wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - C1 0973/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

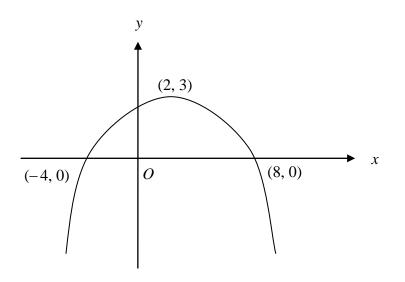
WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics C1 May 2017

Solutions and Mark Scheme

1.	(<i>a</i>)	(i)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1
		(ii)	Gradient of $AB = \frac{1}{3}$ (or equivalent) Use of gradient $L_1 \times$ gradient $AB = -1$ (or equivalent) A correct method for finding the equation of L_1 using	A1 M1
			candidate's gradient for L_1 Equation of L_1 : $y-5 = -3(x-4)$ (or equivale (f.t. candidate's gradient for <i>AB</i> provided that both the 3 rd and 4 th marks (M1, M1) have been awarded)	
	(<i>b</i>)	(i) (ii)	An attempt to solve equations of L_1 and L_2 simultaneousl x = 7, y = -4 (convincing) A correct method for finding the length of $AC(BC)$ $AC = \sqrt{130}$ $BC = \sqrt{90}$	y M1 A1 M1 A1 A1
			$Cos BCA = \frac{BC}{CA} = \frac{\sqrt{90}}{\sqrt{130}}$ (f.t. candidate's derived values for AC and BC) $Cos BCA = \frac{3}{\sqrt{13}}$ (c.a.o.)	M1 A1
	(c)	(i) (ii)	A correct method for finding <i>D</i> <i>D</i> (1, 14) Isosceles	M1 A1 E1
2.	(<i>a</i>)	Nume	$\frac{9}{\sqrt{5}} = \frac{(5\sqrt{5} - 9)(3 - 2\sqrt{5})}{(3 + 2\sqrt{5})(3 - 2\sqrt{5})}$ erator: $15 \times \sqrt{5} - 10 \times 5 - 9 \times 3 + 18 \times \sqrt{5}$ minator: $9 - 20$	M1 A1 A1
		3 + 2 ³ Speci If M1	$\frac{9}{\sqrt{5}} = 7 - 3\sqrt{5}$ (c.a.o.) al case not gained, allow B1 for correctly simplified numerator or ninator following multiplication of top and bottom by 3 + 2	,
	(<i>b</i>)	$(2\sqrt{13})$ $3\sqrt{7} \times \frac{5\sqrt{99}}{\sqrt{11}}$	$(2)^2 = 52$ $\sqrt{28} = 42$ = 15	B1 B1 B1
			$(2)^2 - 3\sqrt{7} \times \sqrt{28} - \frac{5\sqrt{99}}{11} = -5$ (c.a.o.)	B1

3.	(<i>a</i>)	$\frac{dy}{dx} = \frac{3}{2}x - 4$ (an attempt to differentiate, $\frac{dx}{2} = \frac{3}{2}x - 4$ (an attempt to differentiate, at least one non-zero term correct) An attempt to substitute $x = 6$ in candidate's expression for $\frac{dy}{dx}$ Value of $\frac{dy}{dx}$ at $P = 5$ (c.a.o.) $\frac{dx}{dx}$ Equation of tangent at P : $y - (-7) = 5(x - 6)$ (or equivalent (f.t. candidate's value for $\frac{dy}{dx}$ provided M1 and m1 both awarded) $\frac{dx}{dx}$	M1 m1 A1) A1
	(b)	Use of gradient of tangent = $\frac{-1}{\text{gradient of normal}}$ (o.e.) An attempt to put candidate's expression for $\frac{dy}{dx} = \frac{1}{2}$ (f.t candidate's derived value for gradient of tangent) <i>x</i> -coordinate of $Q = 3$ (c.a.o.)	M1 m1 A1
4.		a = -2 b = 5 c = 85 Station compared by a factor of the complete factor of the co	B1 B1 B1
5.	(b) (a)	Stationary value = 85 (f.t. candidate's value for c) This is a maximum $ \begin{bmatrix} x + \underline{2} \end{bmatrix}^4 = x^4 + 4x^3 \underbrace{(\underline{2})}_{x} + 6x^2 \underbrace{(\underline{2})}_{x} + 4x \underbrace{(\underline{2})}_{x}^3 + \underbrace{(\underline{2})}_{x}^4 + \underbrace{(\underline{2})}_{x}$	B1 B1 B2
		(II D_{Δ} not awarueu, awaru D_{1} for 5 confect terms)	


 $\begin{cases} x + \underline{2} \\ x \end{cases}^4 = x^4 + 8x^2 + 24 + \underline{32} + \underline{16} \\ x^2 & x^2 \\ x^2 & x^4 \end{cases}$ (5 terms correct) B2 (If B2 not awarded, award B1 for 3 or 4 correct terms)

(-1 for further incorrect simplification)

(<i>b</i>)	Coefficient of $x = {}^{6}C_{1} \times a^{5} \times 2(x)$		B1
	Coefficient of $x^2 = {}^6C_2 \times a^4 \times 2^2(x^2)$		B1
	$15 \times a^4 \times m = 6 \times a^5 \times 2$	(m = 4 or 2)	M1
	<i>a</i> = 5	(c.a.o.)	A1

- 6. Finding critical values $x = -\frac{3}{2}$, x = -4A statement (mathematical or otherwise) to the effect that $x \le -4$ or $-\frac{3}{2} \le x$ (or equivalent, f.t. candidate's derived critical values) B2 Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or'
- 7. Use of f(2) = 0**M**1 *(a)* $8k + 8 - 82 + 10 = 0 \Longrightarrow k = 8$ (convincing) A1 **Special case** Candidates who assume k = 8 and then either show that f(2) = 0 or that x - 2 is a factor by long division are awarded B1 $f(x) = (x-2)(8x^2 + ax + b)$ with one of a, b correct *(b)* M1 $f(x) = (x-2)(8x^2 + 18x - 5)$ A1 f(x) = (x-2)(4x-1)(2x+5) (f.t. only $8x^2 - 18x - 5$ in above line) A1 **Special case** Candidates who find one of the remaining factors, (4x-1) or (2x+5), using e.g. factor theorem, are awarded B1
 - (c)Attempting to find f(-1/2)M1Remainder = 30A1If a candidate tries to solve (c) by using the answer to part (b), f.t. forM1 and A1 when candidate's expression is of the form $(x 2) \times two$ linear factors

8. (*a*)

	Concave down curve with maximum at $(2, a)$	B1
	Maximum at (2, 3)	B1
	Both points of intersection with <i>x</i> -axis	B1
(\mathbf{h})	The stationary point will always he a minimum	E 1

(b) The stationary point will always be a minimum
$$E1$$

The y-coordinate of the stationary point will always be -6 $E1$

9.	<i>(a)</i>	$y + \delta y = -5(x + \delta x)^2 - 7(x + \delta x) + 13$		B 1
		Subtracting y from above to find δy		M1
		$\delta y = -10x\delta x - 5(\delta x)^2 - 7\delta x$		A1
		Dividing by δx and letting $\delta x \rightarrow 0$		M1
		$\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = -10x - 7 $ (c.a.e)).)	A1


(b) $\underline{dy} = 6 \times \underline{3} \times x^{-1/4} + 5 \times -3 \times x^{-4}$ (completely correct answer) B2 (If B2 not awarded, award B1 for at least one correct non-zero term)

© WJEC CBAC Ltd.

10. (a)(i)
$$\frac{dy}{dy} = 3x^2 - 18x + 15$$
B1Putting candidate's derived $\frac{dy}{dx} = 0$ M1 $x = 1, 5$ (both correct)(f.t. candidate's $\frac{dy}{dx}$)A1Stationary points are (1, 17) and (5, -15)(both correct)(c.a.o)A1(ii)A correct method for finding nature of stationary points yieldingeither (1, 17) is a maximum pointor (5, -15) is a minimum point(f.t. candidate's derived values)M1Correct conclusion for other point

(f.t. candidate's derived values) A1

(b)

Graph in shape of a positive cubic with two turning points M1 Correct marking of both stationary points

(f.t. candidate's derived maximum and minimum points) A1

(c) Use of both k = -15, k = 17 to find the range of values for k(f.t. candidate's y-values at stationary points) M1 k < -15 or 17 < k (f.t. candidate's y-values at stationary points) A1

GCE Maths - C1 MS Summer 2017/ED

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - C2 0974/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics C2 May 2017

Solutions and Mark Scheme

0 2.645751311 0.52.598076211 2.449489743 1 $2 \cdot 179449472$ 1.51.732050808 2 (5 values correct) **B**2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with h = 0.5**M**1 $I \approx 0.5 \times \{2.645751311 + 1.732050808 +$ 2 $2(2 \cdot 598076211 + 2 \cdot 449489743 + 2 \cdot 179449472)$ $I \approx 18.83183297 \times 0.5 \div 2$ $I \approx 4.707958243$ $I \approx 4.708$ (f.t. one slip) A1 **Special case** for candidates who put h = 0.40 2.645751311 0.42.615339366 0.82.521904043 1.22.357965225 1.6 2.107130751 2 1.732050808 (all values correct) (**B**1) Correct formula with h = 0.4(M1) $I \approx 0.4 \times \{2.645751311 + 1.732050808 + 2(2.615339366 + 2.521904043)\}$ 2 +2.357965225 + 2.107130751) $I \approx 23.58248089 \times 0.4 \div 2$ $I \approx 4.716496178$ $I \approx 4.716$ (f.t. one slip) (A1)

Note: Answer only with no working shown earns 0 marks

1.

2.

(a)

 $\sin^2\theta + 6(1 - \sin^2\theta) + 13\sin\theta = 0,$

(correct use of $\cos^2\theta = 1 - \sin^2\theta$) **M**1 An attempt to collect terms, form and solve quadratic equation in sin θ , either by using the quadratic formula or by getting the expression into the form $(a \sin \theta + b)(c \sin \theta + d)$, with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant m1 $5\sin^2\theta - 13\sin\theta - 6 = 0 \Rightarrow (5\sin\theta + 2)(\sin\theta - 3) = 0$ $\Rightarrow \sin \theta = -2$, $(\sin \theta = 3)$ A1 (c.a.o.)5 $\theta = 203.58^{\circ}, 336.42^{\circ}$ B1 B1

Note: Subtract (from final two marks) 1 mark for each additional root in range from $5\sin\theta + 2 = 0$, ignore roots outside range. $\sin\theta = -$, f.t. for 2 marks, $\sin\theta = +$, f.t. for 1 mark

(b) $A = 110^{\circ}$ B1 $B - C = 22^{\circ}$ B1 $110^{\circ} + B + C = 180^{\circ}$ (f.t. candidate's value for A)M1

$$B = 46^{\circ}, C = 24^{\circ}$$
 (f.t. candidate's value for A) MI
A1

(a)

 $(2x + 1)^{2} = x^{2} + (x + 5)^{2} - 2 \times x \times (x + 5) \times \cos 60^{\circ} \quad \text{(o.e.)}$ (correct use of cos rule) M1 $3x^{2} - x - 24 = 0 \quad (\text{convincing}) \quad \text{A1}$ An attempt to solve the given quadratic equation in *x*, either by using the quadratic formula or by getting the expression into the form $(ax + b)(cx + d), \text{ with } a \times c = 3 \text{ and } b \times d = -24 \qquad \text{M1}$ $(3x + 8)(x - 3) = 0 \Rightarrow x = 3 \qquad \text{A1}$

$$\frac{(b)}{3} = \frac{\sin 60^{\circ}}{7}$$

(substituting the correct values in the correct places in the sin rule) M1 $ACB = 21.8^{\circ}$ A1 (Allow ft for x>0 obtained in (a) for M1A1) 4.

