places in the sin rule) M11
 $ACB = 42^\circ, 138^\circ$ (both values) A1
 $\phi = 124 \cdot 85^\circ$ A1

(b) (i)
$$BAC + 25^\circ + 138^\circ = 180^\circ$$

(f.t. either of candidate's values for ACB) M1
 $B\hat{A}C = 17^\circ$ (f.t. candidate's obtuse value for ACB) A1
(ii) Area of triangle $ABC = \frac{1}{2} \times 19 \times 12 \times \sin 17^\circ$
(substituting 19, 12 and candidate's derived value for $B\hat{A}C$ in
the correct places in the area formula) M1

Area of triangle $ABC = 33.33 \text{ cm}^2$. (c.a.o.) A1

3.

4. (a) (i) nth term =
$$4 + 6(n - 1) = 4 + 6n - 6 = 6n - 2$$
 (convincing) B1
(ii) $S_n = 4 + 10 + \ldots + (6n - 8) + (6n - 2)$
 $S_n = (6n - 2) + (6n - 8) + \ldots + 10 + 4$
Reversing and adding M1
Either:
 $2S_n = (6n + 2) + (6n + 2) + \ldots + (6n + 2) + (6n + 2)$
Or:
 $2S_n = (6n + 2) + \ldots$ (n times) A1
 $2S_n = n(6n + 2)$
 $S_n = n(3n + 1)$ (convincing) A1
(b) (i) $a + 9d = 4 \times (a + 4d)$ B1

(b) (i)
$$a + 9d = 4 \times (a + 4d)$$
 B1
 $3a + 7d = 0$
 $15 \times (2a + 14d) = 210$ B1

$$\frac{15}{2} \times (2a + 14d) = 210$$
B1

$$a + 7d = 14$$

An attempt to solve the candidate's two derived linear equations simultaneously by eliminating one unknown M1d = 3, a = -7 (c.a.o.) A1 $-7 + (k-1) \times 3 = 200$

(ii)
$$-7 + (k-1) \times 3 = 200$$

(f.t. candidate's derived values for *a* and *d*) M1
 $k = 70$ (c.a.o.) A1

5. (a)
$$r = 2304 = 4$$
 (c.a.o.) B1
 $t_5 = \frac{576}{4^3}$ (f.t. candidate's value for r) M1

$$t_5 = 9$$
 (c.a.o.) A1

(b) (i)
$$ar^2 = 24$$
 B1
 $ar + ar^2 + ar^3 = -56$ B1
An attempt to solve the candidate's equations simultaneously
by eliminating a M1
 $\frac{r^2}{r + r^2 + r^3} = -\frac{24}{56} \Rightarrow 3r^2 + 10r + 3 = 0$ (convincing) A1
(ii) $r = -\frac{1}{3}$ ($r = -3$ discarded, c.a.o.) B1
 $a = 216$
(f.t. candidate's derived value for r , provided $|r| < 1$) B1
 $S_{\infty} = \frac{216}{1 - (-\frac{1}{3})}$ (use of formula for sum to infinity)
(f.t. candidate's derived values for r and a) M1
 $S_{\infty} = 162$ (f.t. candidate's derived values for r and a) A1

6. (a)
$$3 \times \frac{x^{1/2}}{1/2} - 6 \times \frac{x^{7/3}}{7/3} + c$$
 B1, B1
(b) (i) $6 + 5x - x^2 = 4x$ M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b$ = candidate's
constant m1
 $(x + 2)(x - 3) = 0 \Rightarrow x = 3$ (c.a.o.) A1
(ii) Use of integration to find the area under the curve M1
 $\int 6 dx = 6x$, $\int 5x dx = \frac{5x^2}{2}$, $\int x^2 dx = (1/3)x^3$,
(correct integration) B1

Correct method of substitution of candidate's limits m1

$$[6x + (5/2)x^{2} - (1/3)x^{3}]_{-1}^{3}$$

= (18 + 45/2 - 9) - (-6 + 5/2 - (-1/3)) = 104/3

Use of a correct method to find the area of the triangle (f.t. candidate's coordinates for A)

Use of -1 and candidate's value for x_A as limits and trying to find total area by subtracting area of triangle from area under curve m1

Shaded area =
$$104/3 - 18 = 50/3$$
 (c.a.o.) A1

7. (a) Let
$$p = \log_a x$$
, $q = \log_a y$
Then $x = a^p$, $y = a^q$ (the relationship between log and power) B1
 $\frac{x}{y} = \frac{a^p}{a^q} = a^{p-q}$ (the relationship between log and power)
 $\log_a x/y = p - q$ (the relationship between log and power)
 $\log_a x/y = p - q = \log_a x - \log_a y$ (convincing) B1

(b)
$$\log_a(6x^2 + 9x + 2) - \log_a x = \log_a \left[\frac{6x^2 + 9x + 2}{x}\right]$$
 (subtraction law)

$$\frac{4 \log_a 2 = \log_a 2^4}{6x^2 + 9x + 2} = 2^4$$
 (power law) B1
(removing logs) M1

An attempt to solve quadratic equation with three terms in *x*, either by using the quadratic formula or by getting the expression into the form (ax + b)(cx + d), with $a \times c$ = candidate's coefficient of x^2 and $b \times d$ = candidate's constant m1 $6x^2 - 7x + 2 = 0 \Rightarrow (2x - 1)(3x - 2) = 0 \Rightarrow x = \frac{1}{2}, \frac{2}{3}$

(both values, c.a.o.) A1

M1

B1

Note: Answer only with no working earns 0 marks

8.	(<i>a</i>)	(i) (ii)	A(3, -1) A correct method for finding radius Radius = $\sqrt{29}$	(convincing)	B1 M1 A1
	(b)	$\frac{1}{\cos Q}$	r: $\sqrt{18}$ or $RP = \sqrt{98}$ (o.e.) ct substitution of candidate's values in or tan Q = $66 \cdot 8^{\circ}$	n an expression for sin (c.a.o)	B1 Q, M1 A1
		RQ = Correct	$\sqrt{18}$ or $RP = \sqrt{98}$ ct substitution of candidate's values in = 66.8°	the cos rule to find co (c.a.o)	B1 s <i>Q</i> M1 A1
	(c)	$AT^2 =$ Use of $ST = 0$	f $ST^2 = AT^2 - AS^2$ with candidate's de	coordinates for A) erived value for AT (f.t. one slip)	B1 M1 A1

9. Area of sector $AOB = \frac{1}{2} \times r^2 \times 2.6$ Area of triangle $AOB = \frac{1}{2} \times r^2 \times \sin 2.6$ Area of minor segment $= \frac{1}{2} \times r^2 \times 2.6 - \frac{1}{2} \times r^2 \times \sin 2.6 = 1.0422r^2$ Use of a valid method for finding the area of the major segment Area of major segment $= 2.099r^2$ \Rightarrow area of major segment $\approx 2 \times$ area of minor segment (convincing) A1 **C3**

1. (*a*) 0

(a) 0 0

$$\pi/9$$
 -0.062202456
 $2\pi/9$ -0.266515091
 $\pi/3$ -0.693147181
 $4\pi/9$ -1.750723994 (5 values correct) B2
(If B2 not awarded, award B1 for either 3 or 4 values correct)
Correct formula with $h = \pi/9$ M1
 $I \approx \frac{\pi/9}{3} \times \{0 + (-1.750723994) + 4[(-0.062202456) + (-0.693147181)] + 2(-0.266515091)\}$
 $I \approx -5.305152724 \times (\pi/9) \div 3$
 $I \approx -0.617282549$
 $I \approx -0.6173$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

 $\int_{0}^{4\pi^{9}} \ln(\sec x) \, dx \approx 0.6173 \qquad (f.t. \text{ candidate's answer to } (a))$ (*b*) **B**1 2.

(a)

(b)

$$7 \operatorname{cosec}^{2} \theta - 4 (\operatorname{cosec}^{2} \theta - 1) = 16 + 5 \operatorname{cosec} \theta$$
(correct use of $\operatorname{cot}^{2} \theta = \operatorname{cosec}^{2} \theta - 1$) M1
An attempt to collect terms, form and solve quadratic equation
in cosec θ , either by using the quadratic formula or by getting the
expression into the form $(a \operatorname{cosec} \theta + b)(c \operatorname{cosec} \theta + d)$,
with $a \times c = \operatorname{candidate's coefficient} of \operatorname{cosec}^{2} \theta$ and $b \times d = \operatorname{candidate's}$
constant
 $3 \operatorname{cosec}^{2} \theta - 5 \operatorname{cosec} \theta - 12 = 0 \Rightarrow (\operatorname{cosec} \theta - 3)(3 \operatorname{cosec} \theta + 4) = 0$
 $\Rightarrow \operatorname{cosec} \theta = 3$, $\operatorname{cosec} \theta = -\frac{4}{3}$
 $\Rightarrow \sin \theta = \frac{1}{3}$, $\sin \theta = -\frac{3}{4}$ (c.a.o.) A1
 $\theta = 19.47^{\circ}$, 160.53° B1
 $\theta = 311.41^{\circ}$, 228.59° B1 B1
Note: Subtract 1 mark for each additional root in range for each
branch, ignore roots outside range.
 $\sin \theta = +, -, \text{ f.t. for 3 marks, } \sin \theta = -, -, \text{ f.t. for 2 marks}$
 $\sin \theta = +, +, \text{ f.t. for 1 mark}$
 $\sec \phi \ge 1, \operatorname{cosec} \phi \ge 1$ and thus $4 \sec \phi + 3 \operatorname{cosec} \phi \ge 7$ E1

3. (a)
$$\underline{d}(x^3) = 3x^2$$
 $\underline{d}(1) = 0$ $\underline{d}(\pi^2/4) = 0$ B1
 dx dx dx

$$\frac{d(2x\cos y) = 2x(-\sin y)\frac{dy}{dx} + 2\cos y$$

$$dx$$

$$d(y^{2}) = 2y dy$$
B1
B1
B1
B1

$$\frac{dy}{dx} = \frac{3}{2 - \pi}$$
(c.a.o.) B1

(b)
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(x^2y) = x^2\frac{dy}{dx} + 2xy$$
 B1
Substituting x^2y for dy in candidate's derived expression for d^2y M1

$$\frac{d^2y}{dx^2} = x^2(x^2y) + 2xy = x^4y + 2xy \quad (o.e.) \quad (c.a.o.) \quad A1$$

4. (a) candidate's x-derivative =
$$\frac{1}{1+t^2}$$
 B1

candidate's y-derivative =
$$\frac{1}{t}$$
 B1

$$\frac{dy}{dx} = \frac{candidate's \ y-derivative}{candidate's \ x-derivative}$$

$$\frac{dy}{dx} = \frac{1+t^2}{t}$$
A1

(b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}y}{\mathrm{d}x} \right] = -t^{-2} + 1$$
 (o.e.) B1

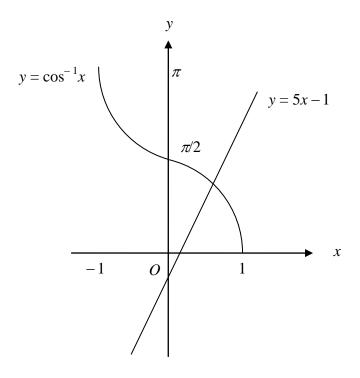
Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div$$
 candidate's *x*-derivative M1

$$\frac{d^2 y}{dx^2} = (-t^{-2} + 1)(1 + t^2)$$
 (o.e.) (f.t. one slip) A1

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0 \Longrightarrow t = 1 \tag{c.a.o.} A1$$

$$\frac{d^2y}{dx^2} = 0 \Longrightarrow x = \frac{\pi}{4}$$
 (f.t. candidate's derived value for t) A1

5. (*a*)



Correct shape for $y = \cos^{-1}x$ B1A straight line with negative y-intercept and positive gradient1intersecting once with $y = \cos^{-1}x$ in the first quadrant.B1

(b)
$$x_0 = 0.4$$

 $x_1 = 0.431855896$ (x_1 correct, at least 4 places after the point) B1
 $x_2 = 0.424849379$
 $x_3 = 0.426400166$
 $x_4 = 0.426057413 = 0.4261$ (x_4 correct to 4 decimal places) B1
Let $h(x) = \cos^{-1}x - 5x + 1$
An attempt to check values or signs of $h(x)$ at $x = 0.42605$,
 $x = 0.42615$ M1
 $h(0.42605) = 4.24 \times 10^{-4} > 0$, $h(0.42615) = -1.86 \times 10^{-4} < 0$ A1
Change of sign $\Rightarrow \alpha = 0.4261$ correct to four decimal places A1

6. (a)

(i)

$$\underbrace{bx} \qquad (\text{including } a = 1, b = 0) \qquad M1$$

$$\frac{dy}{dx} = \frac{a+bx}{4x^2-3x-5}$$
 (including $a = 1, b = 0$) M1
$$\frac{dy}{dx} = \frac{8x-3}{4x^2-3x-5}$$
 A1

(ii)
$$\frac{dy}{dx} = e^{\sqrt{x}} \times f(x) \qquad (f(x) \neq 1, 0) \qquad M1$$
$$\frac{dy}{dx} = e^{\sqrt{x}} \times \underline{1} x^{-1/2} \qquad A1$$

