wjec cbac

GCE MARKING SCHEME

SUMMER 2016

MATHEMATICS – C1 0973/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C1

SUMMER 2016 MARK SCHEME

1.	(<i>a</i>)	(i)	Gradient of $AB = \frac{1}{2}$	increase in y		M1
			Gradient of $AB = 1$	$\frac{1}{2}$	(or equivalent)	A1
		(ii)	A correct method candidate's value Equation of <i>AB</i> :	for finding the equ for the gradient of $y-2 = \frac{1}{2}(x-4)$	nation of <i>AB</i> using the <i>AB</i> . (or equivalent)	M 1
			(f.t. the ca Equation of <i>AB</i> :	ndidate's value for $2y = x$ (or equiv	r the gradient of <i>AB</i>) valent)	A1
			(f.t	one error if both	M1's are awarded)	A1
	(<i>b</i>)	A corr	ect method for find	ing the length of A	AB(AC)	M1
		$AB = \gamma$	125			A1
		$AC = \gamma$	√80			A1
		$k = {}^{5}/_{4}$			(c.a.o.)	A1
	(<i>c</i>)	(i) (ii)	Equation of <i>BD</i> : Either:	<i>x</i> = 4		B1
			An attempt to find	the gradient of a	line perpendicular to A	В
			using the fact that	the product of the	gradients of perpendic	ular
			lines $= -1$.			M1
			An attempt to find	the gradient of th	e line passing through	
			and D using the co	$\hat{\mathcal{O}}$	d <i>D</i> .	IVI I
			$-2 - \frac{m-3}{4 - (-2)}$ (0.0)		
			(Equating candida	te's derived expre	ssions for gradient ft	
			candidate's gradie	nt of AB)	,	M1
			m = -7	,	(c.a.o.)	A1
			Or:			
			An attempt to find	the gradient of a	line perpendicular to A	В
			using the fact that	the product of the	gradients of perpendic	ular
			lines $= -1$.	the equation of 1:	na namandianta AD	MI
			An attempt to find passing through C m-5 = -2[4 - (-	(or D) (f.t. candid (2)]	date's gradient of AB)	M 1
			(substituting coord	linates of unused p	point in the candidate's	5
					derived equation)	M1
			m = -7		(c.a.o.)	A1

2.

 $\frac{5\sqrt{7} + 4\sqrt{2}}{3\sqrt{7} + 5\sqrt{2}} = \frac{(5\sqrt{7} + 4\sqrt{2})(3\sqrt{7} - 5\sqrt{2})}{(3\sqrt{7} + 5\sqrt{2})(3\sqrt{7} - 5\sqrt{2})}$ Mumerator: $15 \times 7 - 25 \times \sqrt{7} \times \sqrt{2} + 12 \times \sqrt{2} \times \sqrt{7} - 20 \times 2$ A1 Denominator: 63 - 50A1 $\frac{5\sqrt{7} + 4\sqrt{2}}{3\sqrt{7} + 5\sqrt{2}} = 5 - \sqrt{14}$ (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $3\sqrt{7} + 5\sqrt{2}$

3.	y-coordinate at $P = 11$ An attempt to differentiate, at least one non-zero term correct $dy = 12 \times (-2) \times x^{-3} + 7$	B1 M1 Δ1
	$\frac{dy}{dx} = 12 \times (-2) \times x + 7$	111
	An attempt to substitute $x = 2$ in candidate's derived expression for $\frac{dy}{dx}$	m1
	Use of candidate's derived numerical value for $\frac{dy}{dx}$ as gradient in the equation	ion
	of the tangent at P	m1
	Equation of tangent to C at P: $y-11 = 4(x-2)$ (or equivalent) (f.t. only candidate's derived value for y-coordinate at P)	A1

4.
$$(\sqrt{3} - 1)^5 = (\sqrt{3})^5 + 5(\sqrt{3})^4(-1) + 10(\sqrt{3})^3(-1)^2 + 10(\sqrt{3})^2(-1)^3 + 5(\sqrt{3})(-1)^4 + (-1)^5$$
 (five or six terms correct) B2
(If B2 not awarded, award B1 for three or four correct terms)
 $(\sqrt{3} - 1)^5 = 9\sqrt{3} - 45 + 30\sqrt{3} - 30 + 5\sqrt{3} - 1$ (six terms correct) B2
(If B2 not awarded, award B1 for three, four or five correct terms)
 $(\sqrt{3} - 1)^5 = -76 + 44\sqrt{3}$ (f.t. one error) B1

5.

(a)

$$a = 2, b = -12$$
 B1 B1

(b)
$$x^2 + 4x - 8 = 2x + 7$$
 M1
An attempt to collect terms, form and solve the quadratic equation in x
either by correct use of the quadratic formula or by writing the
equation in the form $(x + n)(x + m) = 0$, where $n \times m =$ candidate's
constant m1
 $x^2 + 2x - 15 = 0 \Rightarrow (x - 3)(x + 5) = 0 \Rightarrow x = 3, x = -5$
(both values, c.a.o.) A1

When x = 3, y = 13, when x = -5, y = -3(both values, f.t. one slip) A1

(c)

A positive quadratic graphM1Minimum point (-2, -12) marked(f.t. candidate's values for <math>a, b)A straight line with positive gradient and positive y-interceptA1B1

Both points of intersection (-5, -3), (3, 13) marked (ft condidate's solutions to part(b)) P1

(f.t candidate's solutions to part(b)) B1

6. (a) An expression for $b^2 - 4ac$, with at least two of a, b or c correct M1 $b^2 - 4ac = 8^2 - 4 \times 9 \times (-2k)$ A1 $b^2 - 4ac > 0$ m1 $k > -\frac{8}{9}$ (o.e.)

[f.t. only for
$$k < \frac{8}{9}$$
 from $b^2 - 4ac = 8^2 - 4 \times 9 \times (2k)$] A1

(b) Attempting to rewrite the inequality in the form $5x^2 - 7x - 6 \ge 0$ and an attempt to find the critical values M1 Critical values x = -0.6, x = 2 A1 A statement (mathematical or otherwise) to the effect that $x \le -0.6$ or $2 \le x$ (or equivalent) (f.t. candidate's derived critical values) A2 Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or' **7.** (*a*)

Concave down curve with <i>x</i> -coordinate of maximum = 1	B 1
<i>y</i> -coordinate of maximum = 9	B 1
Both points of intersection with <i>x</i> -axis	B1

(b)
$$g(x) = f(-x)$$
 B1
 $g(x) = f(x+2)$ B1

8. (a)
$$y + \delta y = 10(x + \delta x)^2 - 7(x + \delta x) - 13$$

Subtracting y from above to find δy
 $\delta y = 20x\delta x + 10(\delta x)^2 - 7\delta x$
Dividing by δx and letting $\delta x \to 0$
 $\frac{dy}{dx} = \liminf_{\delta x \to 0} \frac{\delta y}{\delta x} = 20x - 7$ (c.a.o.) A1

(b)
$$\underline{dy} = 4 \times \underline{1} \times x^{-1/2} + (-1) \times 45 \times x^{-2}$$
 B1, B1
B1, B1
B1, B1
B1, B1

Either 9 =
$$\frac{1}{3}$$
 or 9 = $\frac{1}{81}$ (or equivalent fraction) B1
 $\frac{dy}{dx} = \frac{1}{9}$ (or equivalent) (c.a.o.) B1

<i>(a)</i>	Either:	showing that $f(2) = 0$	
	Or:	trying to find $f(r)$ for at least two values of r	M1
	$f(2) = 0 \implies$	x - 2 is a factor	A1
	f(x) = (x - x)	2)($8x^2 + ax + b$) with one of a, b correct	M1
	f(x) = (x - x)	$2)(8x^2 + 18x - 5)$	A1
	f(x) = (x - 1)	2)(4x-1)(2x+5)	
		(f.t. only $8x^2 - 18x - 5$ in above line)	A1
		-	

Special case

Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 3 marks

(<i>b</i>)	Either: $f(2.25) = 0.25 \times 8 \times 9.5$				
		(at least two terms correct, f.t. candidate's derived			
		expression for <i>f</i>)	M1		
		f(2.25) = 19 [f.t. only for $f(2.25) = -1.25$ from			
		f(x) = (x-2)(4x+1)(2x-5)]	A1		
	Or:	f(2.25) = 91.125 + 10.125 - 92.25 + 10			
		(at least two of the first three terms correct)	M1		
		f(2.25) = 19 (c.a.o.)	A1		

10.	(<i>a</i>)	$V = x(24 - 2x)(9 - 2x)$ $V = 4x^{3} - 66x^{2} + 216x$	(convincing)	M1 A1
	(h)	$dV = 12x^2 - 132x + 216$		B1

$$\frac{dv}{dx} = 12x = 132x + 210$$

$$\frac{dv}{dx} = 0$$

x = 2, (9)(f.t. candidate's $\frac{dV}{dx}$)A1Stationary value of V at x = 2 is 200(c.a.o) A1A correct method for finding nature of the stationary point yielding a

maximum value (for 0 < x < 4.5) B1

0973/01 GCE Mathematics C1 MS Summer 2016/LG

9.

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – C2 0974/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C2

SUMMER 2016 MARK SCHEME

3	0.6032888847	
3.75	0.5666103111	
4.5	0.5348655099	
5.25	0.5067878888	
6	$0.4815614791 \qquad (5 \text{ values correct})$	B2
(If B2 not aw	varded, award B1 for either 3 or 4 values correct)	
Correct formula with	h = 0.75	MI
$I \approx \underline{0.75} \times \{0.603288$	8847 + 0.4815614791 +	
2	2(0.5666103111 + 0.5348655099 + 0.5067878888)}
1 1 201277700 0	75. 0	
$I \approx 4.30137783 \times 0.$	$7/5 \div 2$	
<i>I</i> ≈ 1.613016669		
$I \approx 1.613$	(f.t. one slip)	A1
~ • • • •		
Special case for cand	lidates who put $h = 0.6$	
Special case for cand	lidates who put $h = 0.6$ 0.6032888847	
Special case for cand 3 $3 \cdot 6$	lidates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771	
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 2$	$\begin{array}{c} \text{lidates who put } h = 0.6\\ 0.6032888847\\ 0.5734992875\\ 0.5470655771\\ 0.5222474285\end{array}$	
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$	Indates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5215252106	
Special case for cand 3 3.6 4.2 4.8 5.4	Idates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186	Đá
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6	Idates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 (all values correct)	B1
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6 Correct formula with	Idates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 $h = 0.6$	B1 M1
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6 Correct formula with $I \approx 0.6 \times \{0.60328888\}$	lidates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 (all values correct) h = 0.6 847 + 0.4815614791 + 2(0.5734992875 + 0.547065)	B1 M1 55771
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6 Correct formula with $I \approx \underline{0 \cdot 6} \times \{0.60328888\}$ 2	hidates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 (all values correct) h = 0.6 847 + 0.4815614791 + 2(0.5734992875 + 0.547065) + 0.5232474385 + 0.501535318	B1 M1 55771 36)}
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6 Correct formula with $I \approx 0.6 \times \{0.60328888\}$ 2 $I \approx 5.375545607 \times 0.60328883$	hidates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 (all values correct) h = 0.6 847 + 0.4815614791 + 2(0.5734992875 + 0.547065) + 0.5232474385 + 0.501535318 $6 \div 2$	B1 M1 55771 36)}
Special case for cand 3 $3 \cdot 6$ $4 \cdot 2$ $4 \cdot 8$ $5 \cdot 4$ 6 Correct formula with $I \approx 0.6 \times \{0.60328888$ 2 $I \approx 5.375545607 \times 0.12663682$	lidates who put $h = 0.6$ 0.6032888847 0.5734992875 0.5470655771 0.5232474385 0.5015353186 0.4815614791 (all values correct) h = 0.6 847 + 0.4815614791 + 2(0.5734992875 + 0.547065) + 0.5232474385 + 0.501535318 $6 \div 2$	B1 M1 55771 36)}

Note: Answer only with no working shown earns 0 marks

© WJEC CBAC Ltd.

1.

2.

3.

<i>(a)</i>	$6\sin^2\theta + 1 = 2(1 - \sin^2\theta) - 2\sin\theta$	
	(correct use of $\cos^2\theta = 1 - \sin^2\theta$)	M1
	An attempt to collect terms, form and solve quadratic equation	
	in sin A either by using the quadratic formula or by getting the	
	expression into the form $(a \sin A + b)(a \sin A + d)$	
	expression into the form $(a \sin b + b)(c \sin b + a)$,	
	with $a \times c =$ candidate s coefficient of sin θ and $b \times a =$ candidate	es 1
	constant	ml
	$8\sin^2\theta + 2\sin\theta - 1 = 0 \Longrightarrow (4\sin\theta - 1)(2\sin\theta + 1) = 0$	
	$\Rightarrow \sin \theta = \underline{1}, \sin \theta = -\underline{1} \tag{c.a.o.}$	A1
	4 2	
	$\theta = 14.48^\circ, 165.52^\circ$	B 1
	$\theta = 210^\circ, 330^\circ$ B	1, B1
	Note: Subtract 1 mark for each additional root in range for each	
	branch, ignore roots outside range.	
	$\sin \theta = + -$ ft for 3 marks $\sin \theta =$ ft for 2 marks	
	$\sin \theta = + + \text{ ft for 1 mark}$	
	$\sin \theta = 1$, 1 , 1 , 1 , 1 in the formula 1	
(h)	$3x - 57^\circ = -39^\circ 141^\circ 321^\circ 501^\circ$ (one correct value)	B 1
(\mathcal{O})	$r = 6^{\circ} 66^{\circ} 126^{\circ}$ B1 F	1 R1
	Note: Subtract (from final three marks) 1 mark for each addition	nal
	root in range ignore roots outside range	iai
	root in range, ignore roots outside range.	
(c)	$\sin \phi > 1 \cos \phi > 1$ and thus $2 \sin \phi + 4 \cos \phi > 7$	F 1
(C)	$\sin \psi \ge -1, \cos \psi \ge -1$ and $\tan z \sin \psi + 4\cos \psi \ge -1$	LI
(a)	$(r+5)^2 - 7^2 + r^2 - 2 \times 7 \times r \times -3$ (correct use of cos rule)	M1
(u)	$(x+3) = 7 + x = 2 \times 7 \times x \times = \frac{5}{5}$ (context use of costruct)	1011
	$r^{2} + 10r + 25 - 49 + r^{2} + 8.4r$	Δ1
	$\frac{1}{1} 6r - 24 \rightarrow r - 15 \qquad (convincing)$	
	$1.0x - 24 \implies x - 13$ (convincing)	
		AI
(h)	$\sin P\hat{\Lambda}C = A$	D1
(<i>b</i>)	$\sin B\hat{A}C = \frac{4}{5}$	B1
(<i>b</i>)	$\sin B\hat{A}C = \frac{4}{5}$	B1
<i>(b)</i>	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$	B1
(<i>b</i>)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the cross	B1
(<i>b</i>)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula fit condidate's derived values for ain $B\hat{A}C$)	B1
(b)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for sin $B\hat{A}C$) Area of triangle $ABC = \frac{42}{5}$ (substituting the correct places in the area formula, f.t. candidate's derived value for sin $B\hat{A}C$)	M1
(b)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for sin $B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²)	M1 M1 A1
(b)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for sin $B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²)	B1 M1 A1
(b) (c)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for $\sin B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²) $\frac{1}{2} \times 20 \times AD = 42$	M1 M1 A1
(b) (c)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for sin $B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²) $\frac{1}{2} \times 20 \times AD = 42$ (f.t. candidate's derived value for area of triangle ABC)	M1 M1 M1
(b) (c)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for $\sin B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²) $\frac{1}{2} \times 20 \times AD = 42$ $\frac{1}{2} \qquad (f.t. candidate's derived value for area of triangle ABC)$ $AD = 4.2$ (cm)	M1 M1 A1 M1
(b) (c)	$\sin B\hat{A}C = \frac{4}{5}$ Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$ (substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for $\sin B\hat{A}C$) Area of triangle $ABC = 42$ (cm ²) $\frac{1}{2} \times 20 \times AD = 42$ $\frac{1}{2} \qquad (f.t. candidate's derived value for area of triangle ABC)$ $AD = 4.2$ (cm) (f.t. candidate's derived value for area of triangle ABC)	M1 M1 A1 M1 A1