 $S_n = a + [a + d] + \ldots + [a + (n - 1)d]$ *(a)* (at least 3 terms, one at each end) B1 $S_n = [a + (n-1)d] + [a + (n-2)d] + \ldots + a$ In order to make further progress, the two expressions for S_n must contain at least three pairs of terms, including the first pair, the last pair and one other pair of terms Either: $2S_n = [a + a + (n - 1)d] + [a + a + (n - 1)d] + \ldots + [a + a + (n - 1)d]$ Or: *n* times **M**1 $2S_n = [a + a + (n - 1)d]$ $2S_n = n[2a + (n-1)d]$ $S_n = \underline{n}[2a + (n-1)d]$ (convincing) A1 2 $\underline{8} \times (2a + 7d) = 156$ **B**1 *(b)* 2 2a + 7d = 39 $16 \times (2a + 15d) = 760$ **B**1 2 2a + 15d = 95An attempt to solve the candidate's two derived linear equations simultaneously by eliminating one unknown **M**1 d = 7, a = -5(c.a.o.) A1 d = 9*(c)* **B**1 A correct method for finding (p + 8) th term **M**1 (p + 8) th term = 2129 (c.a.o.) A1 a = 100, r = 1.2*(a)* Value of donation in 12^{th} year = $100 \times 1 \cdot 2^{11}$ Value of donation in 12^{th} year = £743 **M**1 A1

(b) $100 \times \underline{(1-1\cdot 2^n)} = 15474$ M1

$$log1.2$$

$$n = 19$$
cao A1

5.

6. (a)
$$2 \times \underline{x^{-4}} - 6 \times \underline{x^{7/4}} + c$$
 (-1 if no constant term present) B1, B1

(b) (i)
$$16 - a^2 = 0 \Longrightarrow -4$$
 B1
(ii) $\frac{dy}{dx} = -2x$ M1

Gradient of tangent = 8 (f.t. candidate's value for a) A1 (convincing) *b* = 32 A1 1.1

(iii) Use of integration to find the area under the curve M1

$$\int_{1}^{1} (16 - x^2) dx = 16x - (1/3)x^3$$
(correct integration) A1

Correct method of substitution of candidate's limits m1

$$[16x - (1/3)x_{-4}^{3}]^{0} = 0 - [-64 - (-64/3)] = 128/3$$

Area of the triangle = 64 (f.t. candidate's value for *a*) B1 Use of candidate's value for a and 0 as limits and trying to find total area by subtracting area under curve from area of triangle m1 SI

Shaded area =
$$64 - 128/3 = 64/3$$
 (c.a.o.) A1

7. (a) Let
$$p = \log_a x$$
, $q = \log_a y$
Then $x = a^p$, $y = a^q$ (the relationship between log and power) B1
 $\frac{x}{y} = \frac{a^p}{a^q} = a^{p-q}$ (the relationship between log and power)
 $\log_a x/y = p - q$ (the relationship between log and power)
 $\log_a x/y = p - q = \log_a x - \log_a y$ (convincing) B1
(b) $\frac{1}{2} \log_b x^{15} = \log_b x^5$, $4 \log_b 3/x = \log_b 3^4/x^4$
 3 (one correct use of power law) B1
 $\frac{1}{3} \log_b x^{15} - \log_b 27x + 4 \log_b 3/x = \log_b \frac{x^5 \times 3^4}{27x \times x^4}$ (addition law) B1
 $\frac{1}{3} \log_b x^{15} - \log_b 27x + 4 \log_b 3/x = \log_b 3$ (c.a.o.) B1

(c)
$$\log_d 5 = \frac{1}{3} \Longrightarrow 5 = d^{1/3}$$
 (rewriting log equation as power equation) M1
 $d = 125$ A1

8.	<i>(a)</i>	(i) A(-5,4)	B1
			correct method for finding radius	M1
		Ra	$dius = \sqrt{20}$	A1
			ther:	
			correct method for finding AP^2	M1
		Al	$P^2 = 25 (> 20) \Longrightarrow P$ is outside C	
		_	(f.t. candidate's coordinates for <i>A</i>)	A1
		O		
			attempt to substitute $x = -2$, $y = 0$ in the equation of $2^{3/2}$	C (M1)
		(–	$2)^{2} + 0^{2} + 10 \times (-2) - 8 \times 0 + 21 = 5 (>0)$	(1 1)
			\Rightarrow <i>P</i> is outside <i>C</i>	(A1)
	<i>(b)</i>	Δn attem	ot to substitute $(2x + 4)$ for y in the equation of the circ	le
	(b)	An attemp	(2x + 4) for y in the equation of the energy	M1
		$5x^2 + 10x$	+5=0	A1
		Either:	Use of $b^2 - 4ac$	m1
			Discriminant = 0, $\Rightarrow y = 2x + 4$ is a tangent to the	
				A1
			x = -1, y = 2	A1
		Or:	An attempt to factorise candidate's quadratic	(m1)
			Repeated (single) root, $\Rightarrow y = 2x + 4$ is a tangent	to the
			circle	(A1)
			x = -1, y = 2	(A1)
0		(') T		D1
9.	<i>(a)</i>		$= R\theta + r\theta$	B1
		(11) K	$=\frac{1}{2}R^2\theta - \frac{1}{2}r^2\theta$	B1
			L L	
	<i>(b)</i>	$K = 1 \theta (R$	(P+r)(R-r)	M1
	(\mathcal{O})	$\frac{n}{2} = \frac{1}{2}o(n)$	(r+r)(R-r)	1011
			r, $R - r = x$ (both expressions)	m1
		$K = \underline{1}Lx$		A1
		$\overline{2}$		
		<u>Alternativ</u>	e solution	
		$K = \frac{1}{2} \theta(I)$	$(r^2 - r^2)$	
		2	,	
		$K = \frac{1}{-} \theta(t)$	$(r+x)^2 - r^2)$	(M1)
		2 3 ((()
		$K = \frac{1}{2} \theta(2)$	$2rx + x^2$	
		$\frac{n}{2} = 2^{0(2)}$		

$$K = \frac{1}{2} x \theta (2r + x)$$
(m1)

$$K = \frac{1}{2} x \theta (R + r)$$
(K = $\frac{1}{2} Lx$
(A1)

10.	<i>(a)</i>	$t_3 = 67$	B1
		$t_1 = 7$ (f.t. candidate's value for t_3)	B1
	(<i>b</i>)	299999999 is of the form $3k - 1$ (not $3k + 1$) (o.e.) OR	
		The number does not end in a 2 or a 7	E1

GCE Maths - C2 MS Summer 2017/ED

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - C3 0975/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics C3 June 2017

Solutions and Mark Scheme

1. *(a)* 5 3.258096538 5.53.442019376 3.610917913 6 6.5 3.766997233 3.912023005 7 (5 values correct) **B**2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with h = 0.5**M**1 $I \approx 0.5 \times \{3.258096538 + 3.912023005\}$ $+4(3\cdot442019376+3\cdot766997233)+2(3\cdot610917913)\}$ 3 $I \approx 43 \cdot 22802181 \times 0.5 \div 3$ $I \approx 7.204670301$ $I \approx 7 \cdot 2$ (f.t. one slip) A1

Note: Answer only with no working earns 0 marks

(b)
$$\int_{5}^{7} \ln\left[\frac{3}{\sqrt{(1+x^{2})}}\right] dx = \int_{5}^{7} \ln 3 dx - \frac{1}{2} \int_{5}^{7} \ln (1+x^{2}) dx \qquad M1$$
$$\frac{1}{2} \int_{5}^{7} \ln (1+x^{2}) dx \approx 3.6 \qquad (f.t. \text{ candidate's answer to } (a)) \qquad B1$$
$$\int_{5}^{7} \ln\left[\frac{3}{\sqrt{(1+x^{2})}}\right] dx \approx 2.2 - 3.6 = -1.4 \qquad (f.t. \text{ candidate's answer to } (a)) \qquad A1$$

2.

(a)

$$6(\sec^2\theta - 1) - 6 = 4\sec^2\theta + 5\sec\theta.$$

(correct use of $\tan^2 \theta = \sec^2 \theta - 1$) M1 An attempt to collect terms, form and solve quadratic equation in sec θ , either by using the quadratic formula or by getting the expression into the form $(a \sec \theta + b)(c \sec \theta + d)$, with $a \times c =$ candidate's coefficient of $\sec^2 \theta$ and $b \times d =$ candidate's constant $2 \sec^2 \theta - 5 \sec \theta - 12 = 0 \Rightarrow (2 \sec \theta + 3)(\sec \theta - 4) = 0$ $\Rightarrow \sec \theta = -\frac{3}{2}$, $\sec \theta = 4$ $\Rightarrow \cos \theta = -\frac{2}{3}$, $\cos \theta = \frac{1}{4}$ (c.a.o.) A1 $\theta = 131.81^\circ$, 228.19° B1 B1

$$\theta = 131.81^{\circ}, 228.19^{\circ}$$
 B1 B1
 $\theta = 75.52^{\circ}, 284.48^{\circ}$ B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta = +, -, \text{ f.t. for 3 marks, } \cos \theta = -, -, \text{ f.t. for 2 marks}$ $\cos \theta = +, +, \text{ f.t. for 1 mark}$

(b) Correct use of sec
$$\phi = 1$$
 and $\tan \phi = \frac{\sin \phi}{\cos \phi}$ (o.e.) M1

$$\sin \phi = -\frac{3}{5}$$
 A1
 $\phi = 323 \cdot 13^{\circ}, 216 \cdot 87^{\circ}$ (f.t. for $\sin \phi = -a$) A1

(a)
$$\underline{d}(2y^3) = 6y^2 \underline{dy}$$
 B1
 $dx \qquad dx$

$$\frac{dx}{dx} = -3x^2 \frac{dy}{dx} - 6xy$$
B1

$$\frac{\mathbf{d}(-3x^2y) = -3x^2 \underline{dy} - 6xy}{dx}$$
B1

$$\frac{\mathbf{d}(x^4) = 4x^3, \ \underline{\mathbf{d}}(-4x) = -4, \ \underline{\mathbf{d}}(7) = 0$$
B1

$$\frac{\mathbf{d}x}{dx}$$
B1

$$\frac{dy}{dx} = \frac{4 - 4x^3 + 6xy}{6y^2 - 3x^2}$$
 (o.e.) (c.a.o.) B1

(b) (i) candidate's x-derivative =
$$7 + 4t$$
 B1
candidate's y-derivative = $\frac{(7 + 4t)r - (4 + 3t)m}{(7 + 4t)^2}$,

where r, m are integers M1
candidate's y-derivative =
$$\frac{(7+4t)3 - (4+3t)4}{(7+4t)^2}$$
 A1

$$\frac{dy}{dx} = \frac{\text{candidate's y-derivative}}{\text{candidate's x-derivative}}$$
M1

$$\frac{dy}{dx} = \frac{5}{(7+4t)^3}$$
 (c.a.o.) A1

(ii)
$$\frac{d}{dt} \left[\frac{dy}{dx} \right] = \frac{-3 \times 5 \times 4}{(7+4t)^4}$$
 (o.e.)

(f.t. candidate's expression of correct given form for dy) B1 dx

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \frac{dx}{dt}$$

(f.t. candidate's expression for $\frac{d}{dt} \left[\frac{dy}{dx} \right]$) M1
 $\frac{d^2y}{dx^2} = \frac{-60}{(7+4t)^5}$ (c.a.o.) A1

3.

(a) (i)
$$V(x) = 150 \Rightarrow x \times (x+4) \times (x-2) = 150$$
 M1
 $x^3 + 2x^2 - 8x - 150 = 0$ (convincing) A1

(ii) Let
$$f(x) = x^3 + 2x^2 - 8x - 150$$

Use of a correct method to find $f(x)$ when $x = 5$ and $x = 6$ M1
 $f(5) = -15 (< 0), f(6) = 90 (> 0)$
Change of sign $\Rightarrow 5 < x < 6$ A1

(b)
$$x_0 = 6$$

 $x_1 = 5.013297935$ (x_1 correct, at least 2 places after the point) B1
 $x_2 = 5.190516135$
 $x_3 = 5.163166906$
 $x_4 = 5.167508826 = 5.17$ (x_4 correct to 2 decimal places) B1
An attempt to check values or signs of $f(x)$ at $x = 5.165$ and
 $x = 5.175$ M1
 $f(5.165) = -0.178$ (< 0), $f(5.175) = 0.751$ (> 0) A1
Change of sign $\Rightarrow x = 5.17$ correct to two decimal places A1

5. (a) (i)
$$\frac{dy}{dx} = \frac{1}{2} \times (3x^2 + 5x)^{-1/2} \times f(x)$$
 ($f(x) \neq 1$) M1

$$\frac{dx}{dy} = \frac{1}{2} \times (3x^2 + 5x)^{-1/2} \times (6x + 5)$$
A1

(ii)
$$\frac{dy}{dx} = \frac{3}{\sqrt{(1 - (3x)^2)}}$$
 or $\frac{1}{\sqrt{(1 - (3x)^2)}}$ or $\frac{3}{\sqrt{(1 - 3x^2)}}$ M1
 $\frac{dy}{dx} = \frac{3}{\sqrt{(1 - 9x^2)}}$ A1

(b)
$$x = \cot y \Rightarrow \frac{dx}{dy} = -\csc^2 y$$
 B1

$$\frac{\mathrm{d}x}{\mathrm{d}y} = -\left(1 + \cot^2 y\right)$$
B1

$$\frac{\mathrm{d}x}{\mathrm{d}y} = -(1+x^2)$$
B1

$$\frac{dy}{dx} = -\frac{1}{1+x^2}$$
 (c.a.o.) B1

4.