(iii)
$$\frac{dx}{dx} = \frac{2}{(a-b\sin x) \times m\cos x - (a+b\sin x) \times k\cos x}{(a-b\sin x)^2}$$

$$(m=+b, k=+b) \qquad M1$$

$$(m = \pm b, k = \pm b) \qquad \text{MI}$$

$$\frac{dy}{dx} = \frac{(a - b\sin x) \times b\cos x - (a + b\sin x) \times (-b)\cos x}{(a - b\sin x)^2} \qquad \text{A1}$$

$$\frac{dx}{dy} = \frac{2ab\cos x}{(a-b\sin x)^2}$$
A1

(b)
$$\frac{d}{dx} (\cot x) = \frac{d}{dx} (\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times f(x) \quad (f(x) \neq 1, 0) \quad M1$$

$$\frac{d}{dx} \frac{d}{dx} (\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times \sec^2 x \qquad A1$$

$$\frac{d}{dx} \frac{d}{dx} (\tan x)^{-1} = -\csc^2 x \qquad (convincing) \quad A1$$

(i)

$$\int (\frac{7x^2 - 2}{x}) dx = \int 7x dx - \int \frac{2}{x} dx$$

Correctly rewriting as two terms and an attempt to integrate

$$\int (\frac{7x^2 - 2}{x}) \, dx = \frac{7}{2}x^2 - 2\ln x + c$$
 A1 A1

(ii)
$$\int \sin(\frac{2x}{3} - \pi) \, dx = k \times \cos(\frac{2x}{3} - \pi) + c$$

$$(k = -1, -\frac{3}{2}, \frac{3}{2}, -\frac{2}{3}) \quad M1$$

$$\int \sin(\frac{2x}{3} - \pi) \, dx = -\frac{3}{2} \times \cos(\frac{2x}{3} - \pi) + c \quad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (5x - 14)^{-1/4} dx = \frac{k \times (5x - 14)^{3/4}}{3/4}$$
 (k = 1, 5, ¹/₅) M1

$$\int (5x - 14)^{-1/4} dx = \frac{1}{5} \times \frac{(5x - 14)^{3/4}}{3/4}$$
 A1

A correct method for substitution of the correct limits limits in an expression of the form $m \times (5x - 14)^{3/4}$ M1

$$\int_{3}^{6} (5x - 14)^{-1/4} dx = \frac{28}{15} \qquad (= 1.867)$$

(f.t. only for solutions of
$$\frac{28}{3}$$
 (= 9.333) and $\frac{140}{3}$ (= 46.667)
from $k = 1$, $k = 5$ respectively) A1

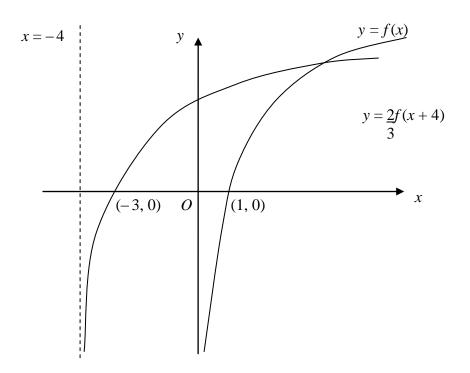
Note: Answer only with no working shown earns 0 marks

8. (<i>a</i>)	<i>(a)</i>	Trying to solve either $3x - 5 \le 1$ or $3x - 5 \ge -1$			
		$3x - 5 \le 1 \Longrightarrow x \le 2$			
		$3x - 5 \ge -1 \Longrightarrow x \ge \frac{4}{3}$	(both inequalities)	A1	
		Required range: $\frac{4}{3} \le x \le 2$	(f.t. one slip)	A1	

Alternative mark scheme

$(3x-5)^2 \le 1$		
(squaring both sides, forming a	and trying to solve quadratic)	M1
Critical values $x = \frac{4}{3}$ and $x = 2$		A1
Required range: $\frac{4}{3} \le x \le 2$ (f.t. one slip in critical values)	A1

(b)
$$\frac{4}{3} \le 1/y \le 2$$
 (f.t. candidate's $a \le x \le b, a > 0, b > 0$) M1
 $\frac{1}{2} \le y \le \frac{3}{4}$ (f.t. candidate's $a \le x \le b, a > 0, b > 0$) A1



Correct shape, including the fact that the y-axis is an asymptote fory = f(x) at $-\infty$ B1y = f(x) cuts x-axis at (1, 0)B1Correct shape, including the fact that x = -4 is an asymptote forB1 $y = \frac{2}{3}f(x+4)$ at $-\infty$ B1 $y = \frac{2}{3}f(x+4)$ cuts x-axis at (-3, 0) (f.t. candidate's x-intercept for f(x))B1The diagram shows that the graph of y = f(x) is steeper than the graph ofB1 $y = \frac{2}{3}f(x+4)$ in the first quadrantB1

10. (a)Choice of h, k such that
$$h(x) = k(x) + c, c \neq 0$$
M1Convincing verification of the fact that $h'(x) = k'(x)$ A1

(b) (i)
$$y-3 = 2 \ln (4x + 5)$$
 B1
An attempt to express candidate's equation as an exponential
equation M1
 $x = (e^{(y-3)/2} - 5)$ (c.a.o.) A1
 $f^{-1}(x) = (e^{(x-3)/2} - 5)$

$$gf(x) = e^{3}(4x+5)^{2}$$
 (c.a.o.) B1

1. (a)
$$f(x) \equiv \frac{A}{(x+3)^2} + \frac{B}{(x+3)} + \frac{C}{(x-1)}$$
 (correct form) M1
 $2x^2 + 5x + 25 \equiv A(x-1) + B(x+3)(x-1) + C(x+3)^2$
(correct clearing of fractions and genuine attempt to find coefficients)
 $A = -7, C = 2, B = 0$ (all three coefficients correct) A2
If A2 not awarded, award A1 for at least one correct coefficient

(b)
$$\int f(x) \, dx = \frac{7}{(x+3)} + 2 \ln (x-1)$$
 B1 B1
(f.t. candidate's values for A, B, C)
$$\int_{3}^{10} f(x) \, dx = \left[\frac{7}{13} + 2 \ln 9\right] - \left[\frac{7}{6} + 2 \ln 2\right] = 2.38$$
 (c.a.o.) B1

Note: Answer only with no working earns 0 marks

2. (a)
$$4x^3 + 3x^2 \frac{dy}{dx} + 6xy - 4y \frac{dy}{dx} = 0$$

 $\begin{bmatrix} 3x^2 \frac{dy}{dx} + 6xy \\ dx \end{bmatrix}$ B1
 $\begin{bmatrix} 4x^3 - 4y \frac{dy}{dx} \end{bmatrix}$ B1

$$\frac{dy}{dx} = \frac{4x^3 + 6xy}{4y - 3x^2}$$
 (convincing) B1

(b)
$$4y - 3x^2 = 0$$
 M1
Either: Substituting $3x^2$ for y in the equation of C and an
attempt to collect terms m1
 $x^4 = 16 \Rightarrow x = (\pm) 2$ A1
 $y = 3$ (for both values of x)
(f.t. $x^4 = a, a \neq 16$, provided both x values are checked)
A1
Or: Substituting $4y$ for x^2 in the equation of C and an
attempt to collect terms m1
 $y^2 = 9 \Rightarrow y = (\pm) 3$ A1
 $y = 3 \Rightarrow x = \pm 2$ (ft $y^2 = b, b \neq 9$) A1

$$y = 3 \Rightarrow x = \pm 2$$
 (f.t. $y^2 = b, b \neq 9$) A1

3. $\tan x + \tan 45^\circ = 8 \tan x$ *(a)* $1 - \tan x \tan 45^\circ$ (correct use of formula for $tan(x + 45^{\circ})$) **M**1 Use of tan $45^\circ = 1$ and an attempt to form a quadratic in tan *x* by cross multiplying and collecting terms **M**1 $8\tan^2 x - 7\tan x + 1 = 0$ (c.a.o.) A1 Use of a correct method to solve the candidate's derived quadratic in tan x m1 $x = 34.8^{\circ}, 10.2^{\circ}$ (both values) (f.t. one slip in candidate's derived quadratic in tan x provided all three method marks have been awarded) A1 *(b)* (i) R = 7**B**1 Correctly expanding $\sin(\theta - \alpha)$, correctly comparing coefficients and using either $7 \cos \alpha = \sqrt{13}$ or $7 \sin \alpha = 6$ or $\tan \alpha = 6$ to find α √13 (f.t. candidate's value for R) M1 $\alpha = 59^{\circ}$ (c.a.o) A1 $\sin\left(\theta-\alpha\right)=-\frac{4}{7}$ (ii) (f.t. candidate's values for R, α) **B**1 $\theta - 59^{\circ} = -34.85^{\circ}, 214.85^{\circ}, 325.15^{\circ},$ (at least one value, f.t. candidate's values for R, α) **B**1 $\theta = 24 \cdot 15^\circ, 273 \cdot 85^\circ$ **B**1 (c.a.o.)

$$V = \pi \int_{0}^{a} (mx)^{2} dx$$
 M1

$$\int (mx)^2 dx = \frac{m^2 x^3}{3}$$
B1

$$V = \pi \frac{m^2 a^3}{3}$$
 (c.a.o.) A1

(b) (i) Substituting <u>b</u> for m in candidate's derived expression for V a $V = \pi \frac{b^2 a}{3}$ (c.a.o.) A1

(ii) This is the volume of a cone of (vertical) height *a* and (base) radius *b* E1

5.
$$\begin{pmatrix} 1+x\\8 \end{pmatrix}^{-1/2} = 1 - \frac{x}{16} + \frac{3x^2}{512}$$
 $\begin{pmatrix} 1-x\\16 \end{pmatrix}$ B1
 $\begin{pmatrix} \frac{3x^2}{512} \end{pmatrix}$ B1
 $\begin{pmatrix} x\\512 \end{pmatrix}$ B1

$$|x| < 8 \text{ or } -8 < x < 8$$
 B1

 $2\sqrt{2} \approx 1 - 1 + 3$
 (f.t. candidate's coefficients)
 B1

 3
 16
 512
 (f.t. candidate's coefficients)
 B1

 Either:
 $\sqrt{2} \approx \frac{1449}{1024}$
 (c.a.o.)
 (c.a.o.)

 Or:
 $\sqrt{2} \approx \frac{2048}{1449}$
 (c.a.o.)
 B1

6.	<i>(a)</i>	(i)	candidate's x-derivative = $2at$ candidate's y-derivative = $2a$ (at leas	t one term corr	ect)
			and use of		
			$\frac{dy}{dx} = \frac{\text{candidate's } y \text{-derivative}}{\text{candidate's } x \text{-derivative}}$		M1
			$\underline{dy} = \underline{2a} = \underline{1}$		
			dx 2at t Gradient of tangent at $P = \underline{1}$	(c.a.o.)	A1
		(ii)	Equation of tangent at <i>P</i> : $p = y - 2ap = \frac{1}{n}(x - ap)$	$-ap^2$)	
			(f.t. candidate's expression for p	$r \frac{dy}{dx}$	m1
			Equation of tangent at <i>P</i> : $py = x + ap^2$		A1
	(<i>b</i>)	(i)	2		B1
			$ap^{2} - aq^{2}$ Use of $ap^{2} - aq^{2} = a(p+q)(p-q)$		B1
			Gradient $PQ = \underline{2}$ (c.a.o.)		B1
		(ii)	$p + q$ As the point <i>Q</i> approaches <i>P</i> , <i>PQ</i> becomes a Limit (gradient <i>PQ</i>) = $\frac{2}{2p} = \frac{1}{p}$.	tangent	E1

7. (a)
$$\int \frac{x^2}{(12-x^3)^2} dx = \int \frac{k}{u^2} du$$
 $(k = \frac{1}{3}, -\frac{1}{3}, 3 \text{ or } -3)$ M1

$$\int \frac{a}{u^2} \frac{du}{du} = a \times \frac{u^{-1}}{-1}$$
B1

Either: Correctly inserting limits of 12, 4 in candidate's bu^{-1} Correctly inserting limits of 0, 2 in candidate's $b(12 - x^3)^{-1}$ or: **M**1

$$\int_{0}^{2} \frac{x^{2}}{(12-x^{3})^{2}} dx = \frac{1}{18}$$
 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

(b) (i)
$$u = x \Rightarrow du = dx$$
 (o.e.) B1
 $dv = \cos 2x \, dx \Rightarrow v = \underline{1} \sin 2x$ (o.e.) B1

0

$$\int x \cos 2x \, dx = x \times \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \times dx \qquad M1$$

$$\int_{0}^{\infty} x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{2} \cos 2x + c \qquad (c.a.o.) \qquad A1$$

(ii)
$$\int x \sin^2 x \, dx = \int x \left[\frac{k}{2} - \frac{m}{2} \cos 2x \right] \, dx \quad (\text{o.e.})$$
$$(k = \mathbf{1}, -1, m = \mathbf{1}, -1) \qquad M1$$
$$\int x \sin^2 x \, dx = \frac{1}{2} \int x \, dx - \frac{1}{2} \int x \cos 2x \, dx$$
$$\int (x \sin^2 x \, dx = \frac{x^2}{2} - \frac{1}{2} x \sin 2x - \frac{1}{2} \cos 2x + c$$

$$x \sin^2 x \, dx = \frac{x^2}{4} - \frac{1}{4} x \sin 2x - \frac{1}{8} \cos 2x + c$$
(f.t. only candidate's answer to (b)(i)) A1