4. (a) This is an A.P. with
$$a = 6, d = 2$$
 (s.i.) M1
(i) 20th term = $6 + 2 \times 19$
(f.t. candidate's values for a and d) M1
20th term = 44 (c.a.o.) A1
(ii) $\underline{n}[2 \times 6 + (n-1) \times 2] = 750$
2 (f.t. candidate's values for a and d) M1
Rewriting above equation in a form ready to be solved
 $2n^2 + 10n - 1500 = 0$ or $n^2 + 5n - 750 = 0$ or $n(n + 5) = 750$ or
 $n^2 + 5n = 750$ (f.t. candidate's values for a and d) A1
 $n = 25$ (c.a.o.) A1
(b) (i) $t_{11} + t_{14} = 50$ B1
(ii) $S_{24} = \underline{24} \times 50$ M1

$$S_{24} = 600$$
 A1

5. (a)
$$S_n = a + ar + \ldots + ar^{n-1}$$
 (at least 3 terms, one at each end) B1
 $rS_n = ar + \ldots + ar^{n-1} + ar^n$
 $S_n - rS_n = a - ar^n$ (multiply first line by r and subtract) M1
 $(1 - r)S_n = a(1 - r^n)$
 $S_n = \frac{a(1 - r^n)}{1 - r}$ (convincing) A1

(b) **Either:**
$$a(1-r^5) = 275$$

Or: $a + ar + ar^2 + ar^3 + ar^4 = 275$ B1

$$\frac{a}{1-r} = 243$$
B1

An attempt to solve these equations simultaneously by eliminating a

$$\begin{array}{c} M1\\ 243r^5 = -32 \quad (\text{or} - 243r^5 = 32)\\ r = -\frac{2}{3} \quad (\text{c.a.o.}) \text{ A1} \end{array}$$

a = 405 (f.t. candidate's derived value for *r*) A1

© WJEC CBAC Ltd.

6. (a)
$$3 \times \frac{x^{3/4}}{3/4} - 9 \times \frac{x^{7/2}}{7/2} + c$$
 B1, B1
(-1 if no constant term present)

7. (a) Let
$$p = \log_a x$$

Then $x = a^p$ (relationship between log and power) B1
 $x^n = a^{pn}$ (the laws of indices) B1
 $\therefore \log_a x^n = pn$ (relationship between log and power)
 $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1

(b) Either:

$$(3x + 1) \log_{10} 4 = \log_{10} 22$$

$$(taking logs on both sides and using the power law) M1$$

$$x = \frac{\log_{10} 22 - \log_{10} 4}{3 \log_{10} 4}$$
(o.e.) A1

$$x = 0.41$$
(f.t. one slip, see below) A1
Or:

$$3x + 1 = \log_4 22$$
(rewriting as a log equation) M1

$$x = \frac{\log_4 22 - 1}{3}$$
A1

$$x = 0.41$$
(f.t. one slip, see below) A1
Note: an answer of $x = -0.41$ from $x = \frac{\log_{10} 4 - \log_{10} 22}{3 \log_{10} 4}$
earns M1 A0 A1
an answer of $x = 1.08$ from $x = \frac{\log_{10} 22 + \log_{10} 4}{3 \log_{10} 4}$

Note: Answer only with no working shown earns 0 marks

(c)	Correct use of pow	er law		B1
	At least one correct	t use of additi	on or subtraction law	B1
	$\log_{d}(36/9z) = 1$	(o.e.)	(f.t. one incorrect term)	B1
	$z = \underline{4}$		(c.a.o.)	B1
	d			

8.	(<i>a</i>)	(i)	A(-3, 10) A correct method for finding the radius Radius = $\sqrt{50}$	B1 M1 A1
		(ii)	Use of shortest distance = OA – radius Shortest distance = $\sqrt{109} - \sqrt{50} = 3.37$	M1
			(f.t. candidate's derived radius)	A1
	(<i>b</i>)	(i)	An attempt to substitute $(3x - 1)$ for y in the equation of C_1 $x^2 - 6x + 8 = 0$ (or $10x^2 - 60x + 80 = 0$) x = 2, x = 4 (correctly solving candidate's quadratic, both values) Points of intersection P and Q are (2, 5), (4, 11) (c.a.o.)	M1 A1 A1 A1
		(ii)	$BP^{2}(BQ^{2}) = 20 \text{ or } BP(BQ) = \sqrt{20}$ (f.t. candidate's derived coordinates for <i>P</i> or <i>Q</i>) Use of $(x-6)^{2} + (y-7)^{2} = BP^{2}(BQ^{2})$	B1
			(f.t. candidate's derived coordinates for P or Q) $(x-6)^2 + (y-7)^2 = 20$ (c.a.o.)	M1 A1

9. Area of sector
$$AOB = \frac{1}{2} \times r^2 \times 2.15$$

Area of sector $BOC = \frac{1}{2} \times r^2 \times (\pi - 2.15)$
 $\frac{1}{2} \times r^2 \times 2.15 - \frac{1}{2} \times r^2 \times (\pi - 2.15) = 26$
 $r^2 = \frac{52}{4.3 - \pi}$ (o.e.)
 $r = 6.7$
A1

0974/01 GCE Mathematics C2 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – C3 0975/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C3

SUMMER 2016 MARK SCHEME

0 1 $\pi/20$ 1.025402923 $\pi/10$ 1.111347018 $3\pi/20$ 1.296432399 $\pi/5$ 1.695307338 (5 values correct) B2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with $h = \pi/20$ **M**1 $I \approx \frac{\pi/20}{2} \times \{1 + 1.695307338 + 4(1.025402923 + 1.296432399) + 1.025402923 + 1.026432399) + 1.026432399\}$ 3 2(1.111347018) $I \approx 14.20534263 \times (\pi/20) \div 3$ $I \approx 0.7437900006$ $I \approx 0.74379$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{\pi/5} e^{\sec^2 x} dx = e^1 \times \int_{0}^{\pi/5} e^{\tan^2 x} dx$$
 M1
$$\int_{0}^{\pi/5} e^{\sec^2 x} dx \approx 2.02183$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

2.

3.

(a)	3 cosec θ (cosec $\theta - 1$) = 5 (cosec ² $\theta - 1$) – 9 (correct use of cot ² θ = cosec ² $\theta - 1$) An attempt to collect terms, form and solve quadratic equation in cosec θ , either by using the quadratic formula or by getting the expression into the form (<i>a</i> cosec $\theta + b$)(<i>c</i> cosec $\theta + d$),	M1
	with $a \times c = \text{candidate's coefficient of cosec}^2 \theta$ and $b \times d = \text{candidate's constant}$ $2 \operatorname{cosec}^2 \theta + 3 \operatorname{cosec} \theta - 14 = 0 \Rightarrow (\operatorname{cosec} \theta - 2)(2 \operatorname{cosec} \theta + 7) = 0$ $\Rightarrow \operatorname{cosec} \theta = 2$, $\operatorname{cosec} \theta = -\frac{7}{2}$	m1
	$\Rightarrow \sin \theta = \frac{1}{2}, \sin \theta = -\frac{2}{7} $ (c.a.o.)	A1
	$ \theta = 30^{\circ}, 150^{\circ} $ $ \theta = 196 \cdot 6^{\circ}, 343 \cdot 4^{\circ} $ B1	B1 B1
	Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$	
(<i>b</i>)	Correct use of cosec $\phi = \underline{1}$ and sec $\phi = \underline{1}$ (o.e.)	M1
	$\tan \phi = -\frac{2}{3}$	A1
	$\phi = 146.31^{\circ}, 326.31^{\circ}$ (f.t. for negative tan ϕ)	A1
$\underline{d}(x^2) =$	$= 2x \qquad \qquad \underline{d}(2x) = 2 \qquad \qquad \underline{d}(21) = 0$	B1
dx d(3xy)	$dx \qquad dx$	B1
dx $d(2y^3)$	$\frac{\mathrm{d}x}{\mathrm{d}y} = 6y^2 \frac{\mathrm{d}y}{\mathrm{d}y}$	B1

$$\underline{d}(2y^3) = 6y^2 \underline{dy} \qquad B1$$

$$\underline{dx} \qquad dx$$

$$\underline{dy} = \underline{6} = \underline{2} \qquad (c.a.o.) \qquad B1$$

4. (a) candidate's x-derivative =
$$12 \cos 3t$$

candidate's y-derivative = $-6 \sin 3t$
 $\frac{dy}{dx} = \frac{candidate's y-derivative}{candidate's x-derivative}$
 $\frac{dy}{dx} = -\frac{1}{2} \tan 3t$ (c.a.o.) A1

(b) (i)
$$\frac{d}{dt} \left[\frac{dy}{dx} \right] = -\frac{3}{2} \sec^2 3t$$
 (f.t. $\frac{dy}{dx} = k \tan 3t$ or $k \frac{\sin 3t}{\cos 3t}$ only) B1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div$$
 candidate's *x*-derivative M1

$$\frac{d^2y}{dx^2} = -\frac{1}{8} \sec^3 3t \text{ or } \frac{-1}{8\cos^3 3t}$$
(c.a.o.) A1

(ii)
$$\frac{d^2y}{dx^2} = -\frac{1}{y^3}$$
 (f.t. $\frac{d^2y}{dx^2} = m \sec^3 3t$ or $\frac{m}{\cos^3 3t}$ only) B1

5.	<i>(a)</i>	Denoting the end points of the chord by A, B			
		Length of arc $AB = 3\theta$		B1	
		Length of chord $AB = 2 \times 3 \times \sin(\theta/2)$	(convincing)	B1	
		$3\theta + 6\sin(\theta/2) = 13.5 \Rightarrow \theta + 2\sin(\theta/2) = 0$	4.5		
			(convincing)	B1	

(b)
$$\theta_0 = 2.5$$

 $\theta_1 = 2.602030761$ (θ_1 correct, at least 2 places after the point) B1
 $\theta_2 = 2.572341396$
 $\theta_3 = 2.580466315 = 2.58$ (θ_3 correct to 2 decimal places) B1
Let $f(\theta) = \theta + 2\sin(\theta/2) - 4.5$
An attempt to check values or signs of $f(\theta)$ at $\theta = 2.575$, $\theta = 2.585$
M1
 $f(2.575) = -4.72 \times 10^{-3} < 0$, $f(2.585) = 8.05 \times 10^{-3} > 0$ A1

Change of sign
$$\Rightarrow \theta = 2.58$$
 correct to two decimal places A1

(including
$$f(x) = 1$$
) M1

6. (a)
$$\underline{dy} = \underline{f(x)}$$
 (including $f(x) = 1$) M1
 $\underline{dx} \cos x$
 $\underline{dy} = -\underline{\sin x}$
 $\underline{dx} \cos x$

$$\frac{dx}{dy} = -\tan x \quad (\text{f.t. only for } \tan x \text{ from } \frac{dy}{dx} = \frac{\sin x}{\cos x}) \quad \text{A1}$$

(b)
$$\frac{dy}{dx} = \frac{1/3}{1 + (x/3)^2}$$
 or $\frac{1}{1 + (x/3)^2}$ or $\frac{1/3}{1 + (1/3)x^2}$ M1
 $\frac{dy}{dx} = \frac{1/3}{1/3}$ A1

$$\frac{dy}{dx} = \frac{1/3}{1 + (x/3)^2}$$

$$dy = 3 \qquad \text{(ft only for } dy = 9 \text{ from } 1 \text{)} \qquad A1$$

$$\frac{dy}{dx} = \frac{3}{9+x^2} \qquad \left[\text{f.t. only for } \frac{dy}{dx} = \frac{9}{9+x^2} \text{ from } \frac{1}{1+(x/3)^2} \right] \qquad A1$$

$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x-2)^4 \times g(x) \qquad M1$$

(c)
$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x - 2)^4 \times g(x)$$

$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x - 2)^4 \times g(x)$$

$$\frac{dy}{dx} = (e^{6x} \times f(x) + (3x - 2)^4 \times g(x))$$

$$\frac{dy}{dx} = e^{6x} \times 12 \times (3x - 2)^3 + (3x - 2)^4 \times 6e^{6x}$$

$$\frac{dy}{dx} = e^{6x} \times 18x \times (3x - 2)^3$$
(c.a.o.) A1

7. (a) (i)
$$\int_{J} 7e^{5-\frac{3}{4}x} dx = k \times 7e^{5-\frac{3}{4}x} + c$$
 $(k = 1, -\frac{3}{4}, \frac{4}{3}, -\frac{4}{3})$ M1

$$\int_{0}^{7} e^{5 - \frac{3}{4}x} dx = -\frac{28}{3} e^{5 - \frac{3}{4}x} + c$$
 A1