6. (a) (i)
$$\int 8e^{2-5x} dx = k \times 8 \times e^{2-5x} + c$$
 (k = 1, -5, ¹/₅, -¹/₅) M1

$$\int_{0}^{\infty} 8e^{2-5x} dx = -\frac{8}{5} \times e^{2-5x} + c$$
 A1

(ii)
$$\int_{0}^{10} \frac{6(4x-7)^{-1/3}}{5} = \frac{6 \times k \times (4x-7)^{2/3}}{2/3} + c \quad (k = 1, 4, \frac{1}{4}) \qquad M1$$

$$\int 6(4x-7)^{-1/3} = \frac{6 \times 1/4 \times (4x-7)^{2/3}}{2/3} + c$$

$$\int 6(4x-7)^{-1/3} = \frac{9}{4} \times (4x-7)^{2/3} + c$$

A1

(iii)
$$\int_{0}^{3} \cos\left(\frac{7x-9}{3}\right) dx = k \times \sin\left(\frac{7x-9}{3}\right) + c \quad (k = 1, \frac{7}{3}, \frac{3}{7}, -\frac{3}{7}, \frac{1}{7})$$
M1

$$\int \cos\left[\frac{7x-9}{3}\right] dx = \frac{3}{7} \times \sin\left[\frac{7x-9}{3}\right] + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

(b) (i)
$$\frac{dy}{dx} = \frac{a+bx}{3x^2-8}$$
 (including $a = 1, b = 0$) M1
 $\frac{dy}{dx} = \frac{6x}{3x^2-8}$ A1

(ii)
$$\int_{2}^{6} \frac{3x}{3x^2 - 8} dx = r \left[\ln \left(3x^2 - 8 \right) \right]_{2}^{6}$$

where *r* is a constant

$$\int_{2}^{6} \frac{3x}{3x^2 - 8} \, dx = \frac{1}{2} \left[\ln \left(3x^2 - 8 \right) \right]_{2}^{6}$$
A1

M1

$$\int_{2}^{6} \frac{3x}{3x^2 - 8} \, dx = r \left\{ \ln \left(108 - 8 \right) \right) - \ln(12 - 8) \right\}$$
m1

$$\int_{2}^{6} \frac{3x}{3x^2 - 8} \, dx = \ln (5)$$
 (c.a.o.) A1

7. Choice of negative *x (a)* Correct verification that L.H.S. of inequality > 5 and a statement to the effect that this is in fact the case

$$b = -6$$
 B1

8. (a)
$$y-2 = \frac{3}{\sqrt{5x-4}}$$
 B1

An attempt to isolate 5x - 4 by crossmultiplying and squaring M1 $r = 1 \begin{pmatrix} 4 + 9 \end{pmatrix}$ Λ1

$$x = \frac{1}{5} \begin{bmatrix} 4 + \frac{9}{(y-2)^2} \end{bmatrix}$$
(c.a.o.) A1
$$f^{-1}(x) = \frac{1}{5} \begin{bmatrix} 4 + \frac{9}{(x-2)^2} \end{bmatrix}$$
(f.t. one clin in condidate's conversion for x) A1

(f.t. one slip in candidate's expression for *x*) A1

M1

A1

(b)
$$D(f^{-1}) = (2, 2.5]$$
 B1 B1

9. (a)
$$R(f) = [8 + k, \infty)$$
 B1

(b)
$$8+k \ge -3$$
 M1
 $k \ge -11$ (\Rightarrow least value of k is -11)
(f.t. candidate's $R(f)$ provided it is of form $[a, \infty)$) A1

(c) (i)
$$gf(x) = (4x + k)^2 - 9$$

(ii) $(4 \times 2 + k)^2 - 9 = 7$
(substituting 2 for x in candidate's expression for $gf(x)$
and putting equal to 7) M1
Either $k^2 + 16k + 48 = 0$ or $(8 + k)^2 = 16$ (c.a.o.) A1
 $k = -4, -12$ (f.t. candidate's quadratic in k) A1

$$k = -4, -12$$
 (1.1. candidate s quadratic in k) A1
 $k = -4$ (c.a.o.) A1

GCE Maths - C3 MS Summer 2017/ED

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - C4 0976/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics C4 June 2017

Solutions and Mark Scheme

1. (a)
$$f(x) \equiv \frac{A}{(x-1)^2} + \frac{B}{(x-1)} + \frac{C}{(x+4)}$$
 (correct form) M1
 $8x^2 + 7x - 25 \equiv A(x+4) + B(x-1)(x+4) + C(x-1)^2$
(correct clearing of fractions and genuine attempt to find coefficients)
 $A = -2, C = 3, B = 5$ (all three coefficients correct) A2
(If A2 not awarded, award A1 for either 1 or 2 correct coefficients)
(b) $\frac{9x^2 + 5x - 24}{(x-1)^2(x+4)} = \frac{8x^2 + 7x - 25}{(x-1)^2(x+4)} + \frac{x^2 - 2x + 1}{(x-1)^2(x+4)}$ M1
 $\frac{x^2 - 2x + 1}{(x-1)^2(x+4)} = \frac{1}{x+4}$ A1
 $\frac{9x^2 + 5x - 24}{(x-1)^2(x+4)} = \frac{-2}{(x-1)^2} + \frac{5}{(x-1)} + \frac{4}{(x+4)}$
(f.t. candidate's values for A, B, C) A1

2. (a)
$$\begin{array}{c} 6y^5 \underline{dy} - 12x^3 - 9x^2 \underline{dy} - 18xy = 0 \\ dx \\ \end{array} \qquad \qquad \begin{array}{c} \left[6y^5 \underline{dy} - 12x^3 \right] \\ \left[0 \\ dx \\ \end{array} \right] \\ \left[-9x^2 \underline{dy} - 18xy \right] \\ \left[0 \\ dx \\ \end{array} \right] \\ \end{array} \qquad \qquad \begin{array}{c} B1 \\ B1 \\ \end{array}$$

$$\frac{dy}{dx} = \frac{6xy + 4x^3}{2y^5 - 3x^2}$$
(convincing i.e intermediary line required) B1

(b)
$$y = 0 \Rightarrow x = 2 \text{ or } x = -2$$

At (2, 0), $\frac{dy}{dx} = -\frac{8}{3}$
B1
B1

At
$$(-2, 0)$$
, $\frac{dy}{dx} = \frac{8}{3}$ B1

 $5\cos^2\theta + 7 \times 2\sin\theta\cos\theta = 3\sin^2\theta$ *(a)* (correct use of $\sin 2\theta = 2\sin\theta\cos\theta$) M1 An attempt to form a quadratic equation in $\tan \theta$ by dividing throughout by $\cos^2\theta$ and then using $\tan\theta = \sin\theta$ m1 $\cos\theta$ $3\tan^2\theta - 14\tan\theta - 5 = 0$ (c.a.o.) A1 $\tan \theta = -\underline{1}$, $\tan \theta = 5$ (c.a.o.) A1 3 $\theta = 161.57^{\circ}$ **B**1 $\theta = 78.69^{\circ}$ **B**1 **<u>Note:</u>** F.t. candidate's derived quadratic equation in $\tan \theta$. Do not award the corresponding B1 if the candidate gives more than one root in that particular branch. Ignore roots outside range. (i) R = 4**R**1 *(b)*

(i)
$$R = 4$$

Correctly expanding $\cos(\phi - \alpha)$ and using either $4 \cos \alpha = \sqrt{5}$
or $4 \sin \alpha = \sqrt{11}$ or $\tan \alpha = \frac{\sqrt{11}}{\sqrt{5}}$ to find α
(f.t. candidate's value for R) M1
 $\alpha = 56^{\circ}$
(c.a.o) A1
(ii) Least value of $\frac{1}{\sqrt{5}\cos \phi + \sqrt{11}\sin \phi + 6} = \frac{1}{4 \times k + 6}$
($k = 1 \text{ or } -1$)
(f.t. candidate's value for R) M1
Least value $= \frac{1}{10}$
(f.t. candidate's value for R) A1
Corresponding value for $\phi = 56^{\circ}$ (o.e.)
(f.t. candidate's value for α) A1

3.

Volume =
$$\pi \int_{\substack{\pi/3 \\ J \\ \pi/6}}^{\pi/3} (\cos x + \sec x)^2 dx$$
 B1

Correct use of
$$\cos^2 x = \frac{(1 + \cos 2x)}{2}$$
 M1

Integrand =
$$\frac{(1 + \cos 2x)}{2} + 2 + \sec^2 x$$
 (c.a.o.) A1

$$\int a\cos 2x \, dx = \underline{a}\sin 2x \qquad (a \neq 0) \qquad B1$$

$$\int_{0}^{2} b \, dx = bx \text{ and } \int_{0}^{2} \sec^{2} x \, dx = \tan x \quad (b \neq 0)$$
B1

Correct substitution of correct limits in candidate's integrated expression of the form

 $px + q\sin 2x + \tan x \qquad (p \neq 0, q \neq 0) \qquad M1$

Volume =
$$\pi \times (4.566551037 - 2.102853559) = 7.74$$
 (c.a.o.) A1
Note: Answer only with no working earns 0 marks

5. (a)
$$(1+4x)^{-1/2} = 1 - 2x + 6x^2 + \dots$$
 $(1-2x)$ B1
(6x²) B1

$$|x| < \frac{1}{4}$$
 or $-\frac{1}{4} < x < \frac{1}{4}$ B1

(b)
$$1 + 4y + 8y^2 = 1 + 4(y + 2y^2)$$
 M1
 $(1 + 4y + 8y^2)^{-1/2} = 1 - 2(y + 2y^2) + 6(y + 2y^2)^2 + \dots$
(f.t. candidate's expression from part (a)) m1
 $(1 + 4y + 8y^2)^{-1/2} = 1 - 2y + 2y^2 + \dots$

$$(y + 8y^2)^{-1/2} = 1 - 2y + 2y^2 + \dots$$

(f.t. candidate's expression from part (*a*)) A1

4.

6. (a) candidate's x-derivative =
$$2at$$

candidate's y-derivative = $3bt^2$ (at least one term correct) B1
 $dy = candidate's y-derivative$ M1
 dx candidate's x-derivative
 $dy = 3bt$ (o.e.) (c.a.o.) A1
 $dx 2a$
Equation of tangent at P: $y - bp^3 = 3bp (x - ap^2)$
(f.t. candidate's expression for dy) m1
 dx
 $2ay = 3bpx - abp^3$ (convincing) A1

(b) Substituting 4a for x and 8b for y in equation of tangent M1

$$16ab = 12abp - abp^{3} \Rightarrow p^{3} - 12p + 16 = 0 \quad (convincing) \quad A1$$

$$(p-2)(p^{2} + 2p - 8) = 0 \quad M1$$

$$(p-2)(p-2)(p+4) = 0 \quad A1$$

$$(p-2)(p-2)(p+4) = 0$$

$$p = 2 \text{ corresponds to } (4a, 8b) \Rightarrow p = -4 \quad (c.a.o.)$$
A1

7. (a)
$$u = \ln x \Rightarrow du = \frac{1}{x} dx$$
 B1

$$dv = x^{-4} dx \Longrightarrow v = \frac{1}{-3} x^{-3}$$
 (o.e.) B1

$$\int \frac{\ln x}{x^4} dx = \frac{1}{-3} x^{-3} \times \ln x - \int \frac{1}{-3} x^{-3} \times \frac{1}{x} dx \qquad (o.e.) \qquad M1$$

$$\int \frac{\ln x}{x^4} dx = \frac{1}{-3} x^{-3} \times \ln x - \frac{1}{9} x^{-3} + c \qquad (c.a.o.) \qquad A1$$