8. (a) (i)
$$AB = -i - 2j + 7k$$
 B1
(ii) Use of $a + \lambda AB$, $a + \lambda(b - a)$, $b + \lambda AB$ or $b + \lambda(b - a)$ to find
vector equation of AB M1
 $r = 5i - j - k + \lambda (-i - 2j + 7k)$ (o.e.)
(f.t. if candidate uses his/her expression for AB) A1

J

 $5 - \lambda = 2 + \mu$ *(b)* $-1 - 2\lambda = -3 + \mu$ $-1+7\lambda = -4-\mu$ (o.e.) (comparing coefficients, at least one equation correct) **M**1 (at least two equations correct) A1 Solving two of the equations simultaneously m1 (f.t. for all 3 marks if candidate uses his/her equation of AB) $\lambda = -1, \mu = 4$ (c.a.o.) A1 (o.e.) Correct verification that values of λ and μ satisfy third equation A1 Position vector of point of intersection is $6\mathbf{i} + \mathbf{j} - 8\mathbf{k}$

9. (a)
$$\frac{dP}{dt} = kP^2$$
 (f.t. one slip) A1
B1

(b)
$$\int \frac{\mathrm{d}P}{P^2} = \int k \,\mathrm{d}t$$
 M1

$$-\frac{1}{P} = kt + c \qquad (\text{o.e.}) \qquad A1$$

$$c = -\frac{1}{A}$$
(c.a.o.) A1

$$-\frac{1}{P} = kt - \frac{1}{A} \Rightarrow kt = \frac{1}{A} - \frac{1}{P} \Rightarrow \frac{1}{k} \left[\frac{P - A}{PA} \right] = t \qquad \text{(convincing) A1}$$

(c)
$$\frac{1}{k} \left[\frac{800 - A}{800A} \right] = 3$$
, $\frac{1}{k} \left[\frac{900 - A}{900A} \right] = 4$ (both equations) B1

An attempt to solve these equations simultaneously by eliminating kM1

$$A = 600$$
 (c.a.o.) A1

10.Assume that 4 is a factor of a + b.
Then there exists an integer c such that a + b = 4c.
Similarly, there exists an integer d such that a - b = 4d.B1
Adding, we have 2a = 4c + 4d.B1
Therefore a = 2c + 2d, an even number, which contradicts the fact that a is
odd.B1

Ques	Solution	Mark	Notes
1	$f(x+h) - f(x) = \frac{1}{(x+h)^2 - (x+h)} - \frac{1}{x^2 - x}$	M1A1	
	$=\frac{x^2 - x - [(x+h)^2 - (x+h)]}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$=\frac{x^2 - x - [x^2 + 2hx + h^2 - x - h)]}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$= \frac{-2hx - h^2 + h}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$	M1	
	$= \lim_{h \to 0} \frac{-2x - h + 1}{[(x+h)^2 - (x+h)](x^2 - x)} = \frac{-2x + 1}{(x^2 - x)^2}$	A1	oe
2(a)	The reflection matrix for $y = x$ is		
	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	B1	Allow the use of 3×3 matrices
	The reflection matrix for $y = -x$ is $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	B1	
	It follows that $\mathbf{T} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	M1	Special case B1 for matrices the wrong way round
	$=\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$ cao	A1	Do not award this A1 for a 3×3 matrix
(b)	T therefore corresponds to a rotation through 180° about the origin. cao	B1	maurix
3(a)	$\frac{2+i}{1-i} = \frac{(2+i)(1+i)}{(1-i)(1+i)}$	M1	
	$=\frac{2+3i+i^{2}}{1-i+i-i^{2}}$	A1	
	$=\frac{1}{2}+\frac{3}{2}i$	A1	
	Let $z = x + iy$ so that $\overline{z} = x - iy$		
	$2(x + iy) - i(x - iy) = \frac{1}{2} + \frac{3}{2}i$	M1	FT their above result
	$2x - y = \frac{1}{2}; 2y - x = \frac{3}{2}$	A1	
	$x = \frac{5}{6}; y = \frac{7}{6} \left(\text{so } z = \frac{5}{6} + \frac{7}{6} i \right)$	A1	
	23		

FP1

(b)	$Mod = \sqrt{(-20)^2 + (-21)^2} = 29$	B1	
	$\tan^{-1}\left(\frac{21}{20}\right) = 0.81 \text{ or } 46.4^{\circ} \text{ si}$	B1	
	Arg = $0.81 + \pi = 3.95$ or $46.4^\circ + 180^\circ = 226.4^\circ$	B1	Accept – 2.33 or – 133.6°
4 (a)	$det(\mathbf{M}) = 1(10-1) + 2(1-4) + 1(2-5)$	M1	
	= 0 M is therefore singular.	A1 A1	
(b)(i)	Using row operations, $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$	M1	
	$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 2-\mu \end{bmatrix}$	A1	
	$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} z \\ z \end{bmatrix} \begin{bmatrix} 2-\mu \end{bmatrix}$	A1	
	It follows that	. 1	
(ii)	$-2 = 2 - \mu$ so $\mu = 4$	A1	
	Let $z = \alpha$.	M1	
	Then $y = \alpha - 2$. and $x = 6 - 3\alpha$.	A1 A1	
5	Let the roots be a, ar, ar^2 .	M1	Allow <i>a</i> / <i>r</i> , <i>a</i> , <i>ar</i>
	Then, $a + ar + ar^2 = 4$		
	$a + ar + ar^{2} = 4$ $a^{2}r + a^{2}r^{2} + a^{2}r^{3} = -8$	A1	
	Dividing,	M1	
	ar = -2 $k = -a^3r^3 = 8$	A1 A1	
	$\kappa - u r = 0$		
6(a)	$\begin{bmatrix} 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$	DO	Amond D1 if 1 amon D0 man
	$\begin{bmatrix} 3 & 2 & 4 \\ 3 & 3 & 6 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \\ -3 & -1 & 6 \\ 0 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	B2	Award B1 if 1 error, B0 more than 1 error
(b)	$\begin{bmatrix} 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$ It follows that		
(c)	$\boldsymbol{A}^{-1} = \frac{1}{3}\boldsymbol{B} \left[= \frac{1}{3} \begin{vmatrix} 3 & -2 & 0 \\ -3 & -1 & 6 \\ 0 & 2 & -3 \end{vmatrix} \right]$	M1A1	M1A0 for 3 B
(-)			
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & -2 & 0 \\ -3 & -1 & 6 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} 14 \\ 18 \\ 11 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$		
	$\begin{vmatrix} y \\ z \end{vmatrix} = \frac{-3}{3} \begin{vmatrix} -3 & -1 & 0 \\ 0 & 2 & -3 \end{vmatrix} = \frac{10}{11} \begin{vmatrix} -2 \\ 1 \end{vmatrix}$	M1A1	FT their A^{-1}

7 (a)	Let		
	$\frac{2}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2} = \frac{A(n+2) + Bn}{n(n+2)}$ $A = 1; B = -1$ $\left(\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{(n+2)}\right)$	M1 A1A1	
(b)	$S_{n} = 1 - \frac{1}{3}$ $\frac{1}{2} - \frac{1}{4}$ $\frac{1}{3} - \frac{1}{5}$		
	$\frac{1}{(n-1)} - \frac{1}{(n+1)}$ $\frac{1}{n} - \frac{1}{(n+2)}$	M1 A1	
	$=1+\frac{1}{2}-\frac{1}{(n+1)}-\frac{1}{(n+2)}$	A1	
	$=\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{2(n+1)(n+2)}$	A1	
	$=\frac{3n^2+5n}{2(n+1)(n+2)}$	A1	
8(a)	$\mathbf{A}^{2} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$ $2\mathbf{A} - \mathbf{I} = 2 \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$ Hence equal.	B1 B1	
(b)	METHOD 1 Let the result be true for $n = k$, ie $\mathbf{A}^{k} = k\mathbf{A} - (k-1)\mathbf{I}$ Consider, for $n = k + 1$, $\mathbf{A}^{k+1} = k\mathbf{A}^{2} - (k-1)\mathbf{A}$ $= k(2\mathbf{A} - \mathbf{I}) - (k-1)\mathbf{A}$ $= (k+1)\mathbf{A} - k\mathbf{I}$ Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and since trivially true for $n = 1$ ($\mathbf{A} = \mathbf{A}$), the result is proved by induction.	M1 A1 A1 A1 A1	Award this A1 for a correct concluding statement and correct presentation of proof byinduction

	METHOD 2		1
	Let the result be true for $n = k$, ie	M1	
	$\mathbf{A}^{k} = k\mathbf{A} - (k-1)\mathbf{I}$		
	$=\begin{bmatrix} 1 & 0\\ 2k & 1 \end{bmatrix}$	A1	
	Consider, for $n = k + 1$,	M1	
		IVII	
	$\mathbf{A}^{k+1} = \begin{bmatrix} 1 & 0 \\ 2k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 1 & 0 \\ 2(k+1) & 1 \end{bmatrix}$	A1	
			Award this A1 for a correct
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and		concluding statement and correct
	since trivially true for $n = 1$ ($\mathbf{A} = \mathbf{A}$), the result is	A1	presentation of proof
	proved by induction.		byinduction
	METHOD 3		
	Let the result be true for $n = k$, ie		
		M1	
	$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{k} = k \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - (k-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
	Consider, for $n = k + 1$,	M1	
	$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{k+1} = \left\{ k \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} - (k-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$	A1	
	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$		
	$= \begin{bmatrix} 1 & 0 \\ 2k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2(k+1) & 1 \end{bmatrix}$	A1	
	$\begin{bmatrix} - \\ 2k & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2(k+1) & 1 \end{bmatrix}$		
	But the assumed result for $n = k$ can be written as		
	$\begin{bmatrix} 1 & 0 \end{bmatrix}^k \begin{bmatrix} 1 & 0 \end{bmatrix}$. 1	
	$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{k} = \begin{bmatrix} 1 & 0 \\ 2k & 1 \end{bmatrix}$	A1	
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and		Award this A1 for a correct
	since trivially true for $n = 1$ (A = A), the result is	A1	concluding statement and correct
	proved by induction.		presentation of proof
			byinduction
0(-)	Taking logg compating		
9(a)	Taking logs correctly, lnf(x) = xln2 + lnsinx	M1	
	$\operatorname{Hi}(x) = x\operatorname{Hi} x + \operatorname{His}\operatorname{Hi} x$ Differentiating,	IVII	
	$\frac{f'(x)}{f(x)} = \ln 2 + \cot x$	A1A1	
	$f'(x) = 2^x \sin x (\ln 2 + \cot x)$	A1	
	$\int (x) = \sin x (\sin 2 + \cos x)$		
(b)	Stationary value where $f'(x) = 0$	M1	
	$x = \cot^{-1}(-\ln 2) \text{cao}$	A 4	Condono investiga di
	= 2.18	A1 A2	Condone ignoring $\sin x = 0$ Award A1 for -0.96
	- 2.10	A2	Awalu A1 101- 0.20

10(a)(i)	z + 3 = k z - i		
	Putting $z = x + iy$,	M1	
	$(x+3)^{2} + y^{2} = k^{2}x^{2} + k^{2}(y-1)^{2}$	A1	
	$x^{2} + 6x + 9 + y^{2} = k^{2}x^{2} + k^{2}y^{2} - 2k^{2}y + k^{2}$		
	$(k^{2}-1)x^{2} + (k^{2}-1)y^{2} - 6x - 2k^{2}y + k^{2} - 9 = 0$	A1	
	(which is the equation of the circle.) Rewriting the equation in he form		
(ii)	$x^{2} + y^{2} - \frac{6}{(k^{2} - 1)}x - \frac{2k^{2}}{(k^{2} - 1)}y = \frac{9 - k^{2}}{(k^{2} - 1)}$	M1	
	Completing the square,	m1	
	$\left(x - \frac{3}{k^2 - 1}\right)^2 + \left(y - \frac{k^2}{k^2 - 1}\right)^2 = \text{terms involving } k$	A1	
	$\text{Centre} = \left(\frac{3}{k^2 - 1}, \frac{k^2}{k^2 - 1}\right)$	A1	Award full credit for the use of the standard result for the coordinates of the centre
(b)(i)	6x + 2y + 8 = 0	B1	
(ii)	It is the perpendicular bisector of the line joining the points $(-3,0)$ and $(0,1)$	B 1	