(ii)
$$\int \sin(2x/3+5) \, dx = k \times \cos(2x/3+5) + c$$
$$\int (k = -1, -\frac{2}{3}, \frac{3}{2}, -\frac{3}{2}) \qquad M1$$
$$\int \sin(2x/3+5) \, dx = -\frac{3}{2} \times \cos(2x/3+5) + c \qquad A1$$

(iii)
$$\int \frac{8}{(9-10x)^3} dx = \frac{8}{-2k} \times (9-10x)^{-2} + c$$
$$\int \frac{8}{(9-10x)^3} dx = \frac{2}{5} \times (9-10x)^{-2} + c$$
A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \frac{1}{4x+3} dx = k \times \ln(4x+3)$$
 (k = 1, 4, ¹/₄) M1

$$\int \frac{1}{\sqrt{4x+3}} dx = \frac{1}{4} \times \ln(4x+3)$$
A1

$$k \times [\ln (6 \times 4 + 3) - \ln (4a + 3)] = 0.1986$$
 (k = 1, 4, ¹/₄) m1

$$\frac{27}{4a+3} = e^{0.7944}$$
 (o.e.) (c.a.o.) A1

$$a = 2 \cdot 3$$
 (f.t. $a = 4 \cdot 8$ for $k = 1$ and $a = 5 \cdot 7$ for $k = 4$) A1

(a)

Choice of a, b, c, d such that a is a factor of c and b is a factor of d

Correctly verifying that the candidate's a, b, c, d are such that (a + b) is **not** a factor of (c + d) and a statement to the effect that this is the case A1

M1

(<i>b</i>)	Trying to solve $5x + 4 = -7x$				
	Trying to solve $5x + 4$	x = 7x	M 1		
	x = -1/3, x = 2	(c.a.o.)	A1		
	x = -1/3	(c.a.o.)	A1		
	Alternative mark scheme				
	$(5x+4)^2 = (-7x)^2$	(squaring both sides)	M 1		
	$24x^2 - 40x - 16 = 0$	(at least two coefficients correct)	A1		
	x = -1/3, x = 2	(c.a.o.)	A1		
	x = -1/3	(c.a.o.)	A1		
(<i>c</i>)	(i) $a = 5, -3$		B1		
	(ii) $b = -\frac{2}{3}$		B1		

9. (a) $y-8 = e^{4-x/3}$. B1 An attempt to express equation as a logarithmic equation and to isolate x M1 $x = 3[4 - \ln (y - 8)]$ (c.a.o.) A1

$$f^{-1}(x) = 3 [4 - \ln (x - 8)]$$

(f.t. one slip in candidate's expression for x) A1

(b)
$$D(f^{-1}) = [9, \infty)$$
 B1 B1

10. (a)

$$hh(x) = \frac{4 \times 4x + 3 + 3}{5x - 4}$$
M1
 $5 \times \frac{4x + 3 - 4}{5x - 4}$

$$hh(x) = \frac{16x + 12 + 15x - 12}{20x + 15 - 20x + 16}$$
A1

$$hh(x) = x$$
 (convincing) A1

(b)
$$h^{-1}(x) = h(x)$$

 $h^{-1}(-1) = h(-1) = \frac{1}{9}$ (awarded only if first B1 awarded) B1

0975/01 GCE Mathematics C3 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – C4 0976/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C4

SUMMER 2016 MARK SCHEME

1. (a)
$$f(x) = \frac{A}{(2x-1)} + \frac{B}{(x-3)^2} + \frac{C}{(x-3)}$$
 (correct form) M1
 $17 + 4x - x^2 = A(x-3)^2 + B(2x-1) + C(x-3)(2x-1)$
(correct clearing of fractions and genuine attempt to find coefficients)
 $A = 3, B = 4, C = -2$ (all three coefficients correct) A2
If A2 not awarded, award A1 for at least one correct coefficient
(b) $f'(x) = -\frac{6}{(2x-1)^2} - \frac{8}{(x-3)^3} + \frac{2}{(x-3)^2}$ (o.e.)
(f.t. candidate's derived values for A, B, C)
(second term) B1
(both the first and third terms) B1

2. (a) (i)
$$(1+2x)^{-1/2} = 1 - x + \frac{3}{2}x^2$$
 (1-x) B1
($^{3}/_{2}x^{2}$) B1

(ii)
$$|x| < \frac{1}{2}$$
 or $-\frac{1}{2} < x < \frac{1}{2}$ B1

(b)
$$6-6x+9x^2 = 4+15x-x^2 \Rightarrow 10x^2-21x+2=0$$

(f.t. only candidate's quadratic expansion in (a)) M1
 $x = 0.1$ (f.t. only candidate's quadratic expansion in (a)) A1

3. (a)
$$4x^{3} + 2x^{3}\frac{dy}{dx} + 6x^{2}y - 12y^{3}\frac{dy}{dx} = 0$$
$$\begin{pmatrix} 2x^{3}\frac{dy}{dx} + 6x^{2}y \\ dx \end{pmatrix}$$
B1

$$\begin{bmatrix} dx \\ 4x^3 - 12y^3 \underline{dy} \\ dx \end{bmatrix} B1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^3 + 3x^2y}{6y^3 - x^3}$$

(intermediary line required in order to be convincing) B1

(b)
$$2x^3 + 3x^2y = -2(6y^3 - x^3)$$
 M1
 $y(3x^2 + 12y^2) = 0$ A1

$$3x^{2} + 12y^{2} = 0 \Longrightarrow x = 0, y = 0 \text{ but not on curve}$$

$$y = 0 \Rightarrow x = \pm 2 \Rightarrow (2, 0), (-2, 0)$$
 (both points) A1

4.	<i>(a)</i>	(i)	$\underline{6 \tan x} + 16 \cot^2 x = 0 \qquad (o.e.)$	
			$1 - \tan^2 x$ (correct use of formula for $\tan 2x$)	M 1
			$\frac{6\tan x}{1-\tan^2 x} + \frac{16}{\tan^2 x} = 0 \qquad (\text{correct use of } \cot^2 x = \frac{1}{\tan^2 x})$	M1
			$\frac{1-\tan x}{2\tan^3 x} \frac{\tan x}{8-0}$	
			(intermediary line required in order to be convincing)	A1
		(ii)	$3\tan^3 x - 8\tan^2 x + 8 = (\tan x - 2)(3\tan^2 x + a\tan x + b)$	
			with one of a, b correct	M1
			$3\tan^3 x - 8\tan^2 x + 8 = (\tan x - 2)(3\tan^2 x - 2\tan x - 4)$	A1
			$x = 63.4^{\circ}, 56.9^{\circ}, 139.0^{\circ}$	
			(rounding off errors are only penalised once) A1 A1	A1
	<i>(b)</i>	<i>R</i> = 25		B1
		Correc	etly expanding $\cos(\theta + \alpha)$ and using either $25 \cos \alpha = 24$	
		or 25 s	$\sin \alpha = 7$ or $\tan \alpha = 7$ to find α	
			24 (f.t. candidate's value for <i>R</i>)	M1
		$\alpha = 16$	5·26° (c.a.o)	A1
		Use of	both critical values -25 and 25	
			(f.t candidate's derived value for <i>R</i>)	M1
		$25\cos$	$(\theta + \alpha) = k$ has no solutions if $k < -25$ or $k > 25$	
			(f.t candidate's derived value for R)	A1

candidate's x-derivative = $-3t^{-2}$ (o.e.) 5. *(a)* candidate's *y*-derivative = 4 (at least one term correct) and use of dy = candidate's y-derivative **M**1 dx candidate's x-derivative $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{-3t^{-2}} \text{ or } -\frac{4}{3}t^2$ (c.a.o.) A1 $y - 4p = -\frac{4}{3}p^2 \begin{bmatrix} x - \frac{3}{2} \\ p \end{bmatrix}$ Equation of tangent at *P*: (f.t. candidate's expression for dy) m1dx $3y = -4p^2x + 24p$ Equation of tangent at *P*: (intermediary line required in order to be convincing) A1 Substituting x = 1, y = 9 in equation of tangent *(b)* **M**1 $4p^{2} - 24p + 27 = 0$ $p = \frac{9}{2}, \frac{3}{2}$ A1 (both values, c.a.o.) A1 Points are $(^2/_3, 18)$, (2, 6)(f.t. candidate's values for p) A1

6. (a)
$$u = 2x + 1 \Rightarrow du = 2dx$$
 (o.e.) B1
 $dv = e^{-3x} dx \Rightarrow v = -1 e^{-3x}$ (o.e.) B1

$$lv = e^{-3x} dx \Longrightarrow v = -\frac{1}{3}e^{-3x}$$
 (o.e.) B1

$$\int (2x+1)e^{-3x} dx = -\frac{1}{3}e^{-3x} \times (2x+1) - \int -\frac{1}{3}e^{-3x} \times 2dx \quad (o.e.) \qquad M1$$

$$\int (2x+1) e^{-3x} dx = -\frac{1}{3} e^{-3x} \times (2x+1) - \frac{2}{9} e^{-3x} + c \quad (\text{c.a.o.}) \quad A1$$

(b)
$$\int \frac{\sqrt{(4+5\tan x)}}{\cos^2 x} dx = \int k \times u^{1/2} du \qquad (k = \frac{1}{5} \text{ or } 5) \qquad M1$$
$$\int a \times u^{1/2} du = a \times \frac{u^{3/2}}{3/2} \qquad B1$$

Either: Correctly inserting limits of 4, 9 in candidate's $bu^{3/2}$ or: Correctly inserting limits of 0, $\pi/4$ in candidate's $b(4 + 5 \tan x)^{3/2}$

$$\int_{0}^{\pi/4} \frac{\sqrt{(4+5\tan x)}}{\cos^2 x} dx = \frac{38}{15} = 2.53$$
 (c.a.o.) A1

M1

Note: Answer only with no working earns 0 marks

7. (a)
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV^3$$
 B1

(b)
$$\int \frac{\mathrm{d}V}{V^3} = -\int k \,\mathrm{d}t$$
 (o.e.) M1

$$-\frac{V^{-2}}{2} = -kt + c$$
 A1

$$c = -\underline{A}^{-2}$$
 (c.a.o.) A1

$$2V^{2} = \frac{2A^{2}}{(2A^{2}k)t + 1} \Rightarrow V^{2} = \frac{A^{2}}{bt + 1}$$
 (convincing)
where $b = 2A^{2}k$ A1

(c) Substituting t = 2 and $V = \frac{A}{2}$ in an expression for V^2 M1

$$b = \frac{3}{2} \quad \left[\text{or } k = \frac{3}{4A^2} \right]$$
 A1

2 $(4A^2)$ Substituting $V = \frac{A}{4}$ in an expression for V^2 with candidate's value for b or expression for k

or expression for
$$k$$
 M1
 $t = 10$ (c.a.o) A1

8. (a) (i)
$$AB = 2i + j + 2k$$
 B1
(ii) Use of $a + \lambda AB$, $a + \lambda(b - a)$, $b + \lambda AB$ or $b + \lambda(b - a)$ to find
vector equation of AB M1
 $r = i + 3j - 3k + \lambda (2i + j + 2k)$ (o.e.)
(f.t. if candidate uses his/her expression for AB) A1
(b) (i) $1 + 2\lambda = -1 - 2\mu$
 $3 + \lambda = 8 + \mu$
 $-3 + 2\lambda = p + 3\mu$ (o.e.)

(comparing coefficients, at least one equation correct) M1
(at least two equations correct) A1
Solving the first two equations simultaneously m1
(f.t. for all 3 marks if candidate uses his/her expression for **AB**)

$$\lambda = 2, \mu = -3$$
 (o.e.) (c.a.o.) A1
 $p = 10$ from third equation (f.t. candidate's derived
values for λ and μ provided the third equation is correct) A1

(ii) An attempt to evaluate
$$(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot (6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$$
 M1
 $(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot (6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}) = -1 \neq 0 \Rightarrow L$ and $(6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$
not perpendicular A1

Volume =
$$\pi \int_{\frac{1}{\pi/5}}^{2\pi/5} (\cos x + \sin x)^2 dx$$
 B1

$$(\cos x + \sin x)^2 = \cos^2 x + \sin^2 x + 2\sin x \cos x$$
 B1

$$\int (\cos^2 x + \sin^2 x) \, dx = x \text{ or } \left[\frac{x}{2} + \frac{1}{4} \sin 2x \right] + \left[\frac{x}{2} - \frac{1}{4} \sin 2x \right]$$
B1

$$\int k \sin x \cos x \, dx = -\frac{k}{4} \cos 2x \quad \text{or} \quad \frac{k}{2} \sin^2 x \quad \text{or} \quad -\frac{k}{2} \cos^2 x \qquad B1$$

Substitution of limits in candidate's integrated expression (awarded only if at least two of the previous three marks have been awarded)

Volume = 3.73 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

9.