(b)
$$\int_{0}^{1} x^{3}(x^{2}+1)^{4} dx = \int_{0}^{1} f(u) \times u^{4} \times du \quad (f(u) = pu + q, p \neq 0, q \neq 0) \quad M1$$

$$\int x^3 (x^2 + 1)^4 dx = \int \underline{(u-1)}_2 \times u^4 \times du$$
 A1

$$\int (pu^{5} + qu^{4}) \, \mathrm{d}u = \underline{pu^{6}} + \underline{qu^{5}}_{6}$$
B1

Either: Correctly inserting limits of 1, 2 in candidate's $\frac{pu^6}{6} + \frac{qu^5}{5}$ or: Correctly inserting limits of 0, 1 in candidate's

: Correctly inserting limits of 0, 1 in candidate's

$$\frac{p(x^2+1)^6}{6} + \frac{q(x^2+1)^5}{5}$$
m1

$$\int_{0}^{1} x^{3}(x^{2}+1)^{4} dx = \frac{43}{20} = 2.15$$
 (c.a.o.) A1

8. (a)
$$\frac{\mathrm{d}N}{\mathrm{d}t} = k\sqrt{N}$$
 B1

(b)
$$\int \frac{\mathrm{d}N}{\sqrt{N}} = \int k \,\mathrm{d}t$$
 M1

$$\frac{N^{1/2}}{\frac{1}{2}} = kt + c$$
 A1

Substituting 256 for N and 5 for t and 400 for N and 7 for t in candidate's derived equation m1 32 = 5k + c, 40 = 7k + c (both equations) (c.a.o.) A1 Attempting to solve candidate's derived simultaneous linear equations in k and c (k = 4, c = 12) m1

$$N = (2t + 6)^2$$
 (o.e.) (c.a.o.) A1

9. (a)
$$AD = AO + OD = -a + 2b$$
 B1
Use of $a + \lambda AD$ (o.e.) to find vector equation of AD M1
Vector equation of AD : $\mathbf{r} = \mathbf{a} + \lambda(-\mathbf{a} + 2\mathbf{b})$
 $\mathbf{r} = (1 - \lambda)\mathbf{a} + 2\lambda \mathbf{b}$ (convincing) A1

(b)
$$\mathbf{BC} = \mathbf{BO} + \mathbf{OC} = 5\mathbf{a} - \mathbf{b}$$
 B1
Vector equation of *BC*: $\mathbf{r} = \mathbf{b} + \mu (5\mathbf{a} - \mathbf{b})$
 $\mathbf{r} = 5\mu\mathbf{a} + (1 - \mu)\mathbf{b}$ (o.e.) B1

(c)
$$1 - \lambda = 5\mu$$

 $2\lambda = 1 - \mu$
(comparing candidate's coefficients of **a** and **b** and an attempt to solve)
M1
 $\lambda = \frac{4}{9}$ or $\mu = \frac{1}{9}$ (f.t. candidate's derived vector equation of *BC*) A1
OE = 5**a** + 8**b** (f.t. candidate's derived vector equation of *BC*) A1

$$\mathbf{DE} = \frac{5\mathbf{a}}{9} + \frac{8\mathbf{b}}{9} \qquad (\text{f.t. candidate's derived vector equation of } BC) \quad A1$$

10.
$$a^2 = 7b^2 \Rightarrow (7k)^2 = 7b^2 \Rightarrow b^2 = 7k^2$$
B1 \therefore 7 is a factor of b^2 and hence 7 is a factor of bB1 \therefore a and b have a common factor, which is a contradiction to the original assumptionB1

GCE Maths - C4 MS Summer 2017/ED

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - FP1 0977-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution	Mark	Notes
1(a)	$det(\mathbf{M}) = 6 - 4 + 2(3 - 4) + 3(8 - 9)$	M1	
(b)(i)	$= -3$ $adj(\mathbf{M}) = \begin{bmatrix} 2 & 8 & -7 \\ -1 & -7 & 5 \\ -1 & 2 & -1 \end{bmatrix}$	A1 M1A1	Award M1 if at least 5 correct elements
(ii)	$\mathbf{M}^{-1} = -\frac{1}{3} \begin{bmatrix} 2 & 8 & -7 \\ -1 & -7 & 5 \\ -1 & 2 & -1 \end{bmatrix}$	B1	FT if at least one M1 awarded
(c)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 2 & 8 & -7 \\ -1 & -7 & 5 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \\ 17 \end{bmatrix}$	M1	FT inverse in (b)(ii)
	$= \begin{bmatrix} 3\\1\\2 \end{bmatrix}$	A1	
2	$S_n = \sum_{r=1}^n (3r - 2)^2$	M1	
	$S_n = 9\sum_{r=1}^n r^2 - 12\sum_{r=1}^n r + 4\sum_{r=1}^n 1$	A1	
	$=\frac{9n(n+1)(2n+1)}{6}-\frac{12n(n+1)}{2}+4n$	A1	
	$=\frac{n(9(n+1)(2n+1)-36(n+1)+24)}{6}$	A1	
	$=\frac{n(18n^2+27n+9-36n-36+24)}{6}$	A1	
	$= 3n^3 - \frac{3}{2}n^2 - \frac{1}{2}n$	A1	
3	EITHER $ 1+2i = \sqrt{5}; -3+i = \sqrt{10}; 1+3i = \sqrt{10}$ arg(1+2i) = 1.107; arg(-3+i) = 2.820;	B2	For both moduli and arguments, B1 for 2 correct values
	$ \arg(1+3i) = 1.249$	B2	Accept 63.43°, 161.56°,71.56°
	$ z = \frac{\sqrt{5} \times \sqrt{10}}{\sqrt{10}} = \sqrt{5}$ cao arg(z) = 1.107 + 2.820 - 1.249 = 2.68 cao	M1A1 M1A1	Accept 153°

FP1 – June 2017 – Markscheme

Ques	Solution	Mark	Notes
	OR $\frac{(1+2i)(-3+i)}{(1+3i)} = \frac{(-5-5i)}{(1+3i)}$ $= \frac{(-5-5i)(1-3i)}{(1+3i)(1-3i)}$ (-20+10i)	(M1A1) (M1) (A1)	
	$= \frac{(-20+10i)}{10} = -2 + i$	(A1) (A1)	
	= -2 + 1 $z \models \sqrt{5}; \arg(z) = 153^{\circ} \text{ or } 2.68 \text{ rad}$	(B1B1)	FT from line above provided both M marks awarded and arg is not in the 1 st quadrant
4(a)	Reflection matrix = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1	
	$= \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{or} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
(b)	$= \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ Fixed points satisfy		Convincing, answer given
	$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	M1	
	$ \begin{array}{l} x = y - 1 \\ y = x - 2 \end{array} $	A1	A1 both equations
	These equations have no solution because, for example, $x = y - 1 = y + 2$ therefore no fixed points or algebra leading to $0 = 3$ or equivalent	A1	Convincing FT from line above provided it leads to no fixed point

Ques	Solution	Mark	Notes
5(a)	Using row operations,	M1	
	x + 3y - z = 1		
	7y - 4z = -1	A1	
	$14y - 8z = 3 - \lambda$	A1	
	It follows that		
	$3 - \lambda = -2$ $\lambda = 5$	A 1	
(b)	$\lambda = 3$ Let $z = \alpha$	A1 M1	FT from (a)
(U)		A1	I'I nom (a)
	$y = \frac{4\alpha - 1}{7}$	111	
	1		
	$x = \frac{10 - 5\alpha}{7}$	A1	
	i i i i i i i i i i i i i i i i i i i		
6	Putting $n = 1$ states that 8 is divisible by 8 which	B1	
	is correct so true for $n = 1$.		
	Let the result be true for $n = k$, ie	M1	
	$9^k - 1$ is divisible by 8 or $9^k = 8N + 1$		
	Consider (for $n = k + 1$)		
	$9^{k+1} - 1 = 9 \times 9^k - 1$	M1	
	=9(8N+1)-1	A1	
	=72N+8	A1	
	Both terms are divisible by 8	A1	
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and		
	since true for $n = 1$, the result is proved by		
	induction.	A1	Only award if all previous marks
			awarded
7(a)	Taking logs,		
	$\ln f(x) = \tan x \ln \tan x$	M1	
	Differentiating,		
	$\frac{f'(x)}{f(x)} = \sec^2 x \ln \tan x + \frac{\tan x \sec^2 x}{\tan x}$	A1A1	A1 for LHS, A1 for RHS
	$f(x) = \sec x \ln \tan x + \tan x$		
	$f'(x) = (\tan x)^{\tan x} \sec^2 x (1 + \ln \tan x)$	A1	
(b)	Stationary points satisfy	M1	
	$1 + \ln \tan x = 0$	TAT	
	1	A1	
	$\tan x = -\frac{1}{e}$		
	x = 0.35	A1	

Ques	Solution	Mark	Notes
8 (a)			
	$x + iy = \frac{1}{u + iv} \times \frac{u - iv}{u - iv}$	M1	
	$= \frac{u - iv}{u^2 + v^2}$	A1	
	$x = \frac{u}{u^2 + v^2}; y = \frac{-v}{u^2 + v^2}$	A1A1	
(b)(i)	Putting $x + y = 1$ gives	M1	FT from (a)
	$\frac{u-v}{u^2+v^2}=1$	A1	
	$u^2 + v^2 - u + v = 0$	A1	
	This is the equation of a circle		
(ii)	Completing the square,		
	$\left(u - \frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{1}{2}$	M1	
	The centre is $\left(\frac{1}{2}, -\frac{1}{2}\right)$	A1	
	The radius is $\frac{1}{\sqrt{2}}$	A1	
(c)	Putting $w = z$,	M1	Allow working in terms of
	$z^2 = 1$ giving $z = \pm 1$	m1	<i>x,y,u,v</i>
	The two possible positions are $(1,0)$ and $(-1,0)$	A1	

Ques	Solution	Mark	Notes
9(a)(i)	$\alpha + \beta + \gamma = -2$		
	$\beta\gamma + \gamma\alpha + \alpha\beta = 3$	B1	
	$\alpha\beta\gamma = -4$		
	1 1 $\beta^{2} \gamma^{2} + \gamma^{2} \alpha^{2} + \alpha^{2} \beta^{2}$	M1	
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2}{\alpha^2 \beta^2 \gamma^2}$		
	$=\frac{(\beta\gamma+\gamma\alpha+\alpha\beta)^2-2\alpha\beta\gamma(\alpha+\beta+\gamma)}{\alpha^2\beta^2\gamma^2}$	A1	
	$=\frac{3^2-2\times(-4)\times(-2)}{(-4)^2}$	A1	
	$=-\frac{7}{16}$		
(ii)	10	D1	Allow a less specific correct comment, eg not all the roots are
	There are two complex roots and one real root	B1	real
(b)	Let the roots be <i>a</i> , <i>b</i> , <i>c</i> .		
	$a+b+c = \frac{\alpha}{\beta\gamma} + \frac{\beta}{\gamma\alpha} + \frac{\gamma}{\alpha\beta}$		
	$=\frac{\alpha^2+\beta^2+\gamma^2}{\alpha\beta\gamma}$	M1	
	01/27		
	$=\frac{\left(\alpha+\beta+\gamma\right)^2-2(\beta\gamma+\gamma\alpha+\alpha\beta)}{\alpha\beta\gamma}$	A1	
	$=\frac{(-2)^2-2\times 3}{(-4)}$		
	$=\frac{1}{2}$		
	$-\frac{1}{2}$	A1	
	$bc + ca + ab = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = -\frac{7}{16}$	B 1	Can be implied by final answer
	$abc = \frac{1}{\alpha\beta\gamma} = -\frac{1}{4}$		
		B1	
	The required equation is		FT their previous values
	$x^{3} - \frac{1}{2}x^{2} - \frac{7}{16}x + \frac{1}{4} = 0$ (or equivalent)	M1A1	Award M1 for correct numbers irrespective of signs

GCE Maths (FP1) MS Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

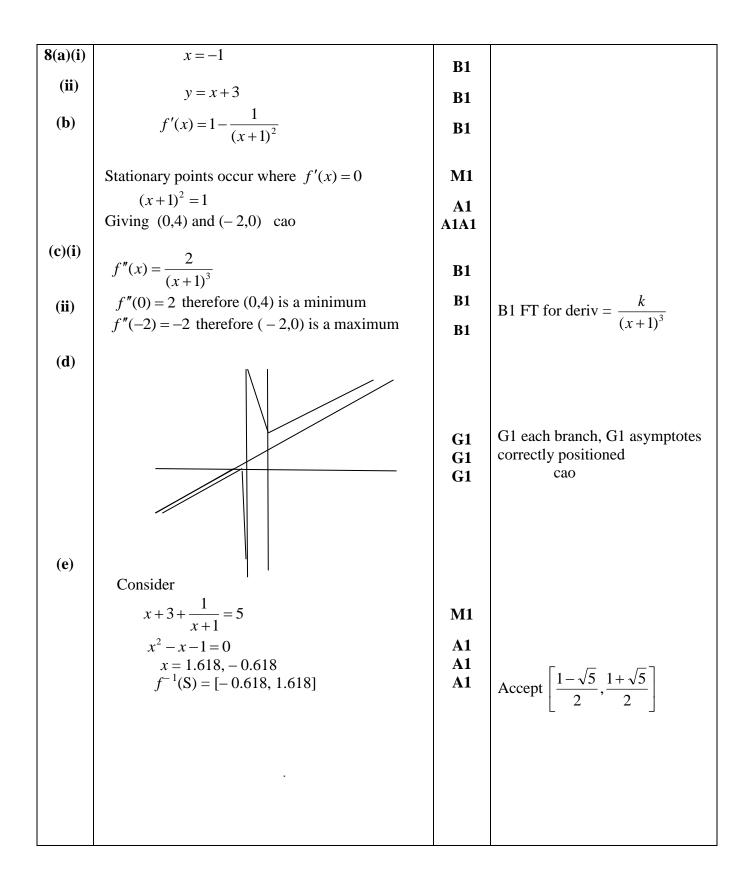
MATHEMATICS - FP2 0978-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.


WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution	Mark	Notes
1	Consider $f(-x) = \sec(-x) + (-x)\tan(-x)$	M1	M0 if particular value used
	$= \sec x + x \tan x (= f(x))$	A1 A1	This line must be seen
	Therefore f is even.	AI	
2	2222 + 5 $222 + 8$ 2 2		
	$\int_{0}^{2} \frac{2x^{2} + 5}{x^{2} + 4} dx = \int_{0}^{2} \frac{2x^{2} + 8}{x^{2} + 4} dx - \int_{0}^{2} \frac{3}{x^{2} + 4} dx$	M1A1	
	$= \left[2x\right]_{0}^{2} - \frac{3}{2} \left[\tan^{-1}\frac{x}{2}\right]_{0}^{2}$	A1B1	Award the B1 for a correct integration of $\frac{k}{r^2 + 4}$
	$=4-rac{3}{8}\pi$	A1	$x^{-} + 4$
3	$-8i = 8(\cos 270^{\circ} + i\sin 270^{\circ})$	B1B1	B1 modulus, B1 argument
	$Root1 = 2(cos 90^{\circ} + isin90^{\circ})$	M1M1	
			M1for $\sqrt[3]{mod}$, M1 for arg/3
	= 2i	A1	Special case – B1 for spotting 2i
	$Root2 = 2(\cos 210^\circ + i\sin 210^\circ)$	M1	
	$=-\sqrt{3}-i$	A1	
	$Root3 = 2(\cos 330^\circ + i\sin 330^\circ)$	A1	
	$=\sqrt{3}-i$	AI	
4(a)	Using deMoivre's Theorem, $z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos(-n\theta) + i\sin(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos(n\theta) - i\sin(n\theta)$ $= 2\cos n\theta$	M1 A1	
	$z^{n} - z^{-n} = \cos n\theta + i\sin n\theta - \cos(-n\theta) - i\sin(-n\theta)$	M1	
(b)	$=2isinn\theta$	A1	
	$(z+z^{-1})^5 = z^5 + 5z^3 + 10z + 10z^{-1} + 5z^{-3} + z^{-5}$ oe	M1A1	
	$= (z^{5} + z^{-5}) + 5(z^{3} + z^{-3}) + 10(z + z^{-1})$	A1	
	$= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	A1	
	$32\cos^5\theta = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$		
	$\cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$	A1	

FP2 – June 2017 - Mark Scheme

Ques	Solution	Mark	Notes
(c)	$\int_{0}^{\pi/2} \cos^{5}\theta d\theta = \int_{0}^{\pi/2} \left(\frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta\right) d\theta$	M1	FT from (b)
	$= \left[\frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta\right]_0^{\pi/2}$	A1	No A marks if no working
	$= \frac{1}{80} - \frac{5}{48} + \frac{5}{8}$	A1	Award FT mark only if answer
	$=\frac{8}{15}$	A1	less that 1
5	Rewrite the equation in the form $2\sin 2\theta \sin 3\theta = \sin 3\theta$	M1A1	Accept answers in degrees
	$\sin 3\theta (2\sin 2\theta - 1) = 0$	A1	recept unswers in degrees
	Either $\sin 3\theta = 0$	M1	
	$3\theta = n\pi$ giving $\theta = \frac{n\pi}{3}$	A1	
	Or		
	$\sin 2\theta = \frac{1}{2}$	M1	
	$2\theta = \left(2n + \frac{1}{2} \pm \frac{1}{3}\right)\pi$	A1	
	giving $\theta = \left(n + \frac{1}{4} \pm \frac{1}{6}\right)\pi$	A1	Accept equivalent forms
6(a)	Let $\frac{24x^2 + 31x + 9}{(x+1)(2x+1)(3x+1)} = \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{3x+1}$ $= \frac{A(2x+1)(3x+1) + B(x+1)(3x+1) + C(x+1)(2x+1)}{(x+1)(2x+1)(3x+1)}$	M1	
	x = -1 gives $A = 1$	A1	
	$x = -\frac{1}{2} \text{ gives } B = 2$ x = -1/3 gives C = 6	A1 A1	FT their <i>A</i> , <i>B</i> , <i>C</i> if possible
(b)(i)	$\int_{0}^{2} f(x) dx = \int_{0}^{2} \frac{1}{x+1} dx + \int_{0}^{2} \frac{2}{2x+1} dx + \int_{0}^{2} \frac{6}{3x+1} dx$	M1	Their answer should be $ln(3^{A}5^{B/2}7^{C/3})$ but only FT if this gives lnN
	$= \left[\ln(x+1)\right]_{0}^{2} + \left[\ln(2x+1)\right]_{0}^{2} + 2\left[\ln(3x+1)\right]_{0}^{2}$	A2	Award A1 for 2 correct integrals
(ii)	$(= \ln 3 + \ln 5 + 2 \ln 7)$ = ln 735 cao	A1	
	The integral cannot be evaluated because the interval of integration contains points at which the integrand is not defined.	B1	

7(a)	$\sqrt{(x-a)^2 + y^2} = x + a$	M1	
	$(x-a)^2 + y^2 = (x+a)^2$	A1 A1	Convincing
	$x^{2} - 2ax + a^{2} + y^{2} = x^{2} + 2ax + a^{2}$ $y^{2} = 4ax$	AI	
	y = 4ax		
(b)	EITHER		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2at, \frac{\mathrm{d}y}{\mathrm{d}t} = 2a$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{2at} = \frac{1}{t}$	A1	
	dx 2at t OR		
	$2y\frac{dy}{dx} = 4a$	(M1)	
		(A1)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{y} = \frac{1}{t}$	()	
	Gradient of normal $= -t$	A1	
	The equation of the normal is	A1	$y = -tx + at^3 + 2at$
(c)	$y - 2at = -t(x - at^2)$		
(()	EITHER		
	The normal intersects the parabola again where $2as - 2at = -t(as^2 - at^2)$	M1	
	=-at(s-t)(s+t)	A1	
	Cancelling $a(s-t)$ both sides because $s \neq t$,	A1 A1	
	2 = -t(s+t)		
	$s = -\frac{2}{t} - t$	A1	
	OR The normal intersects the parabola again where		
	$2as = -ats^{2} + at^{3} + 2at$ $ts^{2} + 2s - 2t - t^{3} = 0$	(M1) (A1)	
	Solving,		
	$s = \frac{-2 \pm \sqrt{4 + 8t^2 + 4t^4}}{2t}$	(M1)	
		(A1)	
	$= -\frac{2}{t} - t, t$	(,	
	(Rejecting t), 2	(A1)	
	$s = -\frac{2}{t} - t$		

GCE Maths (FP2) MS Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - FP3 0979-01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution	Mark	Notes
1	EITHER		
	Rewrite the equation in the form		
	$2\left(\frac{e^{\theta} - e^{-\theta}}{2}\right) + \frac{e^{\theta} + e^{-\theta}}{2} = 2$	M1A1	
	$3e^{\theta} - 4 - e^{-\theta} = 0$	A1	
	$3e^{2\theta}-4e^{\theta}-1=0$	A1	
	$e^{\theta} = \frac{4 \pm \sqrt{16 + 12}}{6}$	M1	
	= 1.548,(-0.215) $\theta = 0.437$	A1 A1	
	OR		
	Let $2\sinh\theta + \cosh\theta = r\sinh(\theta + \alpha)$ = $r\sinh\theta\cosh\alpha + r\cosh\theta\sinh\alpha$	(M1) (A1)	
	Equating coefficients, $r \cosh \alpha = 2$; $r \sinh \alpha = 1$ Solving,	(M1)	
	$r = \sqrt{3}$; $\alpha = \tanh^{-1}(0.5)$ (= 0.54930) Consider	(A1)	
	$\sqrt{3}\sinh(\theta + \alpha) = 2$	(M1)	
	$\theta + \alpha = \sinh^{-1}(2/\sqrt{3}) \ (= 0.98664)$	(A1)	
	$\theta = 0.98664 - 0.54930 = 0.437$	(A1)	
	0 - 0.98004 - 0.94930 - 0.437		
2	Putting $t = \tan\left(\frac{x}{2}\right)$		
	$[0,\pi/2]$ becomes $[0,1]$	B1	
	$dx = \frac{2dt}{1+t^2}$	B1	
	$I = 2\int_{0}^{1} \frac{2dt/(1+t^{2})}{1+2t/(1+t^{2})+2(1-t^{2})/(1+t^{2})}$	M1A1	M0 no working
	$= 4 \int_{0}^{1} \frac{\mathrm{d}t}{3 + 2t - t^{2}}$	A1	Accept
	$= 4 \int_{0}^{1} \frac{\mathrm{d}t}{4 - (t - 1)^{2}}$	m1	$= \int_{0}^{1} \left(\frac{1}{3-t} + \frac{1}{1+t} \right) dt$
	$= \left\lceil \ln \left(\frac{2+t-1}{2-t+1} \right) \right\rceil_{0}^{1}$	A1	Accept $= \int_{0}^{1} \left(\frac{1}{3-t} + \frac{1}{1+t} \right) dt$ $= \left[-\ln(3-t) + \ln(1+t) \right]_{0}^{1}$ $= \ln 3$
	$= \ln 3$	A1	$= \ln 3$

Ques	Solution	Mark	Notes
3	$y = x^3, \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	B1	
	$CSA = 2\pi \int_{0}^{1} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$	M1	
	$=2\pi\int_{-\infty}^{1}x^{3}\sqrt{1+9x^{4}}dx$	A1	
	Put $u = 1 + 9x^4$ $du = 36x^3 dx, [0,1] \rightarrow [1,10]$	M1 A1	
	$CSA = 2\pi \int_{1}^{10} u^{1/2} \frac{du}{36}$	M1	
	$= \left[2\pi \times \frac{u^{3/2}}{54}\right]_{1}^{10}$	A1	
	$= \frac{\pi}{27} (10^{3/2} - 1)$	A1	
	= 3.56	A1	