Ques	Solution	Mark	Notes
1(a)	Let		
	$\frac{5}{(x^2+1)(2-x)} = \frac{Ax+B}{x^2+1} + \frac{C}{2-x}$		
	$(x^{2}+1)(2-x)$ $x^{2}+1$ $2-x$	M1	
	$=\frac{(Ax+B)(2-x)+C(x^2+1)}{(x^2+1)(2-x)}$		
	$=\frac{(x^2+1)(2-x)}{(x^2+1)(2-x)}$		
	A = 1; B = 2; C = 1	A1A1A1	
	$\begin{pmatrix} 5 & x+2 & 1 \end{pmatrix}$		
	$\left(\frac{5}{(x^2+1)(2-x)} = \frac{x+2}{(x^2+1)} + \frac{1}{2-x}\right)$		
(b)			
(b)	$u = \tan x \Longrightarrow \mathrm{d}u = \mathrm{sec}^2 x \mathrm{d}x$	B1	
	$[0,\pi/4] \to [0,1]$	B1	
	$I = \int_{0}^{1} \frac{5}{(2-u)} \times \frac{du}{(1+u^{2})}$		
	$I = \int_{0}^{1} \frac{1}{(2-u)} \times \frac{1}{(1+u^2)}$	M1A1	
	$\frac{1}{2}$, $u + 2$ 1		
	$= \int_{0}^{1} \left(\frac{u+2}{u^{2}+1} + \frac{1}{2-u}\right) du$	A1	
	$= \left \frac{1}{2} \ln(u^2 + 1) + 2 \tan^{-1} u - \ln(2 - u) \right ^{2}$	B1B1B1	
	= 2.61 cao	A1	Award M0 if no working
	- 2.01 Cao	AI	C
2(a)	Denoting the two functional expressions by f_1, f_2		
	$f_1(-1) = 4, f_2(-1) = -a - b$	M1	
	Therefore $a+b=-4$	A1	
	$f_1'(x) = 2x - 1, f_2'(x) = 3ax^2 + b$	M1	
	$f_1'(-1) = -3, f_2'(1) = 3a + b$	1411	
	Therefore $3a + b = -3$	A1	
	Solving, $a = \frac{1}{2}, b = -\frac{9}{2}$	A1A1	FT one slip in equations
(b)			FT if possible
(~)	Solving $\frac{1}{2}x^3 - \frac{9}{2}x = 0; x = -3$	M1A1	Award M1 for attempting to
			solve this equation
3 (a)	Modulus of cube roots = $\sqrt[3]{2}$	B1	
	$R1 = \sqrt[3]{2}(\cos \pi/4 + i \sin \pi/4)$	M1	Use of de Moivre's Theorem
	= 0.891 + 0.891i	A1	FT their modulus
	$R2 = \sqrt[3]{2} (\cos 11\pi/12 + i \sin 11\pi/12)$	M1	Addition of $2\pi/3$ to argument
	= -1.217 + 0.326i	A1	Addition of 2103 to argument
	= -1.217 + 0.5261 R3 = $\sqrt[3]{2}(\cos 19\pi/12 + i \sin 19\pi/12)$		Penalise accuracy only once
	= 0.326 - 1.217i		
	- 0.320 - 1.2171	A1	

(b)(i)	z^n is real when $n = 4$	B2	Award B1 for $n = 8$
(ii)	and imaginary when $n = 2$.	B1	
4	METHOD 1		
	Combining the first and third terms,		
	$2\cos\left(2\theta + \frac{\pi}{6}\right)\cos\theta + \cos\left(2\theta + \frac{\pi}{6}\right) = 0$	M1A1	M1 for combining two terms
	$\cos\left(2\theta + \frac{\pi}{6}\right)(2\cos\theta + 1) = 0$	A1	
	Either $\cos\theta = -\frac{1}{2}$,	M1	
	$\theta = 2n\pi \pm \frac{2\pi}{3}$ or $(2n+1)\pi \pm \frac{\pi}{3}$	A1	Accept equivalent answers
	Or $\cos\left(2\theta + \frac{\pi}{6}\right) = 0$	M1	Accept equivalent answers
	$2\theta + \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{2} \text{ or } \left(n + \frac{1}{2}\right)\pi$	A1	
	$\theta = n\pi \pm \frac{\pi}{4} - \frac{\pi}{12} \text{ or } \frac{n\pi}{2} + \frac{\pi}{6}$ METHOD 2	A1	Accept equivalent answers
	$\cos\theta\cos\frac{\pi}{6} - \sin\theta\sin\frac{\pi}{6} + \cos2\theta\cos\frac{\pi}{6}$	M1	
	$-\sin 2\theta \sin \frac{\pi}{6} + \cos 3\theta \cos \frac{\pi}{6} - \sin 3\theta \sin \frac{\pi}{6} = 0$		
	Combining appropriate terms,		
	$\cos\frac{\pi}{6}(2\cos\theta\cos2\theta+\cos2\theta)$		
	$= \sin \frac{\pi}{6} [2\sin 2\theta \cos \theta + \sin 2\theta]$	A1	
	$\frac{\sqrt{3}}{2}\cos 2\theta (2\cos\theta + 1) = \frac{1}{2}\sin 2\theta (2\cos\theta + 1)$	A1	
	Either $\cos\theta = -\frac{1}{2}$,	M1	
	$\theta = 2n\pi \pm \frac{2\pi}{3}$ or $(2n+1)\pi \pm \frac{\pi}{3}$	A1	
	Or		Accept equivalent answers
	$\tan 2\theta = \sqrt{3}$	M1	
	$2\theta = n\pi + \frac{\pi}{3}$	A1	
	$\theta = \frac{n\pi}{2} + \frac{\pi}{6}$	A1	
			Accept equivalent answers

5 (a)			
5(a) (b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{0}^{x} \mathrm{e}^{\sqrt{u}} \mathrm{d}u \right) = \mathrm{e}^{\sqrt{x}}$	B 1	Do not accept integration followed by differentiation
(0)	Put $y = x^2$; $\frac{dy}{dx} = 2x$	M1	
	$\frac{d}{dx}\left(\int_{0}^{x^{2}} e^{\sqrt{u}} du\right) = \frac{d}{dy}\left(\int_{0}^{y} e^{\sqrt{u}} du\right) \times \frac{dy}{dx}$ $= 2xe^{x}$	A1 A1	Do not accept integration followed by differentiation
(c)	$\int_{x}^{x^{2}} e^{\sqrt{u}} du = \int_{0}^{x^{2}} e^{\sqrt{u}} du - \int_{0}^{x} e^{\sqrt{u}} du$	M1	Award this M1 for the difference of integrals
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{x}^{x^{2}} \mathrm{e}^{\sqrt{u}} \mathrm{d}u \right) = 2x\mathrm{e}^{x} - \mathrm{e}^{\sqrt{x}} \mathrm{cao}$	A1	
6(a)	We are given that		
U(<i>a</i>)	$x^{2} + (y-3)^{2} = (y+3)^{2}$	M1	Do not accept solutions which
	$x^{2} + y^{2} - 6y + 9 = y^{2} + 6y + 9$ $x^{2} = 12y$	A1	assume the equation given the focus and directrix
(b)(i)	x = 12y		
(b)(i)	$x^2 = 36t^2$; $12y = 36t^2$	B1	
	showing that the point $(6t, 3t^2)$ lies on C.		
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
	$=\frac{6t}{6}=t$	A1	
	The equation of the tangent is $y-3t^2 = t(x-6t)$ $y = tx - 3t^2$	M1A1	
(iii)			
	Substituting (0,-12) into the equation, $-12 = -3t^2$ $t = \pm 2$	M1	
(iv)	$t = \pm 2$ Since the positive gradient of the tangent is equal	A1	
	to 2, the angle between the tangent and the y-axis is equal to $\tan^{-1}(1/2)$.	M1	Award M1 for any valid method
	The angle between the tangents is therefore equal to $2 \tan^{-1}(1/2) = 53.1^{\circ}$ or 0.927 rad	A1	Accept 126.9° or 2.21 rad

7(a)	<i>x</i> = 1, <i>x</i> = 2	B1	
(b)	f(0) = 1 giving the point (0,1) $f(x) = 0 \Rightarrow x = 2/3$ giving the point (2/3,0)	B1 M1A1	
(c)	$f'(x) = -\frac{1}{(x-1)^2} + \frac{4}{(x-2)^2}$ At a stationary point,	B1	
	$\frac{1}{(x-1)^2} = \frac{4}{(x-2)^2}$	M1	
	$\frac{1}{(x-1)} = \pm \frac{2}{(x-2)}$	A1	
	(x-1) $(x-2)giving (0,1) and (4/3,9)$	A1A1	Award A1A0 if only x values given
	$f''(x) = \frac{2}{(x-1)^3} - \frac{8}{(x-2)^3}$	M1	
	f''(0) < 0 so that (0,1) is a maximum $f''(4/3) > 0$ so that (4/3,9) is a minimum	A1 A1	Accept any valid method including looking at appropriate values of $f(x)$ or $f'(x)$
(d)		G1 G1	Award G1 for 2 correct branches
(e)(i) (ii)	f(-1) = 5/6; f(0) = 1 f(S) = [5/6,1] Solve $\frac{1}{x-1} - \frac{4}{x-2} = -1$ $x^2 - 6x + 4 = 0$ $x = 3 \pm \sqrt{5}$ $f^{-1}(S) = [2/3,3 - \sqrt{5}] \cup [3 + \sqrt{5},\infty)$	M1 A1 M1 A1 A1 A1	

Ques	Solution	Mark	Notes
1(a)	Expanding the right hand side,		
	$5\cosh\theta + 3\sinh\theta = r\cosh\theta\cosh\alpha + r\sinh\theta\sinh\alpha$ Therefore	M1	
	$r \cosh \alpha = 5$ and $r \sinh \alpha = 3$	A1	
	Squaring and subtracting,		
	$r^2(\cosh^2\alpha - \sinh^2\alpha) = 5^2 - 3^2$		
	so that		
	r = 4	A1	
	Dividing, $sinh \alpha$ 3		
	$\frac{\sinh\alpha}{\cosh\alpha} = \tanh\alpha = \frac{3}{5}$		
		A1	
	$\alpha = \tanh^{-1}\left(\frac{3}{5}\right) = 0.693$	AI	
(b)			
	Substituting,		
	$4\cosh(\theta + 0.693) = 10$	M1	
	$(\theta + 0.693) = \pm \cosh^{-1}\left(\frac{10}{4}\right)$	A1	Condone the absence of \pm here
	$\theta = -0.693 \pm \cosh^{-1}\left(\frac{10}{4}\right)$		
		A1A1	
	=-2.26, 0.874	AIAI	
2	EITHER $\pi/2$		
	$I = \int_{0}^{\pi/2} e^{2x} d(\sin x)$	M1	
	J 0		
	$= \left[e^{2x} \sin x \right]_{0}^{\pi/2} - 2 \int_{0}^{\pi/2} e^{2x} \sin x dx$	A1	
	$= \begin{bmatrix} \mathbf{c} & \sin x \end{bmatrix}_{\mathbf{b}} \qquad 2 \int_{0} \mathbf{c} & \sin x dx$		
	$\pi = 2 \int_{-\infty}^{\pi/2} 2x 1 (x)$		
	$= e^{\pi} - 2 \int_{0}^{\pi/2} e^{2x} d(-\cos x)$	A1A1	
	$= e^{\pi} + 2 \left[e^{2x} \cos x \right]_{0}^{\pi/2} - 4I$	A1	
	$= e^{\pi} + 2e^{2} \cos x_{10} = 4I$ $= e^{\pi} - 2 - 4I$		
		A1	
	$I = \frac{e^{\pi} - 2}{5}$	A1	

[OR		
	$I = \int_{0}^{\pi/2} \cos x d\left(\frac{e^{2x}}{2}\right)$	M1	
	0 (-)		
	$= \left[\frac{e^{2x}}{2}\cos x\right]_{0}^{\pi/2} + \frac{1}{2}\int_{0}^{\pi/2}e^{2x}\sin x dx$	A1	
	$= -\frac{1}{2} + \frac{1}{2} \int_{-\infty}^{\pi/2} \sin x d\left(\frac{e^{2x}}{2}\right)$	A1A1	
	$= -\frac{1}{2} + \frac{1}{4} \left[e^{2x} \sin x \right]_{0}^{\pi/2} - \frac{1}{4} I$	A1	
	$= -\frac{1}{2} + \frac{1}{4}e^{\pi} - \frac{1}{4}I$	A1	
	$I = \frac{e^{\pi}/4 - 1/2}{5/4} = \frac{e^{\pi} - 2}{5}$	A1	
	$I = \frac{1}{5/4} = \frac{1}{5}$		
2(-)(!)		D1	
3(a)(i)	$f'(x) = 12x^3 - 12x^2 - 6x - 6$	B1 B1	
	f'(1.4) = -4.99f'(1.6) = 2.83		
	The change in sign shows that α lies between 1.4 and 1.6.	B1	
(**)			
(ii)	Since α satisfies $f'(\alpha) = 0$, it follows that		
	$12\alpha^3 - 12\alpha^2 - 6\alpha - 6 = 0$	M1	
	so that $2\alpha^3 = 2\alpha^2 + \alpha + 1$		
		A1	
	$\alpha = \left(\frac{2\alpha^2 + \alpha + 1}{2}\right)^{\frac{1}{3}}$		
(b)(i)	1		
	Let $F(x) = \left(\frac{2x^2 + x + 1}{2}\right)^{\frac{1}{3}}$		
	$1 \operatorname{ctr} (x) = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$		
	$1(2r^{2}+r+1)^{-\frac{2}{3}}$ (4r+1)		
	$F'(x) = \frac{1}{3} \left(\frac{2x^2 + x + 1}{2} \right)^{-\frac{2}{3}} \times \left(\frac{4x + 1}{2} \right)$	M1A1	
	F'(1.5) = 0.506	A1	
	The sequence converges because $ F'(1.5) < 1$	A1 A1	
(ii)			
(11)	Using the iterative formula, successive values are	M1	
	1.5 1.518294486	A1	
	1.527545210	AI A1	
	etc		
	$\alpha = 1.537$ (to 3 dps)	A 1	
	$\alpha = 1.557 (10.5 \text{ ups})$	A1	