Assume that there is a real value of *x* such that 10.

$$|x + \underline{1}| < 2$$

$$|x|$$
Then squaring both sides, we have:

$$x^{2} + \underline{1}_{x^{2}} + 2 < 4$$
B1

$$x^{2} + \underline{1}_{x^{2}} - 2 < 0$$
B1

$$\left[x - \underline{1}_{x}\right]^{2} < 0$$
, which is impossible since the square of a real number
cannot be negative
B1

Alternative Mark Scheme

Assume that there is a real value of *x* such that

$$|x + \underline{1}| < 2$$
$$|x|$$

Then squaring both sides, we have:

$$x^{2} + \frac{1}{x^{2}} + 2 < 4$$
B1

 $x^4 - 2x^2 + 1 < 0$ $(x^2 - 1)^2 < 0$, which is impossible since the square of a real number **B**1 cannot be negative **B**1

0976/01 GCE Mathematics C4 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – FP1 0977/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP1

SUMMER 2016 MARK SCHEME

$f(x+h) - f(x) = \frac{(x+h)^2}{(x+h+1)} - \frac{x^2}{x+1}$ $= \frac{(x+h)^2(x+1) - x}{(x+h+1)(x)}$ $= \frac{x^3 + x^2 + 2hx^2 + 2hx + h^2x + h^2 - x^3}{(x+h+1)(x+1)}$ $= \frac{hx^2 + 2hx + h^2x + h^2}{(x+h+1)(x+1)}$	$ \begin{array}{c c} \mathbf{M1A1} \\ \mathbf{M1A1} \\ \mathbf{A1} \end{array} $	
$= \frac{(x+h)^2(x+1)-x}{(x+h+1)(x)}$ $= \frac{x^3 + x^2 + 2hx^2 + 2hx + h^2x + h^2 - x^3}{(x+h+1)(x+1)}$ $= \frac{hx^2 + 2hx + h^2x + h^2}{(x+h+1)(x+1)}$	$ \frac{(x+h+1)}{(x+h+1)} = A1 $ $ \frac{hx^2 - x^2}{A1} = A1 $ $ A1 $	
$= \frac{x^3 + x^2 + 2hx^2 + 2hx + h^2x + h^2 - x^3}{(x+h+1)(x+1)}$ $= \frac{hx^2 + 2hx + h^2x + h^2}{(x+h+1)(x+1)}$	+1) $hx^2 - x^2$ A1 A1	
$= \frac{hx^2 + 2hx + h^2x + h^2}{h^2}$	A1	
(x+h+1)(x+1))	
$f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x+h)}{h}$		
$= \lim_{h \to 0} \frac{x^2 + 2x + hx}{(x+h+1)(x+1)}$	<u>h</u> 1) M1	
$=\frac{x^2+2x}{(x+1)^2}$	A1	
2(a) The rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
The translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
$\mathbf{T} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1	
$=\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
The fixed point satisfies $ \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} $ $ -y+1 = x; x+2 = y $ $ (x,y) = \left(-\frac{1}{2}, \frac{3}{2}\right) \text{ cao} $	M1 FT their 7 A1 m1A1	ſ

Ques	Solution	Mark	Notes
3	$S_n = \sum_{r=1}^n r^3 + \sum_{r=1}^n r^2$ $n^2 (n+1)^2 - n(n+1)(2n+1)$	M1	
	$= \frac{n(n+1)}{4} + \frac{n(n+1)(2n+1)}{6}$	A1A1	
	$=\frac{n(n+1)(3n(n+1) + 2(2n+1))}{12}$	m1	m1 for attempting to combine and take out two factors
	$= \frac{n(n+1)}{12} (3n^2 + 7n + 2)$	A1	
	$=\frac{n(n+1)(n+2)(3n+1)}{12}$	A1	
4(a)	$ z_1 = 2; \arg(z_1) = \frac{5\pi}{6}$	B1B1	
	$ z_2 = \sqrt{2}; \arg(z_2) = \frac{\pi}{4}$	B1B1	
(b)	EITHER		
	$ w = \frac{ z_1 ^2}{ z_2 } = \frac{4}{\sqrt{2}}$	M1A1	FT from (a)
	$\arg(w) = 2\arg(z_1) - \arg(z_2) = \frac{17\pi}{12}$	M1A1	
	$w = \frac{4}{\sqrt{2}} \cos\left(\frac{17\pi}{12}\right) + \frac{4}{\sqrt{2}} \sin\left(\frac{17\pi}{12}\right) \mathbf{i}$	M1	
	= -0.73 - 2.73i	A1	
	OR	(M1A1)	
	$z_1^2 = 2 - 2\sqrt{3}i$		
	$\frac{z_1^2}{z_2} = \frac{2 - 2\sqrt{3i}}{(1+i)} \times \frac{1-i}{1-i}$	(M1)	
	$=\frac{2-2\sqrt{3}-(2\sqrt{3}+2)i}{2}$	(A1A1)	A1 numerator, A1 denominator
	=-0.73-2.73i	(A1)	
	OR		
	$z_1^2 = 2 - 2\sqrt{3}i$	M1A1	
	$a+\mathrm{i}b=\frac{2-2\sqrt{3}i}{2}$		
	1+i	M1	
	$(a+1b)(1+1) = 2 - 2\sqrt{31}$		
	$a - b = 2; a + b = -2\sqrt{3}$	A1 A1	
	$a^{2} - 2, a + b - 2\sqrt{3}$		
	$\frac{z_1}{z_2} = -0.73 - 2.73i$	A1	

Ques	Solution	Mark	Notes
5(a)(i)	$\det \mathbf{M} = 2(\lambda + 2) + 5(-\lambda) + \lambda(-\lambda^2)$	M1A1	Or equivalent
(ii)	= $4-3\lambda - \lambda^3$ Substituting $\lambda = 1$, det M =0 (therefore singular). $4-3\lambda - \lambda^3 = (1-\lambda)(\lambda^2 + \lambda + 4)$ The other two roots (of det M = 0) are complex since $b^2 - 4ac = -15$ so no other real values of λ result in a singular M . cao	B1 M1A1 A1	Do not accept unsupported answers
(iii)	Using row operations, $\begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ The first two (complete) rows are identical therefore consistent.	M1 A1 A1	
(b)	Then $y = \alpha + 1$. and $x = -3\alpha - 1$. Now, $\mathbf{M} = \begin{bmatrix} 2 & 5 & -1 \\ 0 & -1 & -1 \\ -1 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$	M1 A1 A1	
	Cofactor matrix = $\begin{bmatrix} -7 & 1 & -9 \\ -6 & 2 & -2 \end{bmatrix}$ Adjugate matrix = $\begin{bmatrix} 1 & -7 & -6 \\ 1 & 1 & 2 \\ -1 & -9 & -2 \end{bmatrix}$	M1 A1 A1	Award M1 if at least 5 elements correct
	Det $\mathbf{M} = 8$ $\mathbf{M}^{-1} = \frac{1}{8} \begin{bmatrix} 1 & -7 & -6 \\ 1 & 1 & 2 \\ -1 & -9 & -2 \end{bmatrix}$	B1 A1	FT from adjugate matrix and determinant

Ques	Solution	Mark	Notes
6	Let the roots be $\alpha, \frac{1}{\alpha}, \beta$.	M1	
	Then, $\alpha + \frac{1}{\alpha} + \beta = -\frac{b}{a} (i)$ $1 + \alpha\beta + \frac{\beta}{\alpha} = \frac{c}{a} (ii)$ $\beta = -\frac{d}{a} (iii)$ From (i), $\alpha + \frac{1}{\alpha} = -\frac{b}{a} + \frac{d}{a}$ From (ii), $\alpha + \frac{1}{\alpha} = \left(\frac{c}{a} - 1\right)\left(-\frac{a}{d}\right)$ Therefore $\frac{d-b}{a} = \left(\frac{c-a}{a}\right)\left(-\frac{a}{d}\right)$	A1 M1A1 A1 A1	M1 attempting to eliminate one of the parameters
	$d^2 - bd = a^2 - ac$		
7	The result to be proved gives $x_1 = 2 + 1 = 3$		
	which is correct so true for $n = 1$. Let the result be true for $n = k$, ie	B1	
	$x_k = 2^k + k$	M1	
	Consider (for $n = k + 1$) $x_{k+1} = 2(2^{k} + k) - k + 1$	M1A1	
	$=2^{k+1}+(k+1)$	A1	
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	Award A1 for completely correct solution
8 (a)	Taking logs, lnf(x) = sinxlnx	M1	
	Differentiating, $\frac{f'(x)}{f(x)} = \cos x \ln x + \frac{\sin x}{x}$ $f'(x) = (x)^{\sin x} (\cos x \ln x + \frac{\sin x}{x})$	A1A1 A1	
(b)	Consider $f'(0.35) = -0.00451$	B1	Accept – 0.00646
	f'(0.36) = 0.0156	B1	Accept 0.0223
	The change of sign indicates a root between 0.35 and 0.36.	B1	

Ques	Solution	Mark	Notes
Ques 9(a) (b)	Solution $u + iv = (x + i[y + 2])^{2}$ $= x^{2} + 2ix(y + 2) - (y + 2)^{2}$ Equating real and imaginary parts, $u = x^{2} - (y + 2)^{2} ; v = 2x(y + 2)$ Substituting $y = x - 1$, $u = x^{2} - (x + 1)^{2} = -(2x + 1)$ $v = 2x(x + 1)$ Eliminating x,	Mark M1 A1 M1 A1 M1 A1 A1	Notes FT from (a) provided equally difficult
	$v = -(u+1)\left(-\frac{(u+1)}{2}+1\right)$ $= \left(\frac{u^2-1}{2}\right) \text{ or equivalent}$	M1 A1	

0977/01 GCE Mathematics FP1 MS Summer 2016/LG
wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – FP2 0978/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP2

SUMMER 2016 MARK SCHEME

Ques	Solution	Mark	Notes
1	Putting $u = x^2$,		
	$du = 2xdx, [0, \sqrt{2}]$ becomes [0,2]	B1B1	
	$I = \frac{1}{2} \int_{0}^{2} \frac{du}{\sqrt{(16 - u^2)}}$	M1	Valid attempt to substitute
	$=\frac{1}{2}\left[\sin^{-1}\left(\frac{u}{4}\right)\right]_{0}^{2}$	A1	
	$=\frac{1}{2}\sin^{-1}\left(\frac{1}{2}\right)$	A1	
	$=\frac{\pi}{12}$	A1	
2(a)(i)	$(3-i)^2 = 9-6i-1=8-6i$	M1A1	
(ii)	$(3-i)^4 = (8-6i)^2 = 64 - 96i - 36 = 28 - 96i$	B1	Convincing
(b)	The 4 th roots are $3 - i$ and $-3 + i$ and $1 + 3i$, $-1 - 3i$	B1 B1B1	Must start with 3 – i and rotate
3 (a)	$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4$	M1	
	$= 4i\cos^3\theta\sin\theta - 4i\cos\theta\sin^3\theta + real terms$	m1	
	$\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$	A1	
	$\sin 4\theta = 4\cos \theta (1 \sin^2 \theta \sin^2 \theta)$. 1	
	$\frac{1}{\sin\theta} = 4\cos\theta(1-\sin\theta) - \sin\theta$	AI	
	$=4\cos\theta(1-2\sin^2\theta)$		
	EITHER		
(b)	$\int_{\pi/6}^{\pi/4} \frac{\sin 4\theta}{\sin \theta} d\theta = 4 \int_{\pi/6}^{\pi/4} \cos \theta \cos 2\theta d\theta$	M1	
	$= 2 \int_{\pi/6}^{\pi/4} [\cos\theta + \cos 3\theta] \mathrm{d}\theta$	A1	
	$=2\left[\sin\theta+\frac{\sin 3\theta}{3}\right]^{\pi/4}$	A1	This line must be seen
	= 0.219	A1	
	OR		
	$\int_{\pi/6}^{\pi/4} \frac{\sin 4\theta}{\sin \theta} d\theta = 4 \int_{\pi/6}^{\pi/4} (1 - 2\sin^2 \theta) d\sin \theta$	(M1A1)	
	$=4\left[\sin\theta-\frac{2}{3}\sin^3\theta\right]^{\pi/4}$	(A1)	This line must be seen
	= 0.219	(A1)	

Ques	Solution	Mark	Notes
4	Substituting $t = \tan\left(\frac{x}{2}\right)$,		
	$\frac{2t}{1+t^2} + \frac{2t}{1-t^2} + t = 0$	M1A1	
	$\frac{2t(1-t^2)+2t(1+t^2)+t(1+t^2)(1-t^2)}{(1+t^2)(1-t^2)} = 0$	A1	
	$\frac{2t - 2t^3 + 2t + 2t^3 + t - t^5}{(1 + t^2)(1 - t^2)} = 0$	A1	
	$t(5-t^4)=0$	A1	
	t = 0	B 1	FT for $t^4 = n$
	$\frac{x}{2} = 0 + n\pi$ giving $x = 2n\pi$	B 1	Penalise – 1 for use of degrees throughout
	$t = \sqrt[4]{5}$	B 1	
	$\frac{x}{2} = 0.981 + n\pi$ giving $x = 1.96 + 2n\pi$	B 1	
	$t = -\sqrt[4]{5}$	B 1	
	$\frac{x}{2} = -0.981 + n\pi$ giving $x = -1.96 + 2n\pi$	B 1	
5(a)	Because $f(-x)$ is neither equal to $f(x)$ or $-f(x)$, f is neither even nor odd.	B1	
(b)	Let		
	$\frac{3x^2 + x + 6}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$	M1	
	$=\frac{A(x^2+4)+(x+2)(Bx+C)}{(x+2)(x^2+4)}$	A1	
	A = 2; B = 1; C = -1	A1A1A1	
(c)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{2}{x+2} dx + \int_{0}^{1} \frac{x}{x^{2}+4} dx - \int_{0}^{1} \frac{1}{x^{2}+4} dx$	M1	FT their values from (a)
	$= 2\left[\ln(x+2)\right]_{0}^{1} + \frac{1}{2}\left[\ln(x^{2}+4)\right]_{0}^{1} - \frac{1}{2}\left[\tan^{-1}\left(\frac{x}{2}\right)\right]_{0}^{1}$	A1A1A1	
	$= 2\ln 3 - 2\ln 2 + \frac{1}{2}\ln 5 - \frac{1}{2}\ln 4 - \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right)$	A1	
	= 0.691	A1	

Ques	Solution	Mark	Notes
6 (a)	If $x = a \sec \theta$ and $y = b \tan \theta$, then		
	$\frac{x^2}{2} - \frac{y^2}{12} = \sec^2\theta - \tan^2\theta = 1$	M1A1	
	showing that the point $(a \sec \theta, b \tan \theta)$ lies on the		
(b)(i)	hyperbola.		
	EITHER		
	$\frac{\mathrm{d}x}{\mathrm{d}x} = \sec\theta\tan\theta, \frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2\theta$		
	$\mathrm{d} heta$ $\mathrm{d} heta$	M1	
	$\frac{dy}{dy} = \frac{\sec^2 \theta}{\cos^2 \theta}$		
	$\frac{1}{\mathrm{d}x} - \frac{1}{\mathrm{sec}\theta\mathrm{tan}\theta}$	A1	
	$= \cos \operatorname{ec} \theta$	A1	
	OR		
	$2x - 2y \frac{dy}{dy} = 0$	(M1)	
	$2x - 2y \frac{dx}{dx} = 0$		
	dy x	(A1)	
	$\frac{d}{dx} = \frac{d}{y}$		
	sec	(11)	
	$=\frac{\sec\theta}{\tan\theta}=\csc\theta$	(AI)	
	The gradient of the normal is $-\sin\theta$	N/1	
	The equation of the normal is	NII	
	$v - \tan \theta = -\sin \theta (x - \sec \theta)$	Δ1	
	$r\sin\theta + v = 2\tan\theta$		
(ii)	The normal meets the x-axis where $y = 0$, ie		
	$x = 2 \sec \theta, y = 0$	R1	
	The coordinates of the midpoint of PO are	DI	
	$(\sec\theta + 2\sec\theta, \tan\theta + 0)$		
	$\left(\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2}\right)$, ie	M1	
	$\left(\frac{3}{2}\sec\theta,\frac{1}{2}\tan\theta\right)$ cao	A1	
	This is the parametric form of a hyperbola	Δ1	ET from midnoint
	snowing that the locus of the midpoint is a		1 i nom mapoint
	$x = \frac{3}{2} \sec \theta, y = \frac{1}{2} \tan \theta$		FT from midpoint
	2 2		
	$\Rightarrow \sec \theta = \frac{2}{3}x, \tan \theta = 2y$		
	$\Rightarrow \frac{x^2}{2(4)} - \frac{y^2}{1(4)} = 1$		
	$\frac{9/4}{1/4}$		
	I have a fithe midmoint is a hyperbola showing that	(AI)	
	the focus of the indepoint is a hyperbola Since $a = 3/2$ and $b = 1/2$		
	Since $u = 5/2$ and $v = 4/2$,		
	Eccentricity = $\sqrt{\frac{1.5^2 + 0.5^2}{1.5^2 + 0.5^2}} = \frac{\sqrt{10}}{1.5^2 + 0.5^2}$		
	$V 1.5^2 3$		
	$\begin{bmatrix} \mathbf{T} \\ \mathbf{T} \end{bmatrix}$	A1	
	1 ne coordinates of the foci are $\left(\pm \frac{1}{2}, 0\right)$		