Ques	Solution	Mark	Notes
4 (a)	EITHER		
	$f(x) = \cos\ln(1+x)$		
	$f'(x) = -\sin\ln(1+x) \times \frac{1}{1+x}$	B1	
	$(1+x)f'(x) = -\sin\ln(1+x)$	B1	
	$(1+x)f''(x) + f'(x) = -\cos\ln(1+x) \times \frac{1}{1+x}$	M1	Convincing
	$(1+x)^2 f''(x) + (1+x)f'(x) + f(x) = 0$	A1	
	OR		
	$f(x) = \cos\ln(1+x)$		
	$f'(x) = -\sin\ln(1+x) \times \frac{1}{1+x}$	(B1)	
	$f''(x) = -\cos\ln(1+x) \times \frac{1}{(1+x)^2} + \sin\ln(1+x) \times \frac{1}{(1+x)^2}$	(B1)	
	$(1 + \lambda)$ $(1 + \lambda)$		
	$(1+x)^2 f''(x) + (1+x)f'(x) + f(x)$	(M1)	
	$= -\cos \ln(1+x) + \sin \ln(1+x) - \sin \ln(1+x) + \cos \ln(1+x) = 0$	(A1)	Convincing
(b)	Using the above results, f(0) = 1, f'(0) = 0, f''(0) = -1	B2	Award B1 for two correct values
	Differentiating again,		
	$2(1+x)f''(x) + (1+x)^2 f'''(x) + f'(x)$	M1	
	+ (1+x)f''(x) + f'(x) = 0	. 1	
	Therefore $f'''(0) = 3$	A1	
	The Maclaurin series is		
	$1 - \frac{1}{2}x^2 + \frac{3}{6}x^3 + \dots$ giving	A1	
	$1 - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots$		convincing
	$1 - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots$		
(c)	Differentiating,		
	$-\sin \ln(1+x) \times \frac{1}{1+x} = -x + \frac{3}{2}x^2 + \dots$	M1	
	$\sin \ln(1+x) = -(1+x)(-x + \frac{3}{2}x^2 + \dots))$	A1	
	$= x - \frac{3}{2}x^2 + x^2 + \dots$	M1	
	2		
	$= x - \frac{1}{2}x^2 + \dots$	A1	

Ques	Solution	Mark	Notes
5 (a)	$\tan(0.9)\tanh(0.9) - 1 = -0.0973$	B1	
	$\tan(1.1) \tanh(1.1) - 1 = 0.572$	B1	
	The change of sign indicates a root between 0.9	B1	
	and 1.1	DI	
(b)(i)	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\tan^{-1} \left(\frac{1}{\tanh \theta} \right) \right) = \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} \times -\frac{1}{\tanh^2 \theta} \times \operatorname{sech}^2 \theta$	M1A1A1	Do not award the second A1 if
	$d\theta ((\tanh \theta)) = 1 + \frac{1}{\tanh^2 \theta} = \tanh^2 \theta$		Do not award the second A1 if the required result is not derived
	$\frac{1}{2}$		the required result is not derived
	$= -\frac{1-\tanh^2\theta}{1+\tanh^2\theta}$		
	$1 + \tanh^2 \theta$		
(ii)	EITHER	B1	
	For $\theta > 0$, tanh θ lies between 0 and 1.	DI	
	Therefore $1 - \tanh^2 \theta < 1 + \tanh^2 \theta$ so that the		
	modulus of the above derivative is less than 1	B1	
	therefore convergent.		
	OR		
	For $\theta = 1$,		
	$\left -\left(\frac{1-\tanh^2\theta}{1+\tanh^2\theta}\right) \right = 0.266$	(B1)	
	$\left(1 + \tanh^2 \theta\right)$		
	This is less than 1 therefore convergent.	(B1)	
(c)(i)			
	Successive iterations give		
	1		
	0.9199161588	M1A1	
	etc		
(ii)	The value of α is 0.938 correct to 3 decimal		
		A1	
	places.	Al	

Ques	Solution	Mark	Notes
6(a)	$I_n = \int_0^{\pi/4} \tan^{n-2} x \tan^2 x dx$	M1	
	$I_n = \int_{0}^{\pi/4} \tan^{n-2} x (\sec^2 x - 1) dx$	A1	
	$= \left[\frac{\tan^{n-1}x}{n-1}\right]_0^{\pi/4} - I_{n-2}$	M1A1A1	convincing
	$=\frac{1}{n-1}-I_{n-2}$		
(b)	$\int_{0}^{\pi/4} (3 + \tan^2 x)^2 dx = \int_{0}^{\pi/4} 9 dx + \int_{0}^{\pi/4} 6 \tan^2 x dx + \int_{0}^{\pi/4} \tan^4 x dx$		
	$=9I_0+6I_2+I_4$	M1	
	π	A1	
	$I_0 = \frac{\pi}{4}$	B1	
	$I_2 = 1 - I_0 = 1 - \frac{\pi}{4}$	B1	
	$I_4 = \frac{1}{3} - I_2 = \frac{\pi}{4} - \frac{2}{3}$ Substituting above,	B1	
	$\int_{0}^{\pi/4} (3 + \tan^2 x)^2 d\theta = 9\frac{\pi}{4} + 6(1 - \frac{\pi}{4}) + \left(\frac{\pi}{4} - \frac{2}{3}\right)$ $= \frac{16}{3} + \pi$	M1	
	3	A1	

Ques	Solution	Mark	Notes
7 (a)	For C_1 consider		
	$x = r\cos\theta = \sqrt{3}\sin\theta\cos\theta$	M1	
	$=\frac{\sqrt{3}}{2}\sin 2\theta$		
	It follows that <i>x</i> is maximised at P when $\theta = \frac{\pi}{4}$.	A1	
	For C ₂ consider $y = r \sin \theta = \sin \theta \cos \theta$	M1	
	$=\frac{1}{2}\sin 2\theta$		
	It follows that <i>y</i> is maximised at Q when $\theta = \frac{\pi}{4}$	A1	
(b)(i)	Therefore O, P and Q lie on the line $\theta = \frac{\pi}{4}$. oe	A1	
	The graphs intersect where		
	$\sqrt{3}\sin\theta = \cos\theta$	M1	
	$\tan\theta = \frac{1}{\sqrt{3}}$	A1	
	$\theta = \frac{\pi}{6}, r = \sqrt{3}\sin\left(\frac{\pi}{6}\right) \operatorname{or} \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$	A1	Convincing
(ii)	Area of region = $\frac{1}{2} \int_{0}^{\pi/6} 3\sin^2\theta d\theta + \frac{1}{2} \int_{\pi/6}^{\pi/2} \cos^2\theta d\theta$	M1M1	M1 the integrals, M1 for addition
	$= \frac{3}{4} \int_{0}^{\pi/6} (1 - \cos 2\theta) d\theta + \frac{1}{4} \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta \text{oe}$	A1A1	Limits si
	$= \frac{3}{4} \left[\theta - \frac{1}{2} \sin 2\theta \right]_{0}^{\pi/6} + \frac{1}{4} \left[\theta + \frac{1}{2} \sin 2\theta \right]_{\pi/6}^{\pi/2}$	A1A1	Award A1 for one correct integration, A1 for fully correct line
	$= 0.221 \left(\frac{5\pi}{24} - \frac{\sqrt{3}}{4}\right)$	A1	

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

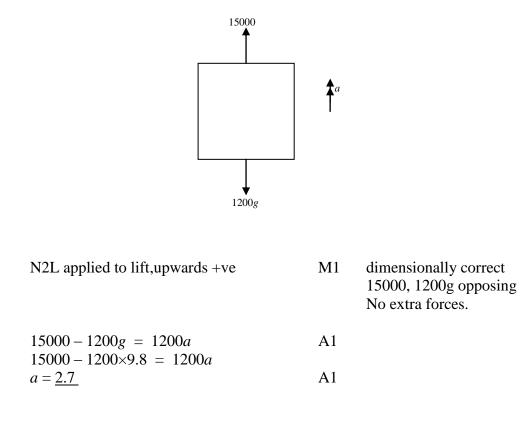
MATHEMATICS - M1 0980-01

© WJEC CBAC Ltd.

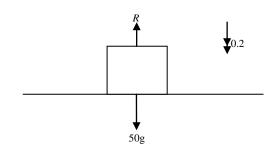
INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.


WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MATHEMATICS M1 (June 2017) Markscheme

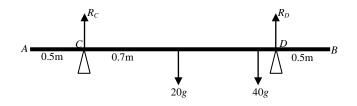

Q Solution Mark

Notes

1(a)

1(b)

N2L applied to crate, down +ve M1 50g - R = 50aA1

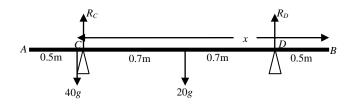

- R = 50(9.8 0.2)R = 480 (N)A1
- dimensionally correct R and 50g opposing. No extra forces.

Q	Solution	Mark	Notes
2(a)	Impulse on $Q = 2(7.5 - (-3))$ I = <u>21 (Ns)</u>	M1 A1	magnitude required.
2(b)	Conservation of momentum $6 \times 5 + 2 \times (-3) = 6v + 2 \times 7.5$ $v = 1.5 \text{ (ms}^{-1})$	M1 A1 A1	equation required. Allow 1 sign error cao speed required
2(c)	Restitution equation 7.5 - 1.5 = -e(-3 - 5) e = 0.75	M1 A1 A1	allow one sign error Ft v Ft v cao

2(d)	speed after rebound = 7.5×0.6	M1	
	= <u>4.5 (ms⁻¹)</u>	A1	cao allow -4.5

Notes

3.



3(a)	Moments about D	M 1	dimen correct equation All forces, no extra
	$40g \times 0.1 + 20g \times 0.7 = R_C \times 1.4$	B1 A1	any correct moment correct equation
	$R_C = \underline{126(N)}$	A1	cao
	Resolve vertically	M1	dimen correct equation All forces, no extra
	$R_C + R_D = 40g + 20g$	A1	
	$R_D = \underline{462(N)}$	A1	cao

Alternative method

Two simultaneous equations award B1 M1 A1 M1 A1 A1cao A1cao

3(b)

Moments about C

 $40g(x - 1.9) + R_D \times 1.4 = 20g \times 0.7$ Equilibrium on point of collapse when $R_D=0$. or if moments about point not *C* $R_C=60g$, (and $R_D=0$ implied).

 $40g(x-1.9) = 20g \times 0.7$ x = 2.25(m) M1 dimen correct equation All forces, no extra oe

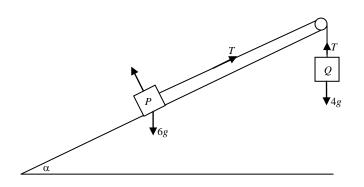
M1

A1

cao

Q	Solution	Mark	Notes
4(a)	using $v=u+at$, $u=0$, $v=15$, $t=50$ 15 = 0 + 50a $a = 0.3 \text{ (ms}^{-2})$	M1 A1 A1	cao
4(b)	N2L $T - R = ma$ 300 - $R = 800 \times 0.3$ R = 300 - 240	M1 A1	dim correct equation Ft <i>a</i>

$$R = \underline{60 (N)}$$
 A1 cao

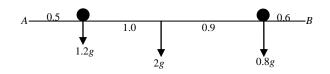

4(c) using
$$s=ut+0.5at^2$$
, $u=0$, $a=0.3(c)$, $t=50$ M1 oe
 $s = 0.5 \times 0.3 \times 50^2$ A1 FT a
 $s = 375$
Distance used in braking $= 500 - 375 = 125$

Using
$$v^2 = u^2 + 2as$$
, $u = 15$, $v = 0$, $s = 125(c)$ M1 oe
 $0 = 15^2 + 2 \times a \times 125$ A1
 $a = -\frac{15^2}{2 \times 125}$
 $a = -0.9$

$800 \times (-)(0.9) = (-)720$	B1	ft a
N2L		
-B-R=ma	M1	dim correct equation
B = 660 (N)	A1	cao

<u>Alternative</u>	
$(-)F = 800 \times (-)(0.9)$	(B1)
F = 720	
Force exerted by brakes = $720 - 60$	(M1)
= <u>660 (N)</u>	(A1) cao

Notes



5(a)
$$\sin \alpha = \frac{3}{5}$$

 $4g - T = 4a$ B1
N2L applied to second particle B1
 $T - 6g \sin \alpha = 6a$ A1
Adding $4g - 6g \times \frac{3}{5} = 10a$ m1
 $a = 0.04g = 0.392(\text{ms}^{-2})$ A1 cao mag req. accept 0.4
 $T = 3.84g = 37.632(\text{N})$ A1 cao accept 37.6/7
5(b) Using $v^2 = u^2 + 2as$, $u = 0$, $a = 0.392(\text{c})$, $s = 1.5$ M1 oe
 $v^2 = 2 \times 0.04g \times 1.5$ A1 Ft a
 $v = \frac{\sqrt{3g}}{5} = 1.0844(\text{ms}^{-1})$ A1 cao
5(c) Using $v = u + at$, $v = 0$, $u = \frac{\sqrt{3g}}{5}$ (c), $a = (\pm)0.6g$ M1 oe

$$0 = \frac{\sqrt{3g}}{5} - 0.6gt$$

$$t = 0.1844$$
Required time = $0.37(s)$
A1
Ft v from (b)
A1
cao
A1
Ft t, 2dp required.

6.