4 (a)	$\sin x$		
	$f'(x) = \frac{\sinh x}{1 + \cosh x}$	B1	
	$f''(x) = \frac{\cosh x(1 + \cosh x) - \sinh^2 x}{\left(1 + \cosh x\right)^2}$	M1	
	$= \frac{\cosh x + 1}{\left(1 + \cosh x\right)^2}$	A1	
		AI	
	$=\frac{1}{1+\cosh x}$		
(b)	$f'''(x) = -\frac{\sinh x}{\left(1 + \cosh x\right)^2}$	B 1	
	$f'''(x) = \frac{-\cosh x(1 + \cosh x)^2 + \operatorname{termincsinhx}}{(1 + \cosh x)^4}$	M1A1	
	$f(0) = \ln 2, f'(0) = 0, f''(0) = \frac{1}{2}$	B 1	FT their derivatives
	$f'''(0) = 0, f'''(0) = -\frac{1}{4}$		
	The Maclaurin series for $f(x)$ is	3.61 4.1	
	$\ln 2 + \frac{x^2}{4} - \frac{x^4}{96} + \dots$	M1A1	
5 (a)	dx , dy ,		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 + \cos t; \frac{\mathrm{d}y}{\mathrm{d}t} = \sin t$	B1	
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = 1 + 2\cos t + \cos^2 t + \sin^2 t$	M1	
	$=2(1+\cos t)$	A1	
	$=4\cos^2\frac{1}{2}t$		Convincing
(b)(i)	Arc length $= \int_{0}^{\pi} 2\cos\frac{1}{2}t dt$	B 1	
	$=\left[4\sin\frac{1}{2}t\right]_{0}^{\pi}$	B1	
		B1	
	= 4	DI	

(ii)	$a = \int \left(\frac{dx}{dx} \right)^2 \left(\frac{dy}{dy} \right)^2$		
	$\mathbf{CSA} = 2\pi \int y \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \mathrm{d}t$	M1	
	$= 2\pi \int_{0}^{\pi} (1 - \cos t) \times 2\cos \frac{1}{2}t dt$	A1	
	$= 4\pi \int_{0}^{\pi} \left(\cos\frac{1}{2}t dt - \frac{1}{2} \left(\cos\frac{3}{2}t + \cos\frac{1}{2}t\right)\right) dt$	A1	Or $8\pi \int_{0}^{\pi} \sin^2 \frac{1}{2}t \cos \frac{1}{2}t dt$
	$= 4\pi \left[\sin \frac{1}{2}t - \frac{1}{3}\sin \frac{3}{2}t \right]_{0}^{\pi}$	A1	$= \frac{16\pi}{3} \left[\sin^3 \frac{1}{2} t \right]_0^{\pi}$
	$=\frac{16\pi}{3}$	A1	
6(a)	$\frac{d}{dx}\left((4-x^2)^{\frac{3}{2}}\right) = \frac{3}{2}(4-x^2)^{\frac{1}{2}} \times (-2x)$		
	$=-3x(4-x^2)^{\frac{1}{2}}$	B1	Convincing
(b)	$I_n = -\frac{1}{3} \int_0^2 x^{n-1} \frac{d}{dx} ((4-x^2)^{3/2} dx)$	M1	
	$= -\frac{1}{3} \left[x^{n-1} (4-x^2)^{3/2} \right]_0^2 + \frac{n-1}{3} \int_0^2 x^{n-2} (4-x^2)^{3/2} dx$	A1A1	
	$= \left(\frac{n-1}{3}\right)_0^2 x^{n-2} (4-x^2)\sqrt{4-x^2} \mathrm{d}x$	A1	
	$=rac{n-1}{3}(4I_{n-2}-I_n)$	A1	
	$I_n = \left(\frac{4(n-1)}{n+2}\right) I_{n-2}$		
(c)(i)	Evaluate $I_0 = \int_0^2 \sqrt{4 - x^2} \mathrm{d}x$		
	Put $x = 2\sin\theta$, $dx = 2\cos\theta d\theta$, $[0,2] \rightarrow [0,\pi/2]$	M1	
	$I_0 = 4 \int_0^{\pi/2} \cos^2\theta \mathrm{d}\theta$	M1A1	
	$=2\int_{0}^{\pi/2}(1+\cos 2\theta)\mathrm{d}\theta$	A1	
	$= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2}$	A1	
(ii)	$= \pi$ $I_4 = 2I_2$ $= 2 \times 1 \times I_0$ $= 2\pi$	M1 A1 A1	
	$- 2\pi$		

7(a)	Consider		
	$x = r \cos \theta$		
	$= \tan\left(\frac{\theta}{2}\right)\cos\theta$	B 1	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{1}{2}\mathrm{sec}^2\left(\frac{\theta}{2}\right)\mathrm{cos}\theta - \mathrm{tan}\left(\frac{\theta}{2}\right)\mathrm{sin}\theta$	M1	
	The tangent is perpendicular to the initial line		
	where		
	$\frac{1}{2}\sec^2\left(\frac{\theta}{2}\right)\cos\theta = \tan\left(\frac{\theta}{2}\right)\sin\theta$	A1	
	$\frac{1}{2}\left(1+\tan^2\left(\frac{\theta}{2}\right)\right) = \tan\left(\frac{\theta}{2}\right)\frac{\sin\theta}{\cos\theta}$	A1	
	$2\tan\theta\tan\left(\frac{\theta}{2}\right) = 1 + \tan^2\left(\frac{\theta}{2}\right)$		
	Putting $t = \tan\left(\frac{\theta}{2}\right)$,		
	$2t \times \frac{2t}{1-t^2} = 1+t^2$	M1	
	$t^4 + 4t^2 - 1 = 0$	A1	
	$t^2 = -2 + \sqrt{5}$	A1	
	$\left(t = \sqrt{-2 + \sqrt{5}}\right)$		
	$\theta = 0.905 \ (51.8^{\circ})$	A1	
(b)	r = t = 0.486	A1	
(0)	Area = $\frac{1}{2}\int r^2 d\theta$		
		M1	
	$=\frac{1}{2}\int_{0}^{\pi/2}\tan^{2}\frac{\theta}{2}\mathrm{d}\theta$		
	$=\frac{1}{2}\int_{0}^{\pi/2}(\sec^2\frac{\theta}{2}-1)\mathrm{d}\theta$	A1	
	$-\frac{1}{2}\int_{0}^{1}(\sec \frac{1}{2}-1)d\theta$		
	$=\frac{1}{2}\left[2\tan\frac{\theta}{2}-\theta\right]_{0}^{\pi/2}$	A1	
	$=1-\frac{\pi}{4}$ (0.215)	A1	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

SUMMER 2015

© WJEC CBAC Ltd.

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE MATHEMATICS M1-M3 & S1-S3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

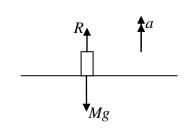
It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
M1	1
M2	10
M3	18
S1	25
S2	28
S3	31

Notes

1.



N2L applied to man

R - Mg = Ma 680 = M(9.8 + 0.2)M = 68

N2L applied to Lift and Man

T - 1868g = 1868aT = 18680 (N)

- M1 *R* and *Mg* opposing. dim correct
- A1
- A1 cao
- M1 *T* and weight opposing. dim correct.
- A1 ft *M*
- A1 ft *M*

Q	Solution	Mark	Notes
2.	Apply N2L to <i>B</i>	M1	dim correct, all forces. allow 5 <i>a</i> RHS
	5g - T = 0	A1	5g and T opposing.
	Resolve perpendicular to plane for A $R = 4g\cos\alpha$	M1 A1	allow sin
	Apply N2L to A	M1	Friction opposes motion. Allow 4 <i>a</i> RHS and/or cos
	$T - 4g\sin\alpha - F = 0$	A1	
	At limiting equilibrium $F = \mu R$ F = 45g = 15	M1	used

$$\mu = \frac{F}{R} = \frac{45g}{48g} = \frac{15}{16}$$
 A1 convincing

$$T = 5g = 49$$

$$F = T - 4g \sin \alpha = \frac{45g}{13} = \frac{441}{13} = 33.9231$$

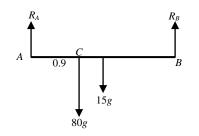
$$R = 4g \times \frac{12}{13} = \frac{48g}{13} = \frac{2352}{65} = 36.1846$$

Q	Solution	Mark	Notes
3(a)	Conservation of momentum	M1	attempted, equation,
	$3 \times 8 + 5 \times 2 = 3v_A + 5 v_B$ $3v_A + 5 v_B = 34$	A1	dim correct.
	Restitution	M1	
	$v_B - v_A = -\frac{1}{3}(2-8)$	A1	
	$v_B - v_A = 2$		
	$3v_A + 5 v_B = 34$ $-3v_A + 3v_B = 6$	1	
Adding	$8v_B = 40$	m1	dep on both M's
	$v_B = 5 \text{ (ms}^{-1})$ $v_A = 3 \text{ (ms}^{-1})$	A1 A1	cao cao
2(1)		7.64	
3(b)	Impulse = change of momentum $I = 5 \times 5 - 5 \times 2 = 15$ (Ns)	M1 A1	used ft v_A or v_B

Q	Solution	Mark		Notes
4	Moments about <i>x</i> -axis = $5\times(-1) + 2\times(3) + 3\times5 + 6\times0$ 16y = 16 y = 1	B1 M1 A1	si cao	
	Moments about y-axis = $5 \times 4 + 2 \times 2 + 3 \times (-2) + 6 \times (-3)$ 16x = 0 x = 0	B1 M1 A1	si cao	

Notes

5(a)



Moments about A

$$2.8R_B = 80g \times 0.9 + 15g \times 1.4$$

 $R_B = 325.5$ (N)

Vertical forces in equilibrium $R_A + R_B = 80g + 15g$ $R_A = 605.5$ (N) M1 3 terms, dim correct Equation required

A1 correct equation

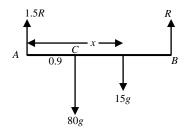
B1 any correct moment

A1 cao

M1 all forces, no extra A1

A1 cao

5(b)



Resolve vertically 1.5R + R = 95gR = 38g

Moments about A

 $x = \frac{172}{75} = \underline{2.3 (m)}$

 $2.8 \times R = 80g \times 0.9 + 15g \times x$

M1 A1

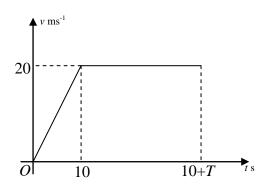
M1 3 terms, dim correct

A1 oe

A1 cao

Notes

6(a)



B1	labels, units and shape
B1	(0, 0) to (10, 20)

- (0, 0) to (10, 20) (10, 20) to (10+*T*, 20)
- **B**1
- *v* = *u* + *at*, *v*=20, *u*=0, *t*=10 6(b) 20 = 0 + 10a $a = 2 \,(\text{ms}^{-2})$
- 6(c) Total distance = area under graph $D = 0.5 \times 10 \times 20 + 20T$ $D = 100 + 20T \,(\mathrm{m})$
- M1attempted
- **B**1 one correct area
- A1 cao

M1

A1

- $s = ut + 0.5at^2$, u=0, t=5+T, a=26(d) M1 $s = 0.5 \times 2 \times (5+T)^2$ $D = 25 + 10T + T^2$ A1 $25 + 10T + T^2 = 100 + 20T$ M1
 - Ft exp for D in (d) and (c) $T^2 - 10T - 75 = 0$ (T+5)(T-15) = 0T = 15A1 cao D = 400 (m)A1 cao

© WJEC CBAC Ltd.

Q	Solution	Mark	Notes
7	Resolve in 80 N direction	M 1	Equation required
	$80 = P\cos 60^\circ + Q\cos 45^\circ$	A1	
	Resolve in 25 N direction	M1	Equation required
	$25 = P\sin 60^\circ - Q\sin 45^\circ$	A1	
	$160 = P + Q\sqrt{2}$		
	$50 = P\sqrt{3} \cdot Q\sqrt{2}$		
Addin		m1	dep on both M's
	$(1+\sqrt{3})P = 210$		
	P = 76.9	A1	cao
	$Q = \underline{58.8}$	A1	cao
			penalise once if not 1 d.p.