Ques	Solution	Mark	Notes
7(a)	x = 1 cao	B1	Penalise – 1for extra asymptotes
	y = 1 cao	B1	
(b) (c)	f(0) = 8 giving the point (0,8) cao $f(x) = 0 \Longrightarrow x = 2$ giving the point (2,0) cao	B1 B1	
(0)	$f'(x) = \frac{3x^2(x^3 - 1) - 3x^2(x^3 - 8)}{(x^3 - 8)} \left(= \frac{21x^2}{(x^3 - 8)} \right)$	M1A1	
	$ (x^{3}-1)^{2} \qquad (x^{3}-1)^{2} $ The stationary point is (0.8)	A1	
	f'(x) > 0 on either side of the stationary point.	M1	
	It is a point of inflection.	. 1	
	-	AI	
(u) (e)(i)	y 1 0 1 cao	G1 G1 G1	RH branch approach to asymptotes LH branch approach to asymptotes Stationary point of inflection
	f(-2) = 16/9, f(2) = 0	B1	
(••)	$f(S) = (-\infty, 0] \cup [16/9, \infty)$ cao	B1	
(ii)	$f(x) = -2 \Longrightarrow x = \sqrt[3]{10/3}$ $f(x) = 2 \Longrightarrow x = -\sqrt[3]{6}$ $f^{-1}(S) = (-\infty, -\sqrt[3]{6}] \cup [\sqrt[3]{10/3}, \infty) \text{cao}$	M1A1 A1 A1	Accept 1.82 for $\sqrt[3]{6}$ and 1.49 for $\sqrt[3]{10/3}$

0978/01 GCE Mathematics FP2 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – FP3 0979/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP3 SUMMER 2016 MARK SCHEME

Ques	Solution	Mark	Notes
1	Consider		
	$x = r\cos\theta$	M1	
	$=\cos\theta(1+2\tan\theta)=\cos\theta+2\sin\theta$	A1	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta + 2\cos\theta$	B1	
	(The tangent is perpendicular to the initial line		
	where) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 0$.	M1	
	$\sin\theta = 2\cos\theta$		
	$\tan\theta = 2$	A1	
	$\theta = 1.11 (63^\circ)$	A1	or $0 \le \theta \le \frac{\pi}{2} \Longrightarrow 0 \le \tan \theta \le 1$
	This lies outside the domain for the curve, hence		4
	no point at which the tangent is perpendicular to the initial line.	A1	
2 (a)	$f(x) = \cos x + \cosh x$		
	$f'(x) = -\sin x + \sinh x$		
	$f''(x) = -\cos x + \cosh x$	B1	
	$f'''(x) = \sin x + \sinh x$		
	$f^{(4)}(x) = \cos x + \cosh x (= f(x))$	B1	Convincing
(b)(i)	f(0) = 2		
	f'(0) = 0		
	f''(0) = 0	D1	
	f'''(0) = 0	BI	
	$\int (0) = 0$		
	$f^{(0)}(0) = 2$		
	This pattern repeats itself every four differentiations so $f^{(n)}(0) = 2$ if <i>n</i> is a multiple of 4 and zero otherwise. (Therefore the only terms in the Maclaurin series are those for which the power is a multiple of 4.)	B1	Accept unsimplified expressions
(ii)	The first three terms are $2, \frac{x^4}{2}, \frac{x^8}{2}$	DI	
	12 20160	BI	
(c)(i)	Substituting the series,		
	$24 + x^4 + \frac{x^3}{1680} - x^4 = 36$	M1	
	$x^8 = 20160$	A 1	
	x = 3.45		
(ii)	1 + 1 + 12(2 + 2 + 1 + 1) + 12(2 + 2 + 1) + 12(2 + 1) +	411	
	Let $g(x) = 12(\cos x + \cos n x) - x - 36$		
	Consider $g(3.445) = -0.050/$ g(3.455) = 0.2312	D1	
	g(3.73) = 0.2312 The change of sign confirms that the value of the	ы	
	root is 3.45 correct to 3 significant figures.	B1	

Ques	Solution	Mark	Notes
3	Putting $t = \tan\left(\frac{x}{2}\right)$		
	$[0,\pi/2]$ becomes $[0,1]$	B1	
	$dx = \frac{2dt}{1+t^2}$	B1	
	$I = \int_{0}^{1} \frac{2dt/(1+t^{2})}{3+5(1-t^{2})/(1+t^{2})}$	M1A1	
	$=\int_{0}^{1}\frac{2\mathrm{d}t}{8-2t^{2}}$	A1	
	$=\int_{0}^{1}\frac{\mathrm{d}t}{4-t^{2}}$	A1	
	$= \frac{1}{4} \left[\ln \left(\frac{2+t}{2-t} \right) \right]_0^1$	A1	
	$= \frac{1}{4} \ln 3 = \ln 3^{1/4}$	A1	
4(a)	The equation is		
	$\cosh 2\theta - 8\cosh \theta - k = 0$	M1	
	Substituting for $\cosh 2\theta$, $2\cosh^2 \theta - 8\cosh \theta - (k+1) = 0$		
	$2\cos(n-1) = 0$	A1	
	$\cosh\theta = \frac{8\pm\sqrt{12+8\kappa}}{4}$	m1	
	If $k < -9$, $72 + 8k < 0$ so no real solutions.	A1	
(b)	If $k = -8$,		
	$\cosh\theta = \frac{8 \pm \sqrt{8}}{4} = 1.292, 2.707$	M1A1	
	$\theta = 0.75, 1.65$	A1	Allow \pm
(c)(i)	There is a repeated root when $k = -9$	B1	
(ii)	There will be only one real root if the smaller root of the quadratic equation in (a) < 1 , ie	M1	
	$\frac{8 - \sqrt{72 + 8k}}{4} < 1$	A1	
	$\frac{4}{\sqrt{72+91}}$ > 4		
	$\sqrt{\frac{12+8k}{4}} > 4$ $k > -7$	M1 A1	Allow $k = -9$ to be included here

Ques	Solution	Mark	Notes
5(a)	$\frac{dy}{dy} = \frac{\sin x}{2}$	D1	
	$dx = 1 + \cos x$	DI	
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{\sin^2 x}{\left(1 + \cos x\right)^2}$	M1	
	$= \frac{1 + 2\cos x + \cos^2 x + \sin^2 x}{(1 + \cos^2 x)^2}$	A1	
	$=\frac{2+2\cos x}{(1+\cos x)^2}$	A1	
	$=\frac{2}{(1+\cos x)}$		
(b)	$(1 + \cos x)$		
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	$=\sqrt{2}\int_{0}^{\pi/2}\sqrt{\frac{1}{2\cos^{2}(x/2)}}dx$	m1	
	$= \int_{0}^{\pi/2} \sec(x/2) \mathrm{d}x$	A1	
	$= 2 \left[\ln(\sec(x/2) + \tan(x/2)) \right]_{0}^{\pi/2}$	Δ1	
	$-2\ln(1+\sqrt{2})$	111	
	$= 2 \ln(1 + \sqrt{2})$ $= \ln(3 + 2\sqrt{2})$ METHOD 2	A1 A1	Award this A1 if the 2 is missing
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	Put $t = tan\left(\frac{x}{2}\right); dx = \frac{2dt}{1+t^2}$	ml	
	Arc length = $\sqrt{2} \int_{0}^{1} \sqrt{\frac{1}{(1+(1-t^{2})/(1+t^{2}))}} \times \frac{2dt}{1+t^{2}}$	A1	
	$= 2 \int_{0} \sqrt{\frac{1}{(1+t^2)}} \mathrm{d}t$	A1	
	$= 2\ln \left[t + \sqrt{1 + t^2}\right]_{p}$ = $2\ln \left[1 + \sqrt{2}\right] = \ln(3 + 2\sqrt{2})$	A1 A1	Allow $\sinh^{-1}(t)$

Ques	Solution	Mark	Notes
6(a)(i)	Let $f(r) = (3 - \sinh r)^{\frac{1}{5}}$		
	$1 \qquad \qquad$		
	$f'(x) = \frac{1}{5}(3 - \sinh x)^{-5} \times (-\cosh x)$	M1A1	
	f'(1) = -0.1907	A1	
	Since this is less than 1 in modulus, the sequence	Δ1	
	is convergent. Let $a(x) = \sinh^{-1}(3 - x^5)$		
	$\frac{1}{1}$		
	$g'(x) = \frac{1}{\sqrt{1 + (3 - x^5)^2}} \times (-5x^4)$	M1A1	
	g'(1) = -2.236	A1	
	Since this is greater than 1 in modulus, the	A 1	
	sequence is divergent.	AI	
(ii)	Successive approximations are		
	1		
	1.127828325	M1A1	
	1.107049937		
	1.105684578		
	1.105990816 (since the sequence oscillates) the value of the	A1	
	root is 1.106 correct to three decimal places.	A1	
(0)	The Newton-Raphson iteration is		
	$x \rightarrow x - \frac{x^5 + \sinh x - 3}{x}$		
	$5x^4 + \cosh x$	MIAI	
	1		Allow any starting value
	1.126056647	M1A1	
	1.105346041 1.105935334		
	1.105934755		
	1.105934754 The value of the root is 1.105025 correct to six	A1	This last value must be seen for A1
	decimal places.	A1	
	-		
1		1	1

Ques	Solution	Mark	Notes
7(a)	$I_n = -\frac{1}{2} \int_0^{\pi} x^n \mathrm{d}(\cos 2x)$	M1	
	$= -\frac{1}{2} \left[x^{n} \cos 2x \right]_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} n x^{n-1} \cos 2x dx$	A1A1	
	$= -\frac{\pi^{n}}{2} + \frac{n}{4} \int_{0}^{\pi} x^{n-1} d(\sin 2x)$	M1	
	$= -\frac{\pi^{n}}{2} + \frac{n}{4} \Big[x^{n-1} \sin 2x \Big]_{0}^{\pi} - \frac{n(n-1)}{4} I_{n-2}$	A1A1	
(b)	$= -\frac{\pi^n}{2} - \frac{n(n-1)}{4} I_{n-2}$		
	$I_0 = \int_0^{\pi} \sin 2x dx = -\frac{1}{2} [\cos 2x]_0^{\pi} = 0$	B1	
	$I_4 = -\frac{\pi^4}{2} - 3I_2$	M1	
	$= -\frac{\pi^4}{2} - 3\left(-\frac{\pi^2}{2} - \frac{1}{2}I_0\right)$	A1	FT their I_0 for this A1
	= - 34 cao	A1	

0979/01 GCE Mathematics FP3 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – M1 0980/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M1

Summer 2016 Mark Scheme

Q Solution

Mark

Notes

1.

N2L applied man	M1	<i>R</i> and 65g opposing. dim correct
65g - R = 65a	A1	
1^{st} stage, $a = 3.2$ R = 65(9.8 - 3.2)		
$R = \underline{429 (N)}$	A1	cao
2^{nd} stage, $a = 0$ $R = 65 \times 9.8$		
$R = \underline{637 (N)}$	B1	cao
$3^{\rm rd}$ stage, $a = -2.4$ R = 65(9.8 + 2.4)		
$R = \underline{793 (N)}$	A1	cao

Q	Solution	Mark	Notes
2(a)	Apply N2L to <i>B</i>	M1	dim correct, all forces
	5g - T = 5a	A1	og und i opposing
	Apply N2L to A	M1	dim correct, all forces T and $2g$ opposing
	T - 2g = 2a	A1	T and 28 opposing
	Adding $5a - 2a = 7a$	m1	one variable eliminated
	3g-2g = 7a	1111	Dep on both M's
	$a = \frac{4.2 \text{ ms}^{-2}}{T - 28 \text{ N}}$	A1	cao
	I = 20 IV	AI	cau
2(b)	Upwards positive		

(i)	Using $v = u + at$, $u=0. a=(\pm)4.2, t=2$	M1	cand's a
	$v = 0 + 4.2 \times 2$ $v = 8.4 \text{ (ms}^{-1}\text{)}$	A1	ft a
(ii)	$s=ut+0.5at^2$, $s=(\pm)18.9, u=(\pm)8.4, a=(\pm)9.8$ -18.9 = 8.4t + 0.5 ×-9.8 × t^2	M1 A1	cand's <i>v</i> , one sign error ft <i>v</i>

$$-18.9 = 8.4t + 0.5 \times -9.8 \times 7t^2 - 12t - 27 = 0$$

(7t+9)(t-3) = 0t = 3(s)

A1 ft v recognition of quadratic and attempt to solve m1

Q	Solution	Mark	Notes
3(a)	$I = 3 \times 4$ $= 12 (Ns)$	B1	
3(b)) Conservation of momentum	M 1	attempted, equation,
	$3 \times 4 + 11 \times 0 = 3v_A + 11v_B$ $3v_A + 11 v_B = 12$	A1	correct equation
	Restitution	M1	one sign error only
	$v_B - v_A = -\frac{1}{4}(0-4)$	A1	correct equation, any form
	$v_B - v_A = 1$		
	$3v_A + 11 v_B = 12$ $-3v_A + 3v_B = 3$		
	Adding $14v_B = 15$	m1	
	$v_B = \frac{15}{14} (\text{ms}^{-1})$	A1	cao
	$v_A = \frac{1}{14} \underline{(\mathrm{ms}^{-1})}$	A1	cao
3(c)	$\frac{6}{7} = e \times \frac{15}{14}$ $e = \frac{6}{2} \times \frac{14}{14}$	M1	correct equation, any form
	$e = \frac{4}{5} = \frac{0.8}{0.8}$	A1	ft v_B if $> \frac{6}{7}$

Note: Accept g throughout conservation of momentum equation, whether crossed off or not.