Take moments about B

$$(1.2g + 2g + 0.8g)x = 1.2g \times 2.5 + 2g \times 1.5 + 0.8g \times 0.6$$

$$x = 1.62 (m)$$

M1 dimensionally correct 4 terms equation, condone no g throughout.

Notes

- B1 any correct moment
- A1 correct equation
- A1

45g

accept sin α

or N2L with *a*=0 Dimensionally correct All forces, *T* and wt opp.

or N2L with *a*=0

previous N2L.

Dimensionally correct All forces, *T* and wt opp. *F* in opposite direction to

M1

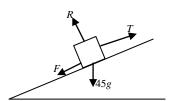
A1

m1

M1

A1

A1


M1

a=0

cao

Notes

7

Resolve perpendicular to plane $R = 45g \cos \alpha = (36g = 352.8)$ $F = 0.5 \times R = (18g = 176.4)$ N2L parallel to plane

For greatest T $T = 45g \sin \alpha + F$ T = 27g + 18gT = 45g = 441(N)

N2L parallel to plane

For least T		1
$45g\sin\alpha=T+F$	A1	<i>a</i> =0
$T = 45g\sin\alpha - F$		
T = 27g - 18g		
T = 9g = 88.2(N)	A1	cao

Condone absence of 'greatest/least' but if present must be correct for A1.

Q	Solution	Mark	Notes
8(a).	Areafrom $AF(x)$ from $AB(y)$ $ABEF$ 18059 BCD 90156Lamina270 x y	B1 B1 B1	areas correct, allow areas in proportion 2:1:3.
	Moments about <i>AF</i> $270x = 180 \times 5 + 90 \times 15$ 270x = 2250 $x = \frac{25}{3} = 8.3$	M1 A1	cao
	Moments about AB $270y = 180 \times 9 + 90 \times 6$ 270y = 2160 $y = \underline{8}$	M1 A1	cao
8(b)	Identification of correct triangle $\tan \theta = \left(\frac{10 - 25/3}{18 - 8}\right)$ $\theta = \tan^{-1} \left(\frac{5}{30}\right)$	M1 A1	Ft <i>x</i> , <i>y</i>

A1 FT *x*, *y* units not required but if present must be correct.

GCE Maths (M1) MS Summer 2017

 $\theta = \underline{9.5^{(o)}}$ or $\theta = \underline{0.165^{(c)}}$

© WJEC CBAC Ltd.

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - M2 0981-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Q	Solution	Mark	Notes
1(a)(i)	$\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}$	M1	differentiation attempted Vector required
	$\mathbf{v} = (\sin t + t \cos t)\mathbf{i} + (\cos t - t \sin t)\mathbf{j}$	A1	1.
	$(\text{mod } \mathbf{v})^2 = (\sin t + t \cos t)^2 + (\cos t - t \sin t)^2$ $= \sin^2 t + 2t \sin t \cos t + t^2 \cos^2 t$	M1	
	$\begin{aligned} &= \sin t + 2t \sin t \cos t + t \cos t \\ &+ \cos^2 t - 2t \sin t \cos t + t^2 \sin^2 t \\ &= 1 + t^2 \end{aligned}$	A1	Ft similar expressions
	Speed of $P = \sqrt{1+t^2}$	A1	cao

1(a)(ii) Momentum vector =
$$m\mathbf{v}$$

= 3[(sint + t cost) \mathbf{i} + (cost - t sint) \mathbf{j}] B1 ft \mathbf{v} (c)
= 3(sint + t cost) \mathbf{i} + 3(cost - t sint) \mathbf{j}

1(b) At
$$t = \frac{\pi}{6}$$
,
 $\mathbf{r} = \frac{\pi}{6} \sin \frac{\pi}{6} \mathbf{i} + \frac{\pi}{6} \cos \frac{\pi}{6} \mathbf{j}$ B1
 $\mathbf{r} = \frac{\pi}{12} \mathbf{i} + \frac{\pi\sqrt{3}}{12} \mathbf{j}$

If perpendicular, $\mathbf{r}.(b\mathbf{i} + \sqrt{3}\mathbf{j}) = 0$ M1

$$\left(\frac{\pi}{12}\mathbf{i} + \frac{\pi\sqrt{3}}{12}\mathbf{j}\right).(b\,\mathbf{i} + \sqrt{3}\,\mathbf{j})$$

$$= \frac{\pi}{12}b + \frac{\pi\sqrt{3}}{12} \times \sqrt{3}$$
M1A1 method correct, no \mathbf{i}, \mathbf{j}

$$\frac{\pi}{12}b + \frac{3\pi}{12} = 0$$

$$b+3 = 0$$

$$b = \underline{-3}$$
A1 cao

Q

2(a)
$$x = \int 4t^3 - 6t + 7 dt$$

 $x = t^4 - 3t^2 + 7t + (C)$
When $t = 0, x = 5$
 $C = 5$
 $x = t^4 - 3t^2 + 7t + 5$
When $t = 2$
 $x = 2^4 - 3 \times 2^2 + 7 \times 2 + 5$
 $x = 16 - 12 + 14 + 5$

$$x = 2 - 3x^{2} + 7x^{2} + 3$$

$$x = 16 - 12 + 14 + 5$$

$$x = \frac{23 \text{ (m)}}{2}$$

2(b)
$$a = \frac{dv}{dt}$$

 $a = 12t^2 - 6$
 $F = ma = 0.8(12t^2 - 6)$
When $t = 3$
 $F = 0.8(12 \times 3^2 - 6)$
 $F = \underline{81.6 (N)}$

M1	at least one power
A1	increased. correct integration
m1	initial conditions used
m1	used
A1	cao
M1	at least one power
A1	decreased.
M1	Ft a
A1	cao

B1

3(a).
$$T = \frac{P}{v}$$

 $T = \frac{12000}{3} = (4000)$

N2L

Q

$$T - mg \sin \alpha - R = ma$$

4000 - 3000×9.8×0.1 - 460 = 3000a
$$a = 0.2 \text{ (ms}^{-2})$$

$$a = 0$$

$$T - 10v - mg \sin \alpha - R = 0$$

$$\frac{12000}{v} - 10v - 3000 \times 9.8 \times 0.1 - 460 = 0$$

$$\frac{12000}{v} - 10v - 3400 = 0$$

$$12000 - 10v^2 - 3400v = 0$$

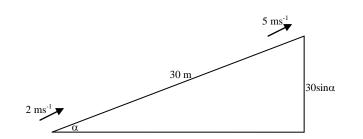
$$v^2 + 340v - 1200 = 0$$

$$v = \frac{-340 \pm \sqrt{340^2 + 4 \times 1200}}{2}$$

$$v = \underline{3.49}$$

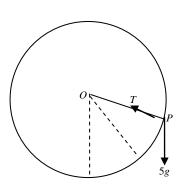
M1	dimensionally correct 4 terms, allow sin/cos
A1	
A1	cao
M1	dimensionally correct 4 terms, allow sin/cos
M1	4 terms, anow sm/cos
A1	

m1	dep on both M	
----	---------------	--


A1 cao answer rounding to 3.5.

Mark Notes

4(a)	initial vertical vel of $P = 15\sin 60^{\circ}$ = $\frac{15\sqrt{3}}{2} = 12.99$		
	initial vertical vel of $Q = v \sin 30^\circ$	B1	either correct expression
	use of $s = ut + 0.5gt^2$	M1	
	height of <i>P</i> at time $t = \frac{15\sqrt{3}}{2}t - 0.5gt^2$		
	height of Q at time $t = 0.5vt - 0.5gt^2$	A1	either
	For collision		
	$\frac{15\sqrt{3}}{2}t - 0.5gt^2 = 0.5vt - 0.5gt^2$	m1	
	$v = 15\sqrt{3} = 25.98$	A1	accept 26
4(b)	initial horiz vel of $P = 15\cos 60^{\circ}$ = 7.5 initial horiz vel of $Q = 15\sqrt{3}\cos 30^{\circ}$		
	= 22.5	B1	either
	For collision, 7.5t + 22.5t = 18 t = 0.6 (s)	M1 A1	convincing
4(c)	use of $v=u+at$, $u=\frac{15\sqrt{3}}{2}$ (c), $a=\pm 9.8$, $t=0.6$	M1	
	$v = \frac{15\sqrt{3}}{2} - 9.8 \times 0.6$ v = 7.1	A1	Ft u
	speed = $\sqrt{7.1^2 + 7.5^2}$ = <u>10.3(ms⁻¹)</u>	M1 A1	accept candidate's values cao

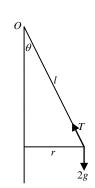

Q

KE at $t=0 = 0.5 \times 4000 \times 2^2$ KE at $t=0 = 8000$ (J) PE at $t=0 = 0$	M1A1	1 <i>v</i> =2 or 5
KE at $t=8 = 0.5 \times 4000 \times 5^2$ KE at $t=8 = 50000$ (J) PE at $t=8 = 4000 \times 9.8 \times h$ PE at $t=8 = 4000 \times 9.8 \times 30 \sin \alpha$ PE at $t=8 = 58800$ (J)	M1 A1	
WD by engine = 43000×8 WD by engine = 344000 (J)	B1	
Work-energy principle 8000 + 344000 = WD + 50000 + 58800 WD = 243200 (J)	M1 A1 A1	KE, PE and WD(2 terms) correct equation cao

Q

6(a)	conservation of energy	M1	KE and PE in equation
	$0.5mu^2 - mgl\cos 60^\circ = 0.5mv^2 - mgl\cos \theta$	A1A1	
	$v^2 = u^2 - 0.8g + 1.6g\cos\theta$	A1	cao
	$v^2 = u^2 - 7.84 + 15.68\cos\theta$		

6(b)	N2L towards centre	M1	dim correct equation T and $5g\cos\theta$ opposing
	$T - 5g\cos\theta = \frac{5v^2}{0.8}$	A1	
	$T = 5g\cos\theta + \frac{5}{0.8}(u^2 - 0.8g + 1.6g\cos\theta)$	m1	subt v^2 equivalent
	$T = 6.25u^2 - 5g + 15g\cos\theta$	A1	expressions cao, any correct expression
	$T = 6.25u^2 - 49 + 147\cos\theta$		expression


- 6(c)
 For complete circles,

 $T \ge 0$ when $\theta = 180^{\circ}$, ($\cos\theta = -1$).
 M1

 $6.25u^2 \ge 49 + 147$ $u^2 \ge 31.36$
 $u \ge 5.6$ A1
 cao
- 6(d) For complete circles, $v^2 \ge 0$ when $\theta = 180^\circ$, ($\cos\theta = -1$). M1 $u^2 \ge 7.84 + 15.68$ $u^2 \ge 23.52$ $u \ge 4.85$ A1 cao

7.

Q

7(a)	Resolve vertically $T\cos\theta = 2g$	M1 A1	allow <i>m</i>
	N2L towards centre of motion $T\sin\theta = 2r\omega^2$	M1	
	$T\sin\theta = 2r\omega$ $T\sin\theta = 2l\sin\theta\omega^2$	A1 A1	use of $r=l \sin\theta$
	$T = 2l\omega^2$		

$$2l \, \omega^2 \cos\theta = 2g$$
$$\cos\theta = \frac{g}{l\omega^2}$$

7(b)(i)
$$T\cos\theta = 2g, T = 20g$$

 $\cos\theta = 0.1$

B1

A1

7(b)(ii) $\cos\theta = 0.1$ and $\omega^2 = 3g$, $\cos\theta = \frac{g}{l\omega^2}$

$$0.1 = \frac{g}{l \times 3g}$$
$$l = \frac{10}{3}$$

7(b)(iii)Hooke's Law

$$T = \frac{\lambda x}{natural \ length}$$

$$20g = \frac{\lambda(\frac{10}{3} - 3)}{3}$$

 $\lambda = \underline{180g} = \underline{1764}$

M1 or 20g=2lx3g

convincing

- convincing A1
- **M**1 used, condone natural length=10/3, but *x* not10/3or 3
- A1 one of 10/3-3 or 3 correct
- A1 cao

7(b)(iv)EE =
$$\frac{\lambda x^2}{2(nat len)}$$
 M1 used
EE = $\frac{1764}{2 \times 3 \times 3^2}$
EE = $\frac{98}{3} = 32.67$ (J) A1 cao

GCE Maths (M2) MS Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - M3 0982-01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

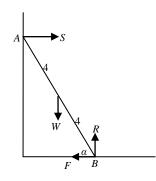
It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

<u>Mathematics M3 (June2017)</u> <u>Markscheme</u>

Q	Solution	Mark	Notes
1(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - x$		
	$\int \frac{\mathrm{d}x}{2-x} = \int \mathrm{d}t$	M1	sep variables,
		A 1	(2-x) required
	$-\ln 2-x = t + (C)$	A1	correct integration ft x-2
	When $t = 0, x = 0$ C = $-\ln 2$ $t = \ln \left \frac{2}{2-x} \right $		use of initial conditions ft if ln present.
	When $x = 1$ $t = \ln 2 = (0.693)$	A1	cao
	$e^{-t} = \frac{2-x}{2}$	m1	correct method inversion
	$x = 2(1 - e^{-t})$	A1	any correct exp. cao
1(b)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
	$\frac{d^2 x}{dt^2} = -(2-x) = x - 2$		
	$\frac{d^2 x}{dt^2} = 2(1 - e^{-t}) - 2$	m1	substitute for <i>x</i>
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -2e^{-t}$	A1	
	Alternative		
	$x = 2(1 - e^{-t})$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2e^{-t}$	(M1)(A	1)ft similar expressions
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -2e^{-t}$	(A1)	ft $\frac{\mathrm{d}x}{\mathrm{d}t} = -2e^{-t}$ only.