Q	Solution	Mark	Notes
8(a)	Use of $v^2 = u^2 + 2as$ with $u = (\pm)2.1, a = (\pm)9.8,$ $s = (\pm)4.$ $v^2 = 2.1^2 + 2 \times 9.8 \times 4$ v = 9.1 speed of rebound = $9.1 \times \frac{4}{7}$	M1 A1 A1 m1	allow -
		1111	
	= <u>5.2 (ms⁻¹)</u>	A1	convincing

8(b) We require smallest
$$n$$
 st $\left(\frac{4}{7}\right)^n \times 9.1 < 1$ M1 oe, si trial & error
4 bounces A1

Q	Solution				Mark	Notes
9	BCD ABDE	45 160	19 8	(5) (5)	B1	for 19
	Circle	9π	7	(5)	B 1	both 8 and 7 required
	Lamina	205-9π	X	(y)	B1	expressions for areas, oe
	Moments abo	out AE			M1	
	$(205-9\pi)x + 9$	$9\pi \times 7 = 160 \times$	8 + 45	× 19	A1	signs correct. Ft table if at least one B1 for c of m gained.
	<i>x</i> = <u>10.96</u>				A1	cao
	y = <u>5</u>				B1	

 $\sin\theta = 0.5$

 $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$

 $\sin\theta = -1$

 $\theta = \frac{3\pi}{2}$

1.

- - A1 both values
 - A1

1600

2(a) Apply N2L to object
$$1600 - R = 50a$$

$$1600 - kt = 50a$$

When $t = 2$, $a = -4$
 $1600 - 2k = 50 \times (-4)$
 $k = 900$
 $1600 - 900t = 50\frac{dv}{dt}$
 $\frac{dv}{dt} = 32 - 18t$

R = ktused m1

convincing A1

2(b)
$$\int dv = \int 32 - 18t \, dt$$

$$v = 32t - 9t^{2}(+C)$$

When $t = 2, v = 41$

$$C = 9 \times 2^{2} - 32 \times 2 + 41$$

$$C = 13$$

$$v = -9t^{2} + 32t + 13$$

When $v = 28$,

$$28 = -9t^{2} + 32t + 13$$

$$9t^{2} - 32t + 15 = 0$$

$$(9t - 5)(t - 3) = 0$$

$$t = \frac{5}{9}, 3$$

M1 increase in power at least once A1 m1used A1 cao

substitution of v=28 in c's m1expression for v(t).

A1 cao 3.

Q

N2L

$$T - mg\sin\alpha - R = ma$$

 $T = \frac{P}{v}$
 $\frac{5P}{16} - 6000 \times 9.8 \times \frac{6}{49} - R = 6000 \times 2$
 $\frac{5P}{16} - R = 19200$

- M1 dim correct, all forces A1 correct equation
- B1 used si
- A1 correct equation in P & R

N2L with
$$a = 0$$

 $T - mg \sin \alpha - R = 0$
 $\frac{3P}{16} - 6000 \times 9.8 \times \frac{6}{49} - R = 0$
 $\frac{3P}{16} - R = 7200$

Solving simultaneously

P = 96000; R = 10800

 $\frac{2P}{16} = 12000$

M1	dim correct,	all forces
----	--------------	------------

A1 correct equation

A1 correct equation in P & R

m1 eliminating one variable, depends on both M's

A1 both answers cao

4(a)	N2L (4t - 3) \mathbf{i} + (3 t^2 - 5t) \mathbf{j} = 0.5 \mathbf{a} \mathbf{a} = (8t - 6) \mathbf{i} + (6 t^2 - 10t) \mathbf{j}
	$\mathbf{v} = \int \mathbf{a} \mathrm{d}t$
	$\mathbf{v} = (4t^2 - 6t)\mathbf{i} + (2t^3 - 5t^2)\mathbf{j} + (\mathbf{c})$
	When $t = 0$, $\mathbf{v} = 8\mathbf{i} - 7\mathbf{j}$ $\mathbf{c} = 8\mathbf{i} - 7\mathbf{j}$ $\mathbf{v} = (4t^2 - 6t)\mathbf{i} + (2t^3 - 5t^2)\mathbf{j} + 8\mathbf{i} - 7\mathbf{j}$ $\mathbf{v} = (4t^2 - 6t + 8)\mathbf{i} + (2t^3 - 5t^2 - 7)\mathbf{j}$

M1 A1	use of $\mathbf{F} = \mathbf{ma}$ cao
M1 A1	attempted, i , j retained, power of <i>t</i> increased once ft a of same diff, not F
A1	

4(b)	Impulse = change in momentum	M1	attempted, vector form required
	When $t = 3$, $\mathbf{v} = 26\mathbf{i} + 2\mathbf{j}$ $0.5(x\mathbf{i} + y\mathbf{j}) - 0.5(26\mathbf{i} + 2\mathbf{j}) = 2\mathbf{i} - 9\mathbf{j}$	B1	si ft c's v
	$(x\mathbf{i} + y\mathbf{j}) = 30\mathbf{i} - 16\mathbf{j}$	A1	cao
	Speed = $\sqrt{30^2 + (-16)^2}$	M1	ft c's <i>x</i> , <i>y</i>
	Speed = 34 ms^{-1}	A1	cao

Mark Notes

si

5(a)
$$T = 15g$$
 B1

Hooke's Law

$$T = \frac{\lambda x}{l} = \frac{1470 \times x}{0 \cdot 4}$$

$$x = \frac{15 \times 9 \cdot 8 \times 0 \cdot 4}{1470}$$

$$x = 0.04 \text{ (m)}$$
A1 cao

5(b) Let PE be zero at the natural length level. PE = mgh M1 used Initial PE = $15 \times 9.8 \times (-0.16)$ A1 Initial PE = -23.52 J

Initial EE = $\frac{1}{2} \times \frac{\lambda(x)^2}{l}$	M1	used
Initial EE = $\frac{1}{2} \times \frac{1470(0.16)^2}{0.4}$ Initial EE = 47.04 J	A1	
Final KE = $0.5mv^2$ Final KE = $7.5v^2$	B1	

Final PE = $15 \times 9.8 \times -0.05$ Final PE = -7.35 J

Final EE = $\frac{1}{2} \times \frac{1470(0 \cdot 05)^2}{0 \cdot 4}$ Final EE = 4.59375 J

Conservation of energy M1 equation, all 3 types $7.5v^2 - 7.35 + 4.59375 = 47.04 - 23.52$ A1 all correct, any form $v^2 = 3.5035$ $v = 1.8718 = 1.87 \text{ (ms}^{-1})(\text{to 2 d.p.})$ A1

Mark Notes

6(a) Initial
$$u_{\rm H} = 35\cos\alpha = (35 \times 0.6 = 21) \,({\rm ms}^{-1})$$
 B1 si
Initial $u_{\rm V} = 35\sin\alpha = (35 \times 0.8 = 28) \,({\rm ms}^{-1})$ B1 si

use of
$$s = ut + 0.5at^2$$

with $s = 0, u = 28(c), a = (\pm)9.8$ M1 complete method
 $0 = 28t + 0.5(-9.8)t^2$ A1 ft u_V
 $t(28 - 4.9t) = 0$
 $t = (0), \frac{40}{7}$ A1
Total distance travelled by ball $= \frac{40}{7} \times 21$

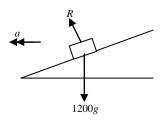
$$= 120 \text{ (m)}$$
Ball will not fall into lake. A1

6(b) time to tree =
$$\frac{17 \cdot 5}{21} = \frac{5}{6}$$
 B1
Use $v=u+at$ with $u=28(c), a=(\pm)9.8, t=5/6(c)$ M1 oe complete method
 $v = 28 - 9.8 \times \frac{5}{6}$ A1
 $v = \frac{119}{6} (= 19.8333)$

speed =
$$\sqrt{\left(\frac{119}{6}\right)^2 + (21)^2}$$
 m1
speed = $28.89 \text{ (ms}^{-1})$ A1 cao

$$\theta = \tan^{-1} \left(\frac{119}{6 \times 21} \right)$$
m1

$$\theta = \underline{43.36^{\circ}} \qquad \qquad A1 \qquad cao$$



Resolve vertically

 $R\cos 12^\circ = 1200g$ R = 12022.73 (N)

N2L towards the centre of motion

$$R\sin 12^\circ = \frac{1200 \times v^2}{80}$$

 $v = 12.91$

M1	equation, dim correct
	No extra force

A1

M1 dim correct, no extra force

A1

A1 cao

Mark Notes

M1

8(a)(i) Conservation of energy $0.5 \times 3 \times 5^2 =$ $3 \times 9.8 \times 0.8(1 - \cos \theta) + 0.5 \times 3 \times v^2$ $25 = v^2 + 1.6 \times 9.8 - 1.6 \times 9.8 \cos \theta$ $v^2 = 9.32 + 15.68 \cos \theta$ A1 cao

8(a)(ii) N2L towards centre of motion

$T - 3g\cos\theta = \frac{3v^2}{0 \cdot 8}$ $T = 3g\cos\theta + 3.75(9.32 + 15.68\cos\theta)$ $T = \frac{34.95 + 88.2\cos\theta}{1000}$

T, $3g\cos\theta$ opposingA1m1ft v^2 of form a±bsin/cos θ A1cao

dim correct, 3 terms

8(b) Greatest value of θ occurs when T=0 $34.95 + 88.2\cos\theta = 0$ M1 ft Tof form a±bsin/cos θ $\cos \theta = -\frac{34 \cdot 95}{88 \cdot 2}$ $\theta = \underline{113.34^{\circ}}$ A1 ft a+bcos θ

Motion stops being circular when $\theta = 113.34^{\circ}$ as string cannot support negative tension. *P* moves under the action of gravity only.

E1 ft $\theta > 90^{\circ}$

Q	Solution	Mark	Notes
	Use of N2L $F = 400a$ $500\left(\frac{x}{v+2}\right) = 400v\frac{dv}{dx}$ $5x = 4v(v+2)\frac{dv}{dx}$	M1 A1	use of $a = v \frac{dv}{dx}$
1(b)(i)	$\int 5x dx = \int 4(v^2 + 2v) dv$ $\frac{5}{2}x^2 = 4\left(\frac{v^3}{3} + v^2\right) + (C)$	M1 A1A1	sep variables
	When $x = 0, v = 0$, hence $C = 0$ $x = \sqrt{\frac{8}{5} \left(\frac{v^3}{3} + v^2\right)}$	m1 A1	any correct form
	When $v = 3$ 2.5 $x^2 = 4(9 + 9)$ $x = \frac{12}{\sqrt{5}}$ m = <u>5.37 m</u>	m1 A1	cao
	$a = \frac{5}{4} \left(\frac{12}{5\sqrt{5}} \right)$ $a = \frac{3}{\sqrt{5}} = \underline{1.34 \ (\text{ms}^{-2})}$	m1 A1	substitution of <i>x</i> and $v=3$.
	$\sqrt{5}$		

Q	Solution	Mark	Notes
	N2L 0.5a = -6.5x - 2v $\frac{1}{2}\frac{d^{2}x}{dt^{2}} = -\frac{13}{2}x - 2\frac{dx}{dt}$ $\frac{d^{2}x}{dt^{2}} + 4\frac{dx}{dt} + 13x = 0$		dimensionally correct $a = \frac{d^2 x}{dt^2}, v = \frac{dx}{dt}.$
	Axilliary equation $m^2 + 4m + 13 = 0$ $m = -2 \pm 3i$ C. F. is $x = e^{-2t}(A\sin 3t + B\cos 3t)$	M1 A1 A1	ft m if complex
	When t=0, x=6, $\frac{dx}{dt}$ =3 B = 6 $\frac{dx}{dt} = -2e^{-2t}(A\sin 3t + B\cos 3t)$	m1	used
	$dt + e^{-2t}(3A\cos 3t - 3B\sin 3t)$ -2B + 3A = 3 A = 5	B1	ft $e^{kt}(Asinpt + Bcospt)$
	Solution is $x = e^{-2t}(5\sin 3t + 6\cos 3t)$	A1	cao
	When <i>t</i> is large, $x \approx 0$	A1	
	Try PI $x = at + b$ 4a + 13(at + b) = 91t + 15 13a = 91 a = 7 4a + 13b = 15 b = -1	M1 A1 m1 A1	equating coefficients cao both
	G.S. is $x = e^{-2t}(A\sin 3t + B\cos 3t) + 7t - 1$		

Q	Solution	Mark	Notes
	N2L 250 $a = 250g - 50v$ $5\frac{dv}{dt} = 5g - v$	M1 A1	dimensionally correct convincing
3(b)	$\int \frac{5dv}{5g - v} = \int dt$ -5ln 5g - v = t (+C)	M1 A1	separation of variables correct integration
	When $t = 0$, $v = 0$ $-5\ln 5g = C$ $-\frac{t}{5} = \ln\left \frac{5g - v}{5g}\right $	m1 A1	used
	$5ge^{-\frac{t}{5}} = 5g - v$ $v = 5g\left(1 - e^{-\frac{t}{5}}\right)$	m1 A1	correct inversion cao
	When $t = 5$, $v = 5g(1 - e^{-1})$ = 30.974 (ms ⁻¹)	A1	cao numerical answer.
3(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 5g - 5ge^{-\frac{t}{5}}$ $x = 5gt + 25ge^{-\frac{t}{5}}(+\mathrm{C})$	M1	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$
	$x = 5gt + 25ge^{-\frac{t}{5}}(+C)$	A1	correct integration ft similar expression
	When $t = 0, x = 0$ C = -25g	m1	used
	$x = 5gt + 25ge^{-\frac{t}{5}} - 25g$ When $t = 5$	A1	
	When $t = 5$, $x = 25ge^{-1} = 90.13$ (m)	A1	cao