Notes

- B1 (0, 30) to (300, 30)
- B1 (300, 30) to (320, 16)
- B1 (320, 16) to (328,0)
- B1 shape, units, labels
- 4(b)Total distance = area under graph
 $D = 300 \times 30 + 0.5 \times (30+16) \times 20 + 0.5 \times 16 \times 8$ M1
B1
all correct area, ft graph
all correct, ft graph if
shape correct.D = 9000 + 460 + 64
D = 9524 (m)A1
A1cao

Q	Solution	Mark	Notes
5	Resolve in one direction $X = 8\cos 30^\circ + 7\cos 45^\circ$ $- 15\cos 60^\circ - 12\cos 50^\circ$	M1 A1	obtain comp of resultant
	X = -3.3355		
	Resolve in perpendicular direction $Y = 8\cos 60^{\circ} - 7\cos 45^{\circ}$	M1	obtain comp of resultant
	$-15\cos 30^\circ + 12\cos 40^\circ$ Y = -4.7476	A1	
	Resultant ² = $3.3355^{2} + 4.7476^{2}$ Resultant = <u>5.8N</u>	m1 A1	dep on both M's cao
	Acceleration = $\frac{5 \cdot 8021777}{4}$		
	Acceleration = $1.45 \text{ (ms}^{-2}\text{)}$	A1	ft Resultant. Accept 1.5.

Notes

6.

Take moments about C $8g \times 1.4 = T_D \times 3.2$ $T_D = \underline{3.5g(N)} = \underline{34.3(N)}$	M1 B1 A1 A1	dim correct moment equ. Any correct moment correct equation cao
Resolve vertically $T_C + T_D = 8g = 78.4$ $T_C = 4.5g (N) = 44.1 (N)$	M1 A1 A1	oe cao

Note: Simult

Simultaneous equations	
First moment equation	M1 B1 A1
Second moment equation or resolution equation	M1 A1 (B1 if not
	previously awarded)
Answers	A1 A1

Equal tension

Moments about C/D	4 marks available
Moments about anywhere else	2 marks available.

Notes

7

7(a)	Resolve perpendicular to plane	M1	dim correct equation All forces
	$R + 80 \sin 10^\circ = 12g \cos 20^\circ$ R = 96.616	A1	No more than 1 sign error
	$F = \mu R = 0.2 \times 96.616$ F = <u>19.323 (N)</u>	M1 A1	ft <i>R</i> (any correct form) cao
7(b)	Resolve parallel to plane	M1	dim correct equation All forces Allow sin/cos errors Friction subtracted from tension
	$80 \cos 10^{\circ} - F - 12g \sin 20^{\circ} = 12a$ $a = 1.6 \text{ (ms}^{-2}\text{)}$	A2 A1	-1 each error, (ft <i>F</i>) cao

Note (for both parts)	
If no g with 12,	M0 (possibly M1 for μR)
If 80 not resolved	M0
If g with 80	M0

Q	Solution	Mark	Notes
8	Use of $s = ut + 0.5at^2$ with $s=460, t=20$ $460 = 20u + 0.5 \times a \times 400$ u + 10a = 23	M1 A1	
	Use of $v = u + at$ with $t=6$, $v=17$ 17 = $u + 6a$ u + 6a = 17	M1 A1	
	attempt to solve simultaneously $4a = 6$	m1	one variable remains
	$\begin{array}{l} a = \underline{1.5} \\ u = \underline{8} \end{array}$	A1 A1	cao cao

Note:

3 or more equations	
First correct equation	M1 A1
All subsequent equations, eg 2 if 3 unknowns, 3 if 4 unknowns	M1 A1
All variables except one eliminated	m1
Correct answers	A1 A1

Q	Solution				Mark	Notes
9.		Area	AC	AB		
	ABC	54	4	3	B1	
	Circle	4π	4	3	B1	
	D	12π	6	4.5	B1	
	Lamina	(54+8π)	x	у	B1	expressions for areas, oe
	Moments a	bout AC			M1	consistent areas and moments
	54×4 + 127	$\pi \times 6 = (54 + 8\pi)x$	$+4\pi\times4$		A1	signs correct. Ft table if at least one B1 for c of m gained.
	x = 4.95 (c)	<u>m)</u>			A1	cao
	Moments a	bout AB			M1	consistent areas and moments
	54×3 + 127	$\pi \times 4.5 = (54 + 8\pi)$	$)y + 4\pi \times 3$		A1	signs correct. Ft table if at least one B1 for c of m
	y = 3.71 (cm	<u>m)</u>			A1	cao

Alternative solution

	Area	AC	AB		
ABC-Circle	54-4π	4	3	B1 B1	
D	12π	6	4.5	B1	
Lamina	(54+8π)	x	У	B1	expressions for areas, oe
Moments about AC				M1	consistent areas and moments
$(54-4\pi) \times 4 + 12\pi \times 6 = (54+8\pi)x$				A1	signs correct. Ft table if at least one B1 for c of m gained.
x = 4.95 (cm)				A1	cao
Moments about	ut AB			M1	consistent areas and moments
$(54-4\pi) \times 3 + 1$	$2\pi \times 4.5 = (54 + 8)$	8π)y		A1	signs correct. Ft table if at least one B1 for c of m gained.
y = 3.71 (cm)				A1	cao

0980/01 GCE Mathematics M1 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – M2 0981/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M2

Summer 2016 Mark Scheme

1(a). $x = \int 12t^2 - 7kt + 1dt$ $x = 4t^3 - \frac{7k}{2}t^2 + t + (C)$ t = 0, x = 3C = 3 $x = 4t^3 - \frac{7k}{2}t^2 + t + 3$ t = 2, x = 1616 = 32 - 14k + 2 + 3 $k = \frac{3}{2}$

Solution

Q

1(b).	$a = \frac{\mathrm{d}v}{\mathrm{d}t}$
	a = 24t - 10.5
	F = 4(24t - 10.5) When t = 5 $F = 4(24 \times 5 - 10.5)$ F = 438 (N)

M1 At least one power increased

Mark Notes

- A1 correct integration
- m1 use of initial conditions
- m1 values substituted
- A1 cao
- M1 At least one power decreased A1 correct differentiation
- ft k. accept k
- m1 4x*a*
- A1 ft *k*. –ve values A0

Q	Solution	Mark	Notes
2(a)	$u_{\rm H} = 24.5\cos 30^{\circ} = (12.25\sqrt{3})$ $u_{\rm V} = 24.5\sin 30^{\circ} = (12.25)$	B1 B1	
	$s = ut + 0.5at^{2}, s=0, u=12.25, a=(\pm)9.8$ $0 = 12.25t - 0.5 \times 9.8 \times t^{2}$ $t = \frac{12 \cdot 25}{4 \cdot 9}$	M1 A1	oe complete method
	t = 2.5	A1	
	Range = $2.5 \times 12.25\sqrt{3}$ Range = 53.04 (m)	A1	cao
2(b)	$v^2 = u^2 + 2as, v=0, u=12.25, a=(\pm)9.8$ 0 = 12.25 ² - 2×9.8×s	M1 A1	oe complete method ft u_{y}

- A1 answers rounding to 7.7 ISW
- 2(c) Required speed is 24.5 ms⁻¹ downwards at an angle of 30° to the horizontal. B1

 $s = \underline{7.65625} = \underline{7.66} (\text{m})$

Q

used

either correct, any form

M1

A1

3 $\mathbf{r} = \mathbf{p} + t\mathbf{v}$ $\mathbf{r}_A = (1 + 2t)\mathbf{i} + 5t\mathbf{j} - 4t\mathbf{k}$ $\mathbf{r}_B = (3 + t)\mathbf{i} + 3t\mathbf{j} - 5t\mathbf{k}$

 $\mathbf{r}_B - \mathbf{r}_A = (2 - t)\mathbf{i} - 2t\mathbf{j} - t\mathbf{k}$ M1

$$AB^{2} = x^{2} + y^{2} + z^{2}$$

$$AB^{2} = (2 - t)^{2} + 4t^{2} + t^{2}$$

$$(AB^{2} = 6t^{2} - 4t + 4)$$
M1
A1 cao

Differentiate M1 at least 1 power reduced

$$\frac{dAB^2}{dt} = 2(2 - t)(-1) + 10t \ (= 12t - 4)$$

$$-4 + 2t + 10t = 0 \qquad \text{m1} \quad \text{equating to } 0.$$

$$t = \frac{1}{3} \qquad \text{A1} \quad \text{cao}$$

$$(\text{least distance})^2 = (2 - \frac{1}{3})^2 + 5(\frac{1}{3})^2$$

least distance = $\sqrt{\frac{10}{3}} = \underline{1.83 \text{ (m)}}$ A1 cao

Q	Solution	Mark	Notes
4(a)	Conservation of momentum $12 \times 600 = 1600 \times v$	M1 A1	dimensionally correct
	$v = \frac{9}{2} (ms^{-1})$	A1	allow -ve
4(1)		N / 1	
4(b)	Energy considerations $E = 0.5 \times 12 \times 600^2 + 0.5 \times 1600 \times 4.5^2$	MI A1	both expressions correct, Ft v in (a)
	E = 2160000 + 16200 E = 2176200 (J)	A1	cao
	Energy dissipated by eg sound of cannon firing ignored.	E1	oe
4(c)	Work-energy principle $F \times d = E$	M1	used
	$F \times 1.2 = 16200$ F = 13500 (N)	A1	cao

Mark Notes

M1

5. Hooke's Law $30 = \frac{\lambda(0 \cdot 95 - l)}{l}$ $70 = \frac{\lambda(1 \cdot 15 - l)}{l}$ $\frac{70}{30} = \frac{(1.15 - l)}{(0 \cdot 95 - l)}$ 7(0.95 - l) = 3(1.15 - l) l = 0.8

A1 A1 m1 getting to equation with 1 variable

used

$l = \underline{0.8}$	A1	cao
$\lambda = \underline{160}$	A1	cao

Q Solution Mark Notes

$$6(a) \quad \mathbf{a} = \frac{dv}{dt} \qquad M1 \qquad \text{sin to cos and coefficient} \\ \mathbf{a} = 14\cos 2t \, \mathbf{i} - 18\sin 3t \, \mathbf{j} \qquad A1$$

6(b)
$$\mathbf{r} = \int 7\sin 2t \, \mathbf{i} + 6\cos 3t \, \mathbf{j} \, dt$$

$$\mathbf{r} = -3.5\cos 2t \,\mathbf{i} + 2\sin 3t \,\mathbf{j} + (\mathbf{c})$$

$$t = 0, \,\mathbf{r} = 0.5 \,\mathbf{i} + 3 \,\mathbf{j}$$

$$0.5 \,\mathbf{i} + 3 \,\mathbf{j} = -3.5 \,\mathbf{i} + \mathbf{c}$$

$$\mathbf{c} = 4 \,\mathbf{i} + 3 \,\mathbf{j}$$

When
$$t = \frac{\pi}{2}$$

 $\mathbf{r} = -3.5\cos\pi \,\mathbf{i} + 2\sin\frac{3}{2}\,\pi \,\mathbf{j} + 4\,\mathbf{i} + 3\,\mathbf{j}$
 $\mathbf{r} = (4 + 3.5)\,\mathbf{i} + (3 - 2)\,\mathbf{j}$
 $\mathbf{r} = \frac{7.5\,\mathbf{i} + \mathbf{j}\,(\mathrm{m})}{4}$

M1 sin to cos and coefficient divided. A1

m1 used

m1 substituted si

A1 cao

OR

$$\int_{0}^{\pi/2} 7\sin 2t \, \mathbf{i} + 6\cos 3t \, \mathbf{j} \, dt \qquad (M1) \quad \text{attempt to integrate}$$

$$= [-3.5\cos 2t \, \mathbf{i} + 2\sin 3t \, \mathbf{j}]^{\pi/2} \qquad (A1) \quad \text{correct integration}$$

$$= 3.5 \, \mathbf{i} - 2 \, \mathbf{j} + 3.5 \, \mathbf{i} \qquad (m1) \quad \text{correct use of limits } 0, \pi/2$$

$$\mathbf{r} = 0.5 \, \mathbf{i} + 3 \, \mathbf{j} + 3.5 \, \mathbf{i} - 2 \, \mathbf{j} + 3.5 \, \mathbf{i} \qquad (m1) \quad \text{adding } 0.5 \, \mathbf{i} + 3 \, \mathbf{j}$$

$$\mathbf{r} = \frac{7.5 \, \mathbf{i} + \mathbf{j} \, (m)}{(M1)} \qquad (A1) \quad \text{cao}$$

Q	Solution	Mark	Notes
7.	K. Energy. at $A = 0.5 \times 70 \times v^2$ K. Energy. at $A = 35v^2$	B1	
	Let potential energy be 0 at <i>A</i> P. Energy at $B = 70 \times 9.8 \times (22-20)$ P. Energy at $B = 70 \times 9.8 \times 2$ P. Energy at $B = 1372$	M1 A1	mgh attempted correct for h=2, 20, 22
	Minimum K. Energy at $B = 0$		
	WD against resistance = 50×16 WD against resistance = 800	B1	
	Work-Energy Principle $35v^2 = 1372 + 800$ $v = \underline{7.88}$	M1 A1 A1	at least 3 energies ft one arithmetic slip cao

8

A1B1 accept =, ft v

 $\omega \le \underline{2.1 \text{ rads}^{-1}}$ Greatest value of ω is $\underline{2.1 \text{ rads}^{-1}}$

Resolve vertically $R = mg$ $F = \mu R = 0.72mg$	B1 B1	ft <i>R</i> , si
If particle remains at A $F \ge ma$	M1	accept =, used, No extra force
$0.72mg \geq \frac{mv^2}{1\cdot 6}$	A1	accept =
$v^2 \le 0.72 \times 9.8 \times 1.6$ $v \le \underline{3.36}$ Greatest value of v is $\underline{3.36}$	A1	cao, accept =
$\omega \leq \frac{3 \cdot 36}{1 \cdot 6}$		

9(a) Conservation of energy $0.5 \times m \times g + mg \times 4(1 - \cos \theta)$ $= 0.5 \times m \times v^2$

$$g + 8g(1 - \cos \theta) = v^{2}$$
$$v^{2} = g(9 - 8\cos \theta)$$

9(b) N2L towards centre of motion

$$mg\cos\theta - R = \frac{mv^2}{4}$$
$$R = mg\cos\theta - \frac{mg}{4}(9 - 8\cos\theta)$$
$$R = \underline{3mg(\cos\theta - 0.75)}$$