Q	Solution	Mark	Notes
	$P(3kg) \qquad \qquad$	A1 B1 m1 A1	allow +/-J cao cao

Q	Solution	Mark	Notes
3(a)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 6\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 0$		
	Auxilliary equation $m^2 - 6m + 5 = 0$	M1	
	(m-1)(m-5) = 0, m = 1, 5 G.S. is $x = Ae^{t} + Be^{5t}$	A1	ft 2 real roots
	When $t = 0$, $x = 8$ and $\frac{dx}{dt} = 16$	m1	used both
	A + B = 8		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = A\mathrm{e}^t + 5B\mathrm{e}^{5t}$	B1	ft similar expressions
	A + 5B = 16 Solving, $A = 6$, $B = 2$ $x = 6e^{t} + 2e^{5t}$	A1	both values cao
3(b)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 6\frac{\mathrm{d}x}{\mathrm{d}t} + 10x = 0$		
	Auxilliary equation $m^2 - 6m + 10 = 0$ m = 3 ± i	M1	
	C.F. is $x = e^{3t}(A\sin t + B\cos t)$	A1	ft complex roots
	Using initial conditions $B = 8$	m1	used both
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3\mathrm{e}^{3t}(A\sin t + B\cos t) + \mathrm{e}^{3t}(A\cos t - B\sin t)$	B1	ft similar expression
	$ \begin{array}{l} at \\ 16 = 24 + A, A = -8 \\ x = 8e^{3t}(-\sin t + \cos t) \end{array} $	A1	both values cao
3(c)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 6\frac{\mathrm{d}x}{\mathrm{d}t} = (12t - 26),$		
	Auxilliary equation $m^2 - 6m = 0$ m = 0, 6	M1	
	C.F. is $x = A + Be^{6t}$	A1	ft 0, another real root
	For P.I. try $x = at^2 + bt$	M1	allow <i>at</i> + <i>b</i>
	2a - 6(2at + b) = 12t - 26	A1	correct LHS
	a = -1	m1	comparing coefficients
	2a - 6b = -26, b = 4 x = A + Be ^{6t} -t ² + 4t	A1	both values cao
	8 = A + B		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 6B\mathrm{e}^{6t} - 2t + 4$	B1	ft similar CF+PI
	16 = 6B + 4 B = 2, A = 6	A1	both values cao
	b = 2, A = 0 $x = 2e^{6t} - t^2 + 4t + 6$		ooni values cao


Q	Solution	Mark	Notes
	N2L applied to <i>P</i>	M1	Dimensionally correct All forces
	$-3v^{2} = 0.5 \frac{\mathrm{d}v}{\mathrm{d}t}$ $\frac{\mathrm{d}v}{\mathrm{d}t} = -6v^{2}$	A1	convincing
4(b)	$-\int \frac{dv}{v^2} = 6\int dt$ $\frac{1}{v} = 6t + (C)$	M1	separating variables
	$\frac{1}{10} = 6t + (C)$	A1	correct integration
	When $t=0, v=2$	m1	use of initial conditions
	$C = \frac{1}{2}$ $\frac{1}{v} = 6t + \frac{1}{2}$ $v = \frac{2}{12t+1}$	A1	cao, any correct exp.
4(c)	$v\frac{dv}{dx} = -6v^2$ $\frac{dv}{dx} = -6v$	M1	
	$\int \frac{dv}{v} = -6 \int dx$	m1	separating variables
	$\ln v = -6x + (C)$	A1	correct integration
	when $x = 0, v = 2$ C = ln 2	m1	use of initial conditions
	$-6x = \ln v - \ln 2$ $v = 2e^{-6x}$	A1	cao, any correct exp.
4(d)	Rate of work = $F.v$ Rate of work = $3v^2 \times v$ Rate of work = $3(2e^{-6x})^3$	M1 A1	used
	Rate of work = $24e^{-18x}$	A1	cao, any correct exp.

Q	Solution	Mark	Notes
5(a)	$v^2 = -4x^2 + 8x + 21$	M1	attempt to differentiate
	$2v\frac{\mathrm{d}v}{\mathrm{d}x} = -8x + 8$	A1	or dv/dx=
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = -4(x-1)$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -4(x-1)$	A1	
	Let $y = x - 1$, $\frac{dy}{dt} = \frac{dx}{dt}$, $\frac{d^2 y}{dt^2} = \frac{d^2 x}{dt^2}$,		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -4y = -2^2 y$		
	Hence motion is simple harmonic	A1	convincing
	Centre of motion is $x = 1$	B1	
5(b)	$\omega = 2$	B1	
	$\text{Period} = \frac{2\pi}{2} = \pi$	B1	convincing
	Amplitude is given by x-1 when $v = 0$ -4x ² + 8x +21 = -4(x - 1) ² + 25 = 0	M1	v=0
	$(x-1) = \pm 2.5$ Amplitude = $a = 2.5$	A1	cao
	Alternative solution $v^2 = \omega^2 [a^2 - y^2]$ $v^2 = 2^2 [2.5^2 - (x - 1)^2]$	(M1)	attempt to write equation in correct form
	Hence $\omega = 2$	(B1)	
	Period = $\frac{2\pi}{2} = \pi$	(B1)	
	Amplitude = $a = 2.5$	(A1)	cao
	Alternative solution Amplitude is given when $v = 0$ $-4x^2 + 8x + 21 = 0$ (2x + 3)(2x - 7) = 0 x = -1.5, 3.5	(M1)	used
	amplitude = $3.5 - 1 = 2.5$	(A1)	cao

5(c)
$$(x-1) = 2.5 \sin(2t)$$
 M1
 $x = 2.5 \sin(2t) + 1$ M1
 $3 -1 = 2.5 \sin(2t)$ m1 use of 3-centre
 $2t = \sin^{-1}\left(\frac{2}{2.5}\right)$ m1 inversion ft a, ω ,centre
 $2t = 0.927295$
 $t = 0.4636$ (s) A1 cao

Notes

6(a)

Resolve vertically R = W

Resolve horizontally $S = F = \mu R = \mu W$

Moments about *B* $W \times 4\cos \alpha = S \times 8\sin \alpha$

 $16W = \mu W \times 8 \times 3$ $\mu = \frac{2}{3}$

B1

B1

M1 dim correct, all forces no extra except friction *A*

A1 cao

Q	Solution	Mark	Notes
6(b)	$A \xrightarrow{G} S$ $W \xrightarrow{B-x} R$ $F \xrightarrow{B}$		
	F = 0.6R $G = 0.6S$	B1	both
	Resolve vertically	M1	dimensionally correct
	G + R = W $0.6S + R = W$	A1	All forces, no extra
	Resolve horizontally	M1	dimensionally correct All forces, no extra
	S = F S = 0.6R	A1	
	$0.6 \times 0.6R + R = W$ $1.36R = W$		
	Moments about A	M1	dimensionally correct All forces, no extra
	$Wx\cos\alpha + 0.6R \times 8\sin\alpha = R \times 8\cos\alpha$	A2	-1 each error
	$1.36Rx\frac{4}{5} + 4.8R \times \frac{3}{5} = 8R \times \frac{4}{5}$	m1	substitute to obtain one
	5.44x + 14.4 = 32 5.44x = 17.6		common factor force
	$x = \frac{55}{17} = \underline{3.2353 \ (m)}$	A1	cao

GCE MATHEMATICS - M3 Mark Scheme Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S1 0983-01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

S1– June 2017 – Markscheme

Ques	Solution	Mark	Notes
1 (a)	(If A,B are independent,)P(A \cap B)= 0.2 × 0.3 = 0.06	B1	
	$(\text{Using P}(A \cap B) = P(A) + P(B) - P(A \cup B))$		
	EITHER $P(A \cap B) = 0.2 + 0.3 - 0.4 = 0.1$		
	OR $P(A \cup B) = 0.2 + 0.3 - 0.06 = 0.44$	B1	
	(A and B are not independent because)		
	EITHER $0.1 \neq 0.06$ OR $0.4 \neq 0.44$	B1	
(b)(i)	$P(A \cap B)$		FT from (a)
	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	M1	M0 if independence assumed
	$=\frac{1}{3}$	A1	
	So $P(A' B) = \frac{2}{3}$	A1	
	3		
(;;)	$P(A \cup B') = P(A) + P(B') - P(A \cap B')$	M1	M0 if independence assumed
(ii)			Mo if independence assumed
	$= P(A) + 1 - P(B) - \left(P(A) - P(A \cap B)\right)$	m1	
	$=\frac{4}{5}$		
	5	A1	
2(a)	$E(X^{2}) = \operatorname{Var}(X) + (E(X))^{2}$	M1	
	= 104	A1	
(-)			
(b)	$\mathrm{E}(Y) = 2\mathrm{E}(X) + 3$	M1	
	= 23	A1	
	$\operatorname{Var}(Y) = 4\operatorname{Var}(X)$	M1	
	= 16	A1	Award M0 for $2\times$, M1 for $4\times$
3(a)	(4)(3)(2)		
	P(1 each col) = $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} \times 6$ or $\frac{111111}{9}$	M1A1	
	$P(1 \text{ each col}) = \frac{-1}{9} \times \frac{-1}{8} \times \frac{-1}{7} \times 6 \text{ or } \frac{(1)}{(9)}$		M1A0 if 6 omitted
	$=\frac{2}{7}$ (0.286)	A1	
(b)	1		
	P(3 same col) =		
	$(4)_{+}(3)$		
	$4 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 1 \cdot (3)^{+}(3)$	M1A1	
	$9^{-x} + 7^{-x} + 7$		
	$\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} + \frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \text{ or } \frac{\binom{4}{3} + \binom{3}{3}}{\binom{9}{3}}$		
		A1	
	$=\frac{5}{84}$ (0.0595)	AI	
	84		

Ques	Solution	Mark	Notes
4(a)(i)	$P(at least 1 error) = 1 - e^{-0.8}$	M1	M0 exactly 1, M1 more than 1
	= 0.551	A1	Accept the use of tables
(ii)	$P(3^{rd} \text{ page } 1^{st} \text{ error}) = (1 - 0.551)^2 \times 0.551$	M1	FT $0.449^2 \times \text{answer to (a)}$
(b)(i)	= 0.111	A1	
	$p_n = (e^{-0.8})^n$ = $e^{-0.8n}$	M1 A1	Accept 0.449 for $e^{-0.8}$ A1 can be earned later
(ii)	Consider $e^{-0.8n} < 0.001$	M1	
()	$-0.8n\log < \log 0.001$	A1	Allow the use of = Accept solutions using tables or
	giving $n > 8.63$	A1	evaluating powers of $e^{-0.8}$
	Therefore take $n = 9$	A1	
5(a)(i)	<i>X</i> is B(10,0.7)	B1	
(ii)	$\mathrm{E}(X)=7$	B1	
	$SD(X) = \sqrt{10 \times 0.7 \times 0.3}$	M1	$\sqrt{210}$
	= 1.45	A1	Accept $\sqrt{2.1}, \frac{\sqrt{210}}{10}$
(iii)	Let $Y =$ Number of games won by Brian so that		
	<i>Y</i> is B(10,0.3) P($X \ge 6$) = $P(Y \le 4)$	M1	M0 no working
	$r(X \ge 0) - r