Q	Solution	Mark	Notes
4(a)			
	$A \not\models \underbrace{y C}_{C} 1.4-y \clubsuit B$		
	Tension of spring at $A = \frac{15(y - 0.3)}{0.3}$	B1	
	Tension of spring at $B = \frac{20(1 \cdot 4 - y - 0 \cdot 6)}{0.6}$	B1	
	When in equilibrium $T_A = T_B$	M1	
	$\frac{15(y-0\cdot3)}{0.3} = \frac{20(1\cdot4 - y - 0\cdot6)}{0.6}$	A1	all correct
	30y - 9 = 16 - 20y 50y = 25		
	y = 0.5 (m)	A1	convincing

Q	Solution	Mark	Notes
4(b)(i)			
	$A \underbrace{+ x}_{0.5 \ C} \bigoplus_{0.9 - x} B$		
	$T_A = \frac{15(0\cdot 2 + x)}{0.3}$		
	$T_A = \frac{15(0 \cdot 2 + x)}{0.3}$ $T_B = \frac{20(0 \cdot 3 - x)}{0.6}$	B1	either
	Force to right = $\frac{20(0 \cdot 3 - x)}{0.6} - \frac{15(0 \cdot 2 + x)}{0.3}$	M1	allow =/-
	$= -\frac{250x}{3}$ Apply N2L to <i>P</i> , 7.5 $\frac{d^2x}{dt^2} = -\frac{250x}{3}$	M1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{100}{9}x$		
	Therefore motion is SHM with $\omega = \frac{10}{3}$.	A1	si or $\omega^2 = 100/9$
	Period = $\frac{2\pi}{\omega} = \frac{3\pi}{5}$	B1	convincing
4(b)(ii)	Amplitude = <u>0.25 (m)</u>	B1	
	Use $v^2 = \omega^2 (a^2 - x^2)$, $\omega = \frac{10}{3}$, $a = 0.25$, $x = 0.2$	M1	ft a and ω. oe
	$v^{2} = (\frac{10}{3})^{2}(0.25^{2}-0.2^{2})$ $v = 0.5 \text{ (ms}^{-1})$	A1	
	$v = 0.5 ({\rm ms}^{-1})$	A1	cao
4(b)(iv)	$x = a\cos(\omega t)$	M1	oe allow sin/cos, c's a, ω.
	$0.2 = 0.25\cos(\frac{10}{3}t)$	A1	
	$0.2 = 0.25\cos(\frac{10}{3}t)$ $t = \frac{3}{10}\cos^{-1}(\frac{0 \cdot 2}{0 \cdot 25})$ t = 0.193 (s)	A1	cao

Q	Solution	Mark	Notes
5.	u $\frac{8}{v}$ $\frac{8}{v}$		
	$A \xrightarrow{V}_{\alpha} I \xrightarrow{V_{3l}}_{60^{\circ}} B$		
	Sine rule $\frac{\sin\theta}{l} = \frac{\sin 120^{\circ}}{l\sqrt{3}}$ $\sin\theta = 0.5 = 30^{\circ}$	M1 A1	
	$\alpha = 60^{\circ} - 30^{\circ} = 30^{\circ}$		
	Impulse = change in momentum	M1	used. Allow sin/cos.
	Apply to B $J = 5 \times 8 \cos 30^{\circ} - 5v$ Apply to A	A1	
	J = 3v	B1	
	Solving simultaneously $40\frac{\sqrt{3}}{2} - 5v = 3v$	m1	
	Speed of $A = v = \frac{5\sqrt{3}}{2} = 4.33 \text{ (ms}^{-1}\text{)}$	A1	cao
	$u = 8\sin 30^{\circ} = 4 \ (\mathrm{ms}^{-1})$	B1	
	Speed of $B = \sqrt{4^2 + \left(\frac{5\sqrt{3}}{2}\right)^2}$	m1	
	$= 5.9 (\mathrm{ms}^{-1})$	A1	cao
	J = 3v = 12.99 (Ns)	A1	ft c's 3v

Q	Solution	Mark	Notes
6	$A \xrightarrow{S}_{80g} 20g \xrightarrow{R}_{0.6R} B$		
	Resolve vertically		equation, no missing and no extra force.
	$R = 80g + 20g \ (= \ 100g)$ Resolve horizontally	A1 M1	equation, no missing and no extra force.
	S = 0.6R = $60g = 588$ (N)	A1	
	Moments about <i>B</i>	M1	equation, no missing and no extra force. Dimensionally correct.
	$80g \times 5\cos\theta + 20g \times 3\cos\theta = S \times 6\sin\theta$ $360\sin\theta = 460\cos\theta$	A2	-1 each error
	$\theta = \tan^{-1}\left(\frac{460}{360}\right) = 51.95^{\circ}$	A1	cao
	The ladder is modelled as a rigid rod.	B1	

Ques	Solution	Mark	Notes
1(a)	E(X) = 3, $Var(X) = 2.1$ si	B1	
	E(Y) = 2E(X) + 1	M1	
	= 7	A1	
	$\operatorname{Var}(Y) = 4\operatorname{Var}(X)$	M1	
	= 8.4	A1	
(b)	P(Y=7) = P(X=3)	M1	Award M1 just for this line
	$=\binom{10}{3} \times 0.3^3 \times 0.7^7$		Award M0A0 for no working
	$= \begin{pmatrix} 3 \end{pmatrix} \times 0.5 \times 0.7$	A1	Accept 0.6496 – 0.3828
	= 0.267	A1	or 0.6172 – 0.3504
2(a)	$P(A \cap B) = P(A) + P(B) - P(A \cup B)$ oe	M1	Award B1 for a valid
()	$P(A \cap B) = 0.4 + 0.5 - 2P(A \cap B)$	A1	verification
	$P(A \cap B) = 0.3$		
(b)	$P(A \cap B)$		
	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	M1	Accept the use of a Venn
			diagram in (b) and (c)
	$=\frac{0.3}{0.5}=0.6$	A1	
	0.5		
(c)	$D(P \cap A')$ $D(P)$ $D(P \cap A)$		
	$P(B \mid A') = \frac{P(B \cap A')}{P(A')} (= \frac{P(B) - P(B \cap A)}{1 - P(A)})$	M1	
	$=\frac{0.5-0.3}{1-0.4}$	A1	
	1 - 0.4		
	$=\frac{1}{3}$ (0.33)	A1	
	5		
3 (a)	P(A chooses G) = 0.3	B1	
(b)	8 2 2 1		
(0)	P(B chooses Y) = $\frac{8}{10} \times \frac{2}{9} + \frac{2}{10} \times \frac{1}{9}$	M1A1	
	= 0.2	A1	
(c)		AI	Accept 0.2 without working
	P(Diff colours) = $\frac{3}{10} \times \frac{7}{9} + \frac{5}{10} \times \frac{5}{9} + \frac{2}{10} \times \frac{8}{9}$	M1A1	Accept
	$=\frac{31}{45}$. 1	$\frac{{}^{5}C_{1}\times^{3}C_{1}+{}^{5}C_{1}\times^{2}C_{1}+{}^{3}C_{1}\times^{2}C_{1}}{{}^{10}C_{2}}$
	45	A1	$13C_2$
4(a)(i)	$P(X=9) = \frac{e^{-10} \times 10^9}{9!}$	M1	Accept 0.4579 – 0.3328 or
	$1(x-y) - \frac{1}{9!}$	IVII	0.6672 - 0.5421
/•• \	= 0.1251	A1	Award M0 if no working seen
(ii)	P(X < 12) = 0.6968	M1A1	Award M1A0 if in adjacent row
			or column
	Looking at the appropriate section of the table,	M1	
(b)	<i>n</i> = 19	A1	Award M140 for 18 or 20
			Award M1A0 for 18 or 20

5(a)(i)	P(male and bike) = 0.6×0.75	M1A1	
(ii)	= 0.45 P(owns a bike) = 0.6×0.75+0.4×0.3 = 0.57	MIAI M1A1 A1	
(b)	P(female bike) = $\frac{0.12}{0.57}$ = 0.211 (4/19) cao	B1B1 B1	B1 num, B1 denom FT denominator from (a)
6(a) (i) (ii)	Let X = no. of defective cups so X is B(50,0.05) $P(X = 2) = {\binom{50}{2}} \times 0.05^{2} \times 0.95^{48}$ $= 0.261$ $P(3 \le X \le 8) = 0.9992 - 0.5405$ or 0.4595 - 0.0008 = 0.4587	B1 M1 A1 B1B1 B1	si Accept 0.5405 – 0.2794 or 0.7206 – 0.4595 M0A0 if no working Award no marks if no working seen
(b)	Let Y = no. of defective plates so Y is B(250,0.015) \approx Po(3.75) si P(Y = 4) = $\frac{e^{-3.75} \times 3.75^4}{4!}$ = 0.194	B1 M1 A1	M0A0 if no working
7(a)	$k\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6}\right) = 1$ $k \times \frac{15}{12} = 1$ $k = \frac{4}{5}$	M1 A1	Or equivalent Accept verification
(b) (c)	5 $E(X) = \frac{4}{5} \left(\frac{2}{2} + \frac{3}{3} + \frac{4}{4} + \frac{6}{6}\right)$ $= 3.2$ The possible pairs are (3,4), (4,3), (2,6),(6,2) $Prob = \frac{4}{5} \times \frac{1}{3} \times \frac{4}{5} \times \frac{1}{4} \times 2 + \frac{4}{5} \times \frac{1}{2} \times \frac{4}{5} \times \frac{1}{6} \times 2$ $= 0.213 \ (16/75)$	M1 A1 B1 M1A1 A1	B1 for (3,4),(2,6) M1A0A0 if factor 2 missing

8 (a)	$P(1^{st} hit with 3^{rd} throw) = 0.7 \times 0.7 \times 0.3$	M1	
	= 0.147	A1	
(b)(i)	P(F wins 1 st throw) = P(G misses) × P(F hits) = $0.8 \times 0.3 = 0.24$	M1 A1	
(ii)	P(F wins with 2 nd throw)	M1	
(iii)	$= P(G \text{ miss}) \times P(F \text{ miss}) \times P(G \text{ miss}) \times P(F \text{ hits})$ $= 0.8 \times 0.7 \times 0.8 \times 0.3 = 0.1344$	A1	
	P(F wins) = $0.24 + 0.24 \times 0.56 + 0.24 \times 0.56^2 + \dots$ = $\frac{0.24}{1 - 0.56}$	M1 B1	Award this M1 for realising that the probability is the sum of an infinite geometric series
	$= 0.545 \left(\frac{6}{11}\right)$	A1	
9(a)	$E\left(\frac{1}{X}\right) = \frac{4}{9}\int_{1}^{2}\frac{1}{x}(4x-x^{3})dx$	M1A1	M1 for the integral of $\frac{1}{x}f(x)$
	$= \frac{4}{9} \left[4x - \frac{x^3}{3} \right]_{1}^{2}$ $= 0.741 (20/27)$	A1 A1	A1 for completely correct although limits may be left until 2nd line Award M0 if no working
	- 0.7 11 (20/27)		
(b)(i)	$F(x) = \frac{4}{9} \int_{1}^{x} (4u - u^{3}) du$	M1	Allow <i>x</i> as dummy variable
	$=\frac{4}{9}\left[2u^2-\frac{u^4}{4}\right]_{1}^{x}$	A1	Limits may be left until next line but must then be applied
	$=\frac{8x^2}{9}-\frac{x^4}{9}-\frac{7}{9}$	A1	
(ii)			
(iii)	$P(1.25 \le X \le 1.75) = F(1.75) - F(1.25)$ = 0.5625 (9/16)	M1 A1	FT from (b)(i) if possible
	The median <i>m</i> satisfies $\frac{8m^2 - m^4 - 7}{9} = 0.5$	M1	FT from (b)(i) if possible
	$m^4 - 8m^2 + 11.5 = 0$	A1	
	$m^2 = \left(\frac{8 \pm \sqrt{64 - 46}}{2}\right) = 1.88$	A1	Condone the absence of \pm
	m = 1.37	A1	