P leaves the surface when *R*=0 $\cos\theta = 0.75$

$$v^{2} = g(9 - 8 \times 0.75)$$

 $v^{2} = 3g = 29.4$

M1	KE and PE
A1 A1	KE both sides, oe correct equation, any form
A1	cao, simplified, ISW

M1 dim correct, 3 terms, mgcosθ and R opposing

A1

A1 cao, any form ISW

M1 A1 cao

A1 cao

0981/01 GCE Mathematics M2 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – M3 0982/01
This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - M3

Summer 2016 Mark Scheme

Q	Solution	Mark	Notes
1(a)	N2L applied to particle 1800 - 120v = 60a Divide by 60 and $a = \frac{dv}{dt}$	M1	dim correct equation
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 30 - 2v$	A1	convincing
1(b)	$\int \frac{dv}{30 - 2v} = \int dt$	M1	correct sep. of variables
	$-\frac{1}{2}\ln 30-2v = t (+C)$	A1A1	A1 for $\ln 30 - 2v $
	2		A2 all correct, any form.
	When $t = 0$, $v = 8$ C = $-\frac{1}{2} \ln 14$	m1	initial conditions used
	$t = \frac{1}{2} \ln \left \frac{14}{30 - 2\nu} \right $		
	$e^{2t} = \frac{14}{30-2y}$	m1	correct inversion at any
	$30 - 2v - 14e^{-2t}$		stage ft similar expression
	$v = 15 - 7e^{-2t}$	A1	any correct simplified

any correct simplified A1 expression

cao. Allow if e^{-kt}, k>0. **B**1

Limiting value of $v = \underline{15}$

Q	Solution	Mark	Notes
2(a).	$x = A \sin \omega t + B \cos \omega t.$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = v = A\omega\cos\omega t - B\omega\sin\omega t.$	B1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \mathrm{sin}\omega t - B\omega^2 \mathrm{cos}\omega t$	M1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x$	A1	convincing
	Therefore motion is SHM		
	Value of <i>x</i> at centre of motion $= 0$	B 1	
	Amplitude $a =$ value of x when $v = 0$ $A \omega \cos \omega t - B \omega \sin \omega t = 0$	M1	
	$\tan \omega t = \frac{A}{B}$ $\sin \omega t = \frac{A}{\sqrt{1 - 1}} \cos \omega t = \frac{B}{\sqrt{1 - 1}}$	m1	either expression
	$\sqrt{A^2 + B^2} \qquad \sqrt{A^2 + B^2}$ $a = A \frac{A}{\sqrt{A^2 + B^2}} + B \frac{B}{\sqrt{A^2 + B^2}}$		
	$a = \sqrt{A^2 + B^2} \qquad \forall A + B$	A1	cao
2(b)(i)	using $v^2 = \omega^2 (a^2 - x^2)$ 25 = $\omega^2 (a^2 - 25)$	M1	
	$\frac{25}{169} = \omega^2 (a^2 - 9)$	A1	either equation correct
	Subtract $144 = 16\omega^2$ $\omega = 3$	m1	oe
	Amplitude = a 25 = $3^2(a^2 - 25)$	m1	substitution
	Period = $\frac{2\pi}{\omega} = \frac{2\pi}{3}$	A1	cao
	$a^2 = \frac{250}{9}, a = \frac{5\sqrt{10}}{3} = \frac{5.27 \text{ (m)}}{3}$	A1	cao
2(b)(ii	$x = \frac{5\sqrt{10}}{3}\sin(3t)$	M1	accept sin/cos, a , ω
	$x = \frac{5\sqrt{10}}{3} \sin(3 \times 0.3)$	A1	ft derived a , ω
	$x = 4.128 (\mathrm{m})$	A1	cao

Alternative solution

Q

2(a).	$x = A\sin\omega t + B\cos\omega t.$		
	$x = R\sin(\omega t + \varepsilon)$	M1	
	$A\sin\omega t + B\cos\omega t$		
	$= R \sin \omega t \cos \varepsilon + R \cos \omega t \sin \varepsilon$	m1	si
	$R\cos\varepsilon = A$		
	$R\sin\varepsilon = B$		
	$R = \sqrt{A^2 + B^2}$	A1	
	$\varepsilon = \tan^{-1}\left(\frac{\Delta}{A}\right)$	A1	
	$x = \sqrt{A^2 + B^2} \sin(\omega t + \tan^{-1}\left(\frac{B}{A}\right))$		
	Therefore motion is SHM	A1	
	Value of x at centre of motion $= 0$	B1	
	Amplitude = $\sqrt{A^2 + B^2}$	A1	

Q	Solution	Mark	Notes
3	Auxiliary equation		
	$m^2 + 6m + 9 = 0$ $(m + 3)^2 = 0$	M1	
	m = -3 (twice)	A1	
	CF is $x = (A + Bt)e^{-3t}$	B1	ft values of m
	For PI, try $x = at + b$	M1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = a$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 0$		
	6a + 9(at+b) = 27t	A1	
	Comparing coefficients	m1	
	9a = 27		
	a = 3		
	18 + 9b = 0 b = 2	Δ 1	both volues
	b = -2 General solution is	AI	bour values
	$x = (A + Bt)e^{-3t} + 3t - 2$		
	When $t = 0, x = 0$	m1	used
	0 = A - 2	. 1	
	A = 2	Al	cao
	$\frac{dx}{dt} = -3(A + Bt) e^{-3t} + Be^{-3t} + 3$	B1	ft similar expressions
	When $t = 0$, $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$,		
	0 = -3A + B + 3		
	B = 3	A1	ft similar expressions
	$x = (2+3t)e^{-3t} + 3t - 2$		
	When $t = 2$	A 1	
	$x = 8e^{-} + 4$ x = 4.022 (4.01082)	AI	cao
	$\lambda = \frac{4.(02)(4.01903)}{2}$		

4(a). Use of N2L
$$8g - 0.4v^2 = 8a$$

196 - $v^2 = 20v \frac{dv}{dx}$

Solution

Q

4(b)
$$\int dx = \int \frac{20v dv}{196 - v^2}$$
$$x (+C) = 20 \times -\frac{1}{2} \ln \left| 196 - v^2 \right|$$
$$x (+C) = -10 \ln \left| 196 - v^2 \right|$$

When
$$x = 0, v = 0$$

C = -10ln196
 $x = 10ln \left| \frac{196}{196 - v^2} \right|$

4(c)
$$196 - v^2 = 20 \frac{dv}{dt}$$

 $\int dt = \int \frac{20 dv}{14^2 - v^2}$
 $t = \frac{20}{2 \times 14} \ln \left| \frac{14 + v}{14 - v} \right| + (C)$

When
$$t = 0, v = 0$$

 $C = 0$
 $t = \frac{5}{7} \ln \left| \frac{14 + v}{14 - v} \right|$
 $e^{1.4t} = \frac{14 + v}{14 - v}$
 $v = 14 \left(\frac{e^{1.4t} - 1}{e^{1.4t} + 1} \right)$
When $t = 2$
 $v = \frac{12.39}{12.39}$

M1
A1 use of
$$a = v \frac{dv}{dx}$$
, convincing

A1A1 A1 for
$$\ln |196 - v^2|$$
,
A1 all correct

- m1
- A1 cao
- A1 cao
- M1 correct sep variables
- A1A1 A1 for $\ln \left| \frac{14 + v}{14 v} \right|$, A1 all correct
- m1 used A1
- m1 inversion
- A1 cao any correct expres.
- A1 cao

Q	Solution	Mark	Notes
	Speed of A just before string becomes taut		
	$v^2 = u^2 + 2as, a = (\pm)9.8, s = (1.8-0.2)$ $v^2 = 0 + 2 \times 9.8 \times 1.6$	M1	
	$v = 5.6 ({\rm ms}^{-1})$	A1	
	Impulse = change in momentum A poly to A	M 1	used
	$J = 2 \times 5.6 - 2v$	A1	ft answer in (a)
	$\begin{array}{l} \text{Apply to } B \\ J = 5v \end{array}$	B1	
	Solving simultaneously $2 \times 5.6 - 2v = 5v$	m1	
	V = 11.2 Speed of $B = 1.6 (\text{ms}^{-1})$	A1	cao
	$J = 5v = \underline{8 (Ns)}$	A1	ft speed of B

A2

B1

used

Notes

6(a)

6(b)	Resolve vertically	
	$S\cos 60^\circ + R = 25g$	

Resolve horizontally

 $F= Ssin60^{\circ}$

$$F = 0.3R$$

$$0.3R = S\sin 60^{\circ}$$

$$R = \frac{\sqrt{3}}{2 \times 0.3}S$$

$$0.5S + R = 25g$$

$$0.5S + \frac{\sqrt{3}}{2 \times 0.3}S = 25 \times 9.8$$

$$S = 72.34 \text{ (N)}$$

$$S = \frac{72.34 (N)}{R} = \frac{208.83 (N)}{R}$$

6(c) Moments about A

$$Sx = 25g \times 5\cos 60^{\circ}$$

$$x = \frac{25 \times 9 \cdot 8 \times 5 \times \cos 60^{\circ}}{72 \cdot 340711}$$
$$x = \underline{8.46(69)}$$

M1	equation, no missing,
A1	no extra force. sin/cos
M1	equation, no missing
A1	no extra force. sin/cos

-1 each error

ml	eliminating one variable
	Depends on both M's
A1	cao
A1	cao

M1 equation, no missing, no extra force. dim correct

A1 cao

0982/01 GCE Mathematics M3 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S1 0983/01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - S1 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for the use of the
	= 0.7	A1	formulae in all three parts
(b)		D1	
	$P(A \cap B) = 0.12$	BI	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	MI	
	= 0.58	AI	
(a)		N/1	
(0)	$P(A \cap B) = P(A \mid B)P(B)$	MI	
	= 0.1	AI	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
	= 0.6	AI	
2(a)	$P(red) = 0.45 \times 0.03 + 0.55 \times 0.05$	M1A1	
	= 0.041	Al	
(0)	$P(\text{female} \text{red}) = \frac{0.55 \times 0.05}{0.05}$	B1B1	B1 num, B1 denom
	0.041		FT denominator from (a)
	$= 0.671 \operatorname{cao}(55/82)$	B1	
2(.)	$\mathbf{E}(\mathbf{V}) = \mathbf{O}$	N/1 A 1	
S(a)	E(I) = 2a + b = 8 $V_{0}r(V) = 2c^2 - 8$	MIAI MIAI	Award SC2 for correct analysis
	$\operatorname{Var}(Y) = 2a = 8$	A1A1	Award SC2 for correct answer
(b)	a = 2; $b = 4$		unsupported
(0)	Any statement which mentions that certain values, eq.0, cannot be taken by V	D1	
	varues, eg 0, cannot be taken by 1.	DI	
4(a)(i)	(4)		
	P(no Welsh) = $\frac{4}{4} \times \frac{3}{4} \times \frac{2}{4}$ or $\frac{(3)}{(3)}$	M1	
	(3)		
	1 (0.071)	A 1	
	$=\frac{1}{14}(0.071)$	AI	
	(4) (2) (2)		
(••)	$P(1 \text{ of each}) = \frac{4}{2} \times \frac{2}{2} \times \frac{2}{3} \times 6 \text{ or } \frac{(1)(1)(1)}{(2)}$	N#1 A 1	
(II)	8 7 6 (8)	MIAI	M1A0 if 6 omitted
	(3)		
	$\frac{2}{2}$ (0.296)		
	$= -\frac{7}{7} (0.286)$	A1	
	(7)		
(b)		M1	
()	P(Jack selected) = $\frac{1}{2} + \frac{7}{2} \times \frac{1}{2} + \frac{7}{2} \times \frac{6}{2} \times \frac{1}{2}$ or $\frac{(2)}{(2)}$	1411	
	8 8 7 8 7 6 (8)		
	(3)		
	3 (0.275)	A1	Accept answer with no working
	$=\frac{1}{8}(0.3/5)$		

Ques	Solution	Mark	Notes
5(a)(i)	X is Poi(6) si	B1	
	$P(X=5) = \frac{e^{-6} \times 6^5}{5!}$	M1	Award M0 if no working seen or if tables used
	= 0.161	A1	
(ii)	$P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right)$	M1A1	Award M1A0A0 if one of the
	= 0.849	A1	four terms is missing
(b)			
	Looking at the appropriate section of the table, $M_{app} = 2.4$		
	$\frac{1}{2} \frac{1}{4}$	M1A1	Award M1 for evidence of
	$t = \frac{2.7}{0.2} = 12$	A1	Accept 12 with no working
	0.2		Theorem 12 with no working
6(a)(i)	<i>X</i> is B(8,0.12) si	B1	
	$P(X < 2) = 0.88^8 + 8 \times 0.88^7 \times 0.12$	M1	Award the first M1 in (iii) if not
<i>(</i> ••)	= 0.752	A1	awarded in (i) for adding the six
(11)	$P(X=2) = 28 \times 0.88^6 \times 0.12^2$		probabilities
(iii)	= 0.187	B1	
(111)	P(X > 2) = 1 - 0.752 - 0.187 - 0.061	R1	FT from two other calculated
	- 0.001	DI	probabilities
(b)	$E(Profit) = 0.187 \times 10 + 0.061 \times 25 - 5$	M1	M1A0 if -5 omitted
	$= -\pounds 1.61$ (Accept 1.6)	A1	FT from (a)
			Allow $0.187 \times 5 + 0.061 \times 20 -$
			0.752 × 5
7(a)(i)	0.3 + 0.2 + 0.1 + a + b = 1	B1	
	a + b = 0.4		
(ii)	$E(X) = 0.3 \times 1 + 0.2 \times 2 + 0.1 \times 3 + 4a + 5b = 2.85$	M1	·
	4a + 5b = 1.85	A1	
	Solving,	m1	
	a = 0.15, b = 0.25	A1	
(b)	The possible point are $(1, 1)$ $(1, 2)$ $(1, 2)$ $(2, 2)$	D1	
	$P = 0.3 \times 0.3 \pm 2 \times 0.3 \times 0.2 \pm 2 \times 0.3 \times 0.1 \pm 0.2 \times 0.2$	BI M1A1	Award M1A0A0 if one of the
	= 0.31	A1	terms is missing or if (1,1) or
			(2,2) is double counted
			Award SC1 for Prob $< 4 (0.21)$
			or $Prob = 4 (0.1)$

Ques	Solution	Mark	Notes
8(a)	np = 3 giving $p = 0.06$	M1A1	
a \			
(b)	$P(X = 2) = {\binom{50}{50}} \times 0.06^2 \times 0.94^{48}$	M1	
	$\left(2\right)^{1}$		
(c)	= 0.2262	A1	
(0)	Using the Poisson table,	M1	
	P(X = 2) = 0.4232 - 0.1991 or 0.8009 - 0.5768	IVII	Award M0A0 for 0.2240 from
	= 0.2241	A1	formula
	Percentage error = $\frac{0.0021}{0.2241} \times 100 < 1\%$	P1	
	0.2241	DI	Allow 0.2240 for this B1
9(a)(i)	x		
	$F(x) = k \int (2u - 1) \mathrm{d}u$	M1	M1 for the integral of $f(x)$
			limits may be left until 2 nd line.
	$=k[u^2-u]^x$	AI	
	=kx(x-1)	A1	
(11)	F(2) = 1	M1	Allow integration of $f(x)$ from 1
	2k = 1	A1	to 2.
	$k = \frac{1}{2}$		
	2		
(b)(i)	2		
	$E(X) = \int_{-\infty}^{\infty} \frac{1}{2} x(2x-1) dx$	M1	
	$\int_{1}^{1} 2^{n(1)}$		MI for the integral of $xf(x)$,
	$1 \left[2x^3 x^2 \right]^2$		minis may be left until 2 mile.
	$=\frac{1}{2}\left \frac{1}{3}-\frac{1}{2}\right $	Al	
	= 1.58 (19/12)	A1	
(ii)			
	The median <i>m</i> satisfies		
	$F(m) = \frac{m(m-1)}{m(m-1)} = \frac{1}{m(m-1)}$	M1	Accept a geometrical argument $ET_{E}(w)$ from (a) if it gives a
	2 2	1911	r r (m) from (a) if it gives a quadratic equation and an
	$m^2 - m - 1 = 0$	A1	answer in [1,2]
	$1 \pm \sqrt{1+4}$		
	$m = \frac{1}{2}$	M1	Condone the absence of \pm
	m = 1.62	A1	
(iii)			
()	P(X > 1.5) = 1 - F(1.5)	M1	FT F from (a) if possible
	= 0.625	AI	

0983/01 GCE Mathematics S1 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S2 0984/01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

Ques	Solution	Mark	Notes
1(a)	$\mathrm{E}(W)=6$	B1	
	$E(X^{2}) = \operatorname{Var}(X) + [E(X)]^{2} = 6$	M1A1	
	$E(Y^2) = Var(Y) + [E(Y)]^2 = 12$	A1	
	$Var(W) = E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$	M1A1	
	= 30 The possibilities are (1,4); (2,2); (4,1) si	P1	
(b)	$\mathbf{Pr} = 2e^{-2} \cdot 3^4 e^{-3} \cdot 2^2 e^{-2} \cdot 3^2 e^{-3} \cdot 2^4 e^{-2} \cdot 2e^{-3}$	DI	Award the M1 for multiplying
	$PT = 2e^{-1} \times \frac{1}{4!}e^{-1} + \frac{1}{2!}e^{-1} \times \frac{1}{2!}e^{-1} + \frac{1}{4!}e^{-1} \times 3e^{-1}$	M1A1	and adding Poisson
	= 0.12	A1	tables
2(a)	<pre><pre></pre></pre>		
	$\overline{x} = \frac{637.2}{10} = 63.7(2)$	B1	MU no working
	SE of $\bar{x} = \frac{1.9}{\sqrt{10}}$ (0.6008)	M1A1	
	$\sqrt{10}$ 95% confidence interval limits are	ЛЛІАІ	
	$63.7(2) \pm 1.96 \times 0.6008$	MIAI	
	giving [62.5,64.9]	A1	
(b)	1.0		
	Width of 95% CI = $2 \times 1.96 \times \frac{1.9}{\sqrt{n}} = 1$	M1A1	F1 their z from (a)
	n = 55.47	A1	
	Minimum $n = 56$ cao	A1	
3 (a)	Upper quartile $= 40 \pm 0.674(5) \times 2.5$	M1	M0 no working
J(d)	= 41.7	A1	Wie no working
(b)(i)	Let <i>X</i> =weight of a male, <i>Y</i> =weight of a female		
	Let $U = X_1 + X_2 + X_3 + Y_1 + Y_2$		
	$E(U) = 3 \times 40 + 2 \times 32 = 184$	B1	
	$Var(U) = 3 \times 2.5^{2} + 2 \times 1.5^{2} = 23.25$	DI	
	$z = \frac{183 - 184}{\sqrt{23.25}} = 0.21$	M1A1	
	Prob = 0.4168	A1	Accept 0.417
(ii)	Let $W = X_1 + X_2 + X_3 - 2(Y_1 + Y_2)$	M1	
	$E(W) = 3 \times 40 - 4 \times 32 = -8$	A1	
	$Var(W) = 3 \times 2.5^2 + 8 \times 1.5^2 = 36.75$	M1A1	
	$z = \frac{8}{\sqrt{2575}} = 1.32$	m1A1	
	$\sqrt{36.75}$ Prob = 0.0066	A1	Accept 0 907
	100 - 0.9000		Accept 0.907

GCE Mathematics - S2 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
4(a)	Under H ₀ , $E(\overline{X} - \overline{Y}) = 0$	B1	
	$\operatorname{Var}(\overline{X} - \overline{Y}) = \frac{1.5^2}{8} + \frac{2.5^2}{12} (= 0.802) (77/96)$	B1	
	H ₁ is accepted if $\frac{\left \overline{X} - \overline{Y}\right }{\sqrt{0.802}} > 1.645$ $\left \overline{X} - \overline{X}\right > 1.473$	M1A1	
	X - I > 1.475 So $k = 1.473$	Al	Accept 1.47
(D)(I)	Now, $E(\overline{X} - \overline{Y}) = 0.5$ si	B1	FT k and variance
	H ₀ is accepted if $\left \overline{X} - \overline{Y} \right \le 1.473$, ie	M1	
	$-1.473 \le \overline{X} - \overline{Y} \le 1.473$	A1	
	$z_1 = \frac{1.475 - 0.5}{\sqrt{0.802}} = 1.09$	M1A1	Accept 1.08
	$z_2 = \frac{-1.473 - 0.5}{\sqrt{0.802}} = -2.20$	A1	
(ii)	Required probability = $0.8621 - 0.0139$ = 0.848	m1 A1	Accept 0.8599 – 0.0139 Accept 0.846
	An appropriate comment, eg The test is unlikely to detect small differences. This is a very high error probability	B1	FT probabilities greater than 0.5
5(a)(i)	$H_{a}: n = 0.7: H_{a}: n < 0.7$	B1	
(ii)	Let X denote number of seeds which germinate. Under H ₀ , X is B(50,0.7) si p -value = P(X \le 32) Let Y denote number of non-germinating seeds.	B1 B1	
	Under H ₀ , Y is B(50,0.3) si p -value = P(Y \ge 18) = 0.2178 Insufficient evidence to reject the seed manufacturer's claim.		
			FT the <i>p</i> -value if > 0.05
(b)	Under H_0 , X is now B(500,0.7) \approx N(350,105) si	B1B1	B1 mean, B1 variance
	Test statistic = $\frac{329.5 - 350}{\sqrt{105}}$	M1A1	Award M1A0 for incorrect or no
	= -2.00 <i>p</i> -value = 0.0227 or 0.0228		continuity correction but FT for following marks No cc, $z = -2.05$, $p = 0.0202$ Wrong cc, $z = -2.10$, $p = 0.0179$
	Strong evidence to conclude that the germination rate is less than 0.7	B1	FT the <i>p</i> -value if < 0.05

Ques	Solution	Mark	Notes
6(a)	P(Y < 8) = P(X > 12)	M1	Award the M1 for stating that <i>Y</i>
	= 0.8	A1	is uniform on [0,10]
(b)(i)	Y = 20 - X	B1	
(ii)	P(XY > 64) = P[X(20 - X) > 64]	M1	
	$= P(X^2 - 20X + 64 < 0)$	A1	
	The critical values are 4 and 16	A1	
	OR $P[(X-4)(X-16)] < 0$		
	The required region is $X < 16$	A1	
(c)	Prob = 0.6	A1	
	EITHER Prob density of X is $f(x) = 0.1$ (10 < x < 20) si $E(XY) = \int_{10}^{20} (20x - x^2) \times \frac{1}{10} dx$ $= \frac{1}{10} \left[10x^2 - \frac{x^3}{3} \right]_{10}^{20}$ $= 66.7 (200/3)$ OR $E(XY) = 20E(X) - E(X^2)$	B1 M1A1 A1 A1 (M1)	Limits may be left until the next line
	E(X) = 15	(B1)	
	$E(X^2) = \operatorname{Var}(X) + [E(X)]^2$	(M1)	
	=100/12+225 (700/3)	(A1)	
	E(XY) = 66.7 (200/3)	(A1)	

0984/01 GCE Mathematics S2 MS Summer 2016/LG

wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S3 0985/01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

Ques	Solution			Mark	Notes
1	The sample space and corresponding probabilities are as follows.				
	Sample	Max	Prob		B3 for correct samples and max
	2,2,2	2	1/20	B3	B3 for correct probabilities
	2,2,10	10	6/20	B3	– 1 each error or omission
	2,2,50	50	3/20		
	2,10,10	10	3/20		
	2,10,50	50	6/20		
	10,10,50	50	1/20		
	$E(M) = 2 \times \frac{1}{20} + 10 \times \frac{9}{20} + 50 \times \frac{10}{20}$ -= 29.6 (p)			M1 A1	
2(a)	$H_0: \mu = 6$	$61; H_1: \mu < 61$		B1	
(b)	$\sum x = 603.4 \text{ si}; \sum x^2 = 36419.5$ UE of $\mu = 60.34$			B1B1 B1	No working need be seen
	UE of $\sigma^2 = 36419.5 603.4^2$			M1	M0 division by 10
	UE of $\sigma^2 = \frac{9}{9} - \frac{90}{90}$				Answer only no marks
	= 1.149 (431/375)			A1	
(c)	Test stat = $\frac{60.34 - 61}{\sqrt{\frac{1.149}{10}}}$			M1A1	M0 for no working Note that p -value = 0.0417
	= -1.947 DF = 9 si Crit <i>t</i> value = 1.833			A1 B1 B1	
	This result suggests that we should reject H_0 , ie that the average miles per gallon is less than 61 because $1.947 > 1.833$ oe		B1 B1	FT the conclusion No FT for reason if <i>z</i> -value used	

GCE Mathematics - S3 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
3(a)	$\hat{n} = \frac{44}{2} = 0.55$ si	B1	
	$p = \frac{1}{80} = 0.55$ sr		
	$ESE = \sqrt{\frac{0.55 \times 0.45}{80}} \ (= 0.0556) si$	M1A1	M1A0 if $$ omitted
	90% confidence limits are 0.55±1.645×0.0556 giving [0.459,0.641]	M1A1 A1	M1 correct form, A1 correct z
(b)(i)	$\hat{q} = \frac{0.555 + 0.705}{2} = 0.63$	B 1	
	Games won = $0.63 \times 100 = 63$	B1	
(ii)	$0.705 - 0.555 = 2 \times z_{\sqrt{\frac{0.63 \times 0.37}{100}}}$ or equiv	M1A1	
	z = 1.55	A1	
	Prob from tables = $0.0606 (0.9394)$	A1	
	Confidence level $= 88\%$	A1	
		D1	
4(a)	$H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$	BI D1	
(0)	$\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$	DI	
	$s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$	M1A1	
	$s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$	A1	
	[Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$	M1A1	
	$z = \frac{251.6 - 251.4}{251.4}$	m1	
	0.135	. 1	
	=1.47 or 1.48	AI A1	
	Prob from tables = 0.071 or 0.069	B1	FT from line above
	p-value = 0.14	DI	
	Insufficient evidence to reject H ₀	B 1	FT the p-value
(c)	The CLT allows us to assume that the distributions of the sample means are (approximately) normal	B1	

Ques	Solution	Mark	Notes
5(a)	$\sum x = 210, \sum x^2 = 9100,$	B2	Minus 1 each error
	$\sum y = 1286, \sum xy = 48730$		
	$S_{xy} = 48730 - 210 \times 1286/6 = 3720$	B1	
	$S_{xx} = 9100 - 210^2 / 6 = 1750$	B1	
	$b = \frac{3720}{1750} = 2.13 (372/175)$	M1A1	M0 no working
	$a = \frac{1286 - 2.13 \times 210}{6} = 140 (2099/15)$	M1A1	M0 no working
(b)(i)	SE of $b = \frac{1.5}{\sqrt{1750}}$ (0.0358)	M1A1	FT from (a)
	$\sqrt{1750}$ 95% confidence limits are		
	$2.1257 \pm 1.96 \times 0.0358$ [2.06, 2.20]	m1A1 A1	
(ii)	$x_0 = 35$	B1	
	Because the SE of y or the width of the interval is minimum when $x = \overline{x}$	D1	
	minimum when $x_0 = x$	BI	
L		1	

Ques	Solution	Mark	Notes
6(a)(i)	$E(\overline{X}) = \frac{\sum_{i=1}^{n} E(X_i)}{n}$	M1	
	$= \frac{n\mu}{n} = \mu$ (Therefore \overline{X} is an unbiased estimator)	A1	
(ii)			
	$\operatorname{Var}(\overline{X}) = \frac{\sum_{i=1}^{n} \operatorname{Var}(X_i)}{n^2}$	M1	
	$=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}$	A1	
(b)(i)	SE of $X = \frac{0}{\sqrt{n}}$ Var $(X_i) = E(X_i^2) - [E(X_i)]^2$	M1	
	$\sigma^2 = E(X_i^2) - \mu^2$ $E(X_i^2) = \mu^2 + \sigma^2$	A1	
(ii)	$E(S^{2}) = \frac{\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})}{n-1}$	M1	
	$=\frac{n(\mu^2+\sigma^2)-n\left(\mu^2+\frac{\sigma^2}{n}\right)}{n-1}$ $=\sigma^2$	A1A1	
(c)		M1	
(C)	$Var(S) = E(S^2) - [E(S)]^2$	M1	
	$[E(S)]^{2} = \sigma^{2} - \operatorname{Var}(S)$		
	$<\sigma$ (since var(s) > 0) Therefore	AI	
	$E(S) < \sigma \text{ so } E(S) \neq \sigma$	A1	FT above line if both M marks
	(Therefore S is not an unbiased estimator for σ)		awarded

0985/01 GCE Mathematics S3 MS Summer 2016/LG