Ques	Solution	Mark	Notes
1 (a)	$H_0: \mu = 120; H_1: \mu \neq 120$	B1	
(b)	$\overline{x} = \frac{\Sigma x}{10}$	M1	
	= 119.2	A1	
	Test statistic = $\frac{119.2 - 120}{\sqrt{1.2^2/10}}$	M1A1	Award M0 if 10 omitted
	= - 2.11	A1	
	Value from tables = 0.01743	A1	ET from line shows
	p-value = 0.03486 Strong evidence that the mean speed has changed.	A1 B1	FT from line above Accept 'mean speed has
	Strong evidence that the mean speed has changed.	DI	decreased' FT the <i>p</i> -value if less than 0.05
2(a)	$95^{\text{th}} \text{ percentile} = 82 + 1.645 \times 2.5$	M1	
	= 86.1	A1	
(b)	Let <i>X</i> =weight of a man, <i>Y</i> =weight of a woman		
	$z_1 = \frac{68 - 65}{2} = 1.5$	M1A1	M0 if no working
	$z_2 = \frac{64 - 65}{2} = -0.5$	A1	
	P(Y < 1.5) = 0.9332 or $P(Y > -0.5) = 0.6915$	A1	
	P(Y < -0.5) = 0.3085 or $P(Y > 1.5) = 0.0668$	A1	
	P(64 < Y < 68) = 0.6247	A1	
(c)	Let $U = \sum_{i=1}^{3} X_i + \sum_{i=1}^{4} Y_i$		
	$E(U) = 3 \times 82 + 4 \times 65 = 506$	B1	
	$Var(U) = 3 \times 2.5^2 + 4 \times 2^2 = 34.75$	M1A1	
	$z = \frac{500 - 506}{\sqrt{34.75}} = -1.02$	M1A1	
	Prob = 0.8461	A1	
3 (a)	Let X , Y = measured sugar contents of A,B		
	$(\sum x = 1612; \sum y = 1584)$		
	$\overline{x} = 201.5; \overline{y} = 198$	B1B1	
	SE of diff of means= $\sqrt{\frac{1.5^2}{8} + \frac{1.5^2}{8}}$ (0.75)	M1A1	M0 if 8 omitted or only one term
	99% confidence limits for the difference are $201.5 - 198 \pm 2.5758 \times 0.75$	m1A1	Award this A1 for z if m1 given
	[1.57, 5.43]	A1	
(b)	$4.81 - 2.19 = 2z \times 0.75$	M1A1	FT from (a)
	<i>z</i> = 1.75	A1	
	Confidence level = 92%	A1	

4 (a)	Under H_0 , <i>X</i> is B(20,0.4) si	B 1	
	$\begin{pmatrix} P(X \ge 13) = 0.0210 \\ P(X \ge 14) = 0.0065 \end{pmatrix}$	M1	Award M1 for valid attempt at using tables
	$X \ge 14$ has significance level closest to 1%	A1	Award M1A0 for 13 or 15
(b)	Let $Y =$ number of hits Under H ₀ , Y is B(120, 0.4) $\approx N(48, 28.8)$ si	B1 B1	
	Test statistic = $\frac{54.5 - 48}{\sqrt{28.8}}$	M1A1	Award M1A0 for incorrect or no continuity correction but FT for following marks
	= 1.21 <i>p</i> -value = 0.1131	A1 A1	No cc gives $z = 1.30$, $p = 0.0968$ Wrong cc $z = 1.40$, $p = 0.0808$
	Insufficient evidence to conclude that his shooting has improved	B1	FT the p-value
5	Let $X =$ score on a single die. Then $E(X) = 3.5$ and	B 1	
	$Var(X) = \frac{91}{6} - 3.5^2 = \frac{35}{12}$	M1A1	
	Let <i>Y</i> = mean of scores on 100 dice. Then by the Central Limit Theorem, $Y \approx N(3.5, 35/1200)$.	M1A1	FT their mean and variance
	$z = \frac{3.75 - 3.5}{\sqrt{35/1200}}$	m1A1	Use of continuity correction gives $z = 1.43$, $p = 0.0764$
	$= (\pm)1.46$ Prob = 0.0721	A1 A1	
6(a)(i) (ii)	$H_0: \mu = 1.2; H_1: \mu < 1.2$ Under H_0, X is Po(12) si	B1 B1	Accept 12 in place of 1.2
	$P(X \le 9) = 0.2424$	M1 A1	
	Insufficient evidence to conclude that the (mean) number of breakdowns has decreased.	B1	FT the <i>p</i> -value
(b)	Under H_0 , Y is Po(120) \approx N(120,120)	B 1	Award M1A0 for incorrect or no
	$z = \frac{101.5 - 120}{\sqrt{120}}$	M1A1	continuity correction but FT for following marks
	= -1.69 <i>p</i> -value = 0.0455	A1 A1	No cc gives $z = -1.73$, $p=0.0418$ Wrong cc, $z = -1.78$, $p = 0.0375$
	Strong evidence to conclude that the (mean) number of breakdowns has decreased.	B1	FT the <i>p</i> -value if less than 0.05

7(a)(i)	$P(Y \le y) = P(\sqrt{X} \le y)$	M1
	$=P(X \le y^2)$	A1
	$=\frac{y^2-a}{b-a}$	A1
(ii)	Attempting to differentiate,	M1
	giving $\frac{2y}{b-a}$	A1
(b)	$f(y) = \frac{2y}{b-a}$ for $\sqrt{a} \le y \le \sqrt{b}$	A1
	= 0 otherwise	
	We are given that	
	$\frac{a+b}{2} = 5.5$ and $\frac{(b-a)^2}{12} = 3$	B1B1
	Solving, a = 2.5, b = 8.5	M1
	u = 2.5, v = 0.5	A1A1

ues		Solu			Mark	Notes
1	The	sample spa	ce is as follo	ows.		
	EITHER					
	Samples	R	М			
	1,2,2	1	2			
	1,2,4	3	2			A1 for the samples column
	1,2,6	5	2		M1	
	1,2,6	5	2		A1	A1 for the R column A1 for the M column
	1,2,4	3	2		A1	Minus A1 if 1 or 2 rows omittee
	1,2,6	5	2		A1	Minus A2 if 3 or 4 rows omitted
	1,2,6	5	2			Winds A2 if 5 of 4 lows office
	1,4,6	55	4			
	1,4,6 1,6,6	5	6			
	2,2,4	2	2			
	2,2,4	4	2			
	2,2,6	4	2			
	2,4,6	4	4			
	2,4,6	4	4			
	2,6,6	4	6			
	2,4,6	4	4			
	2,4,6	4	4			
	2,6,6	4	6			
	4,6,6 2 6	6				
	OR					
		R	М	No. of ways		
	Samples	<u>R</u> 1	M 2	No. of ways		
	 	1		1		A 1 for columns 1 and 4
	Samples 1,2,2	1 3 5	2 2 2	1 2 4	M1	A1 for columns 1 and 4 A1 for the R column
	Samples 1,2,2 1,2,4	1 3 5 5	2 2 2 4	1 2 4 2	M1 A1	A1 for the R column
	Samples 1,2,2 1,2,4 1,2,6 1,4,6 1,6,6	1 3 5 5 5 5	2 2 2 4 6	$ \begin{array}{c} 1\\ 2\\ 4\\ 2\\ 1 \end{array} $	M1 A1 A1	A1 for the R column A1 for the M column
	Samples 1,2,2 1,2,4 1,2,6 1,4,6 1,6,6 2,2,4	1 3 5 5 5 5 2	2 2 2 4 6 2	1 2 4 2 1 1 1	A1	A1 for the R column A1 for the M column Minus A1 if 1 or 2 rows omittee
	Samples 1,2,2 1,2,4 1,2,6 1,4,6 1,6,6 2,2,4 2,2,6	1 3 5 5 5 5 2 4	2 2 2 4 6 2 2 2	1 2 4 2 1 1 2	A1 A1	A1 for the R column A1 for the M column Minus A1 if 1 or 2 rows omittee
	Samples 1,2,2 1,2,4 1,2,6 1,4,6 1,6,6 2,2,4 2,2,6 2,4,6	1 3 5 5 5 2 4 4	2 2 2 4 6 2 2 2 4	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 4 \\ \end{array} $	A1 A1	A1 for the R column A1 for the M column Minus A1 if 1 or 2 rows omittee
	Samples 1,2,2 1,2,4 1,2,6 1,4,6 1,6,6 2,2,4 2,2,6	1 3 5 5 5 5 2 4	2 2 2 4 6 2 2 2	1 2 4 2 1 1 2	A1 A1	A1 for the R column

2(a)	The probability distribution of <i>R</i> is therefore $\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A1 M1 A1 B1B1	FT for both tables from (a) if sum of probabilities is 1 Must be seen
	UE of $\mu = 16.075$	B 1	No working need be seen
	UE of $\sigma^2 = \frac{3118.91}{11} - \frac{192.9^2}{132}$ = 1.640	M1 A1	M0 division by 12 Answer only no marks
(b)	DF = 11 si Crit value = 3.106	B1 B1	
	99% confidence limits are		
	$16.075 \pm 3.106 \sqrt{\frac{1.640}{12}}$	M1 A1	FT their s^2 and mean M0 use of z-values
	giving [14.9,17.2]	A1	M0 if 12 omitted Answer only no marks
3(a) (b)	$H_{0}: \mu_{a} = \mu_{b}; H_{1}: \mu_{a} \neq \mu_{b}$ SE = $\sqrt{\frac{7.62}{100} + \frac{6.91}{100}}$ (= 0.381) Test stat = $\frac{161.17 - 160.53}{0.381}$	B1 M1A1 M1A1	Treat taking the variances as SDs as a misread, giving SE = 1.029 , Test stat = 0.62 , p-value = 0.535 M0 if 100 omitted
	= 1.68 Tabular value = 0.04648	A1 A1	
	p-value = 0.09296 Insufficient evidence to conclude that there is a	A1 A1	
	difference in mean weight.	B1	
			FT the p-value
4(a)	$\hat{p} = \frac{54}{90} = 0.6$ si	B1	
	$\text{ESE} = \sqrt{\frac{0.6 \times 0.4}{90}} = 0.0516$ si	M1A1	
	90% confidence limits are $0.6 \pm 1.645 \times 0.0516$.	M1A1 A1	
	giving [0.515,0.685]	AI	

(b)(i)	$\hat{p} = \frac{0.5445 + 0.6485}{2} = 0.5965$	B1	Only award if used to find SE in
	$0.6485 - 0.5445 = 2 \times 1.96 \sqrt{\frac{0.5965 \times 0.4035}{n}}$	M1A1	(b)(i) Award this M1 even if 0.6 used instead of 0.5965
	$n = \left(\frac{2 \times 1.96}{0.104}\right)^2 \times 0.5965 \times 0.4035$	m1	
(ii)	n = 342 cao Number of red squirrels = 342×0.5965 = 204	A1	FT the <i>n</i> from (b)(i)
		B1	
5(a)	$\sum x = 100, \sum x^2 = 2250,$ $\sum y = 1716.6, \sum xy = 34485$	B2	Minus 1 each error
	$S_{xy} = 34485 - 100 \times 1716.6 / 5 = 153$ si	B1	
	$S_{xx} = 2250 - 100^2 / 5 = 250$ si $b = \frac{153}{250} = 0.612$ $a = \frac{1716.6 - 0.612 \times 100}{5} = 331.08$	B1 M1 A1 M1 A1	
(b)(i)	SE of $a = \sqrt{\frac{0.25^2 \times 2250}{5 \times 250}}$ (0.3354)	M1A1	FT from (a)
	99% confidence limits are 331.08 ± 2.576 × 0.3354 [330.2, 331.9]	M1A1 A1	
(ii)	SE of $b = \sqrt{\frac{0.25^2}{250}}$ (0.01581)	M1A1	FT from (a)
	Test stat = $\frac{0.612 - 0.65}{0.01581}$	M1A1	
	= -2.40 Critical value = 1.96 or <i>p</i> -value = 0.0164	A1 A1	
	Reject H ₀	A1	

6(a)(i)	$E(X) = \theta + 2 \times 2\theta + 3 \times 3\theta + 4(1 - 6\theta)$	M1	
	$=4-10\theta$	A1	
	Therefore		
	$E(\overline{X}) = 4 - 10\theta$ si	A1	
	$E(U) = a(4-10\theta) + b = \theta$ for all θ	M1	
	$a = -\frac{1}{10}; b = \frac{4}{10}$	A1	
	$\left(U = \frac{4}{10} - \frac{1}{10}\overline{X}\right)$		
(ii)	$\operatorname{Var}(X) = \theta + 4 \times 2\theta + 9 \times 3\theta + 16(1 - 6\theta) - (4 - 10\theta)^2$	M1	
	$= 20\theta(1 - 5\theta)$	A1	
	$\operatorname{Var}(U) = a^2 \frac{\operatorname{Var}(X)}{n}$	M1	
	$=\frac{\theta(1-5\theta)}{5n}$	A1	
(b)(i)			
	<i>Y</i> is $B(n, 1-6\theta)$ so $E(Y) = n(1-6\theta)$	M1	
	Therefore		
	$E(V) = cn(1 - 6\theta) + d = \theta \text{ (for all } \theta)$	A1	
	$c = -\frac{1}{6n}; d = \frac{1}{6}$	A1	
(ii)	$\left(V = \frac{1}{6} - \frac{1}{6n}Y\right)$		
(11)	$\operatorname{Var}(V) = c^2 \operatorname{Var}(Y) = c^2 npq$	M1	
	$=\frac{\theta(1-6\theta)}{6n}$		
	6 <i>n</i>	A1	
(c)	$V_{07}(U) = 0(1-50) = 6\pi - 6 - 200$		
	$\frac{\operatorname{Var}(U)}{\operatorname{Var}(V)} = \frac{\theta(1-5\theta)}{5n} \times \frac{6n}{\theta(1-6\theta)} = \frac{6-30\theta}{5-30\theta}$	B1	Convincing
	This ratio is greater than 1 so that V is the better	B1	
	estimator.		

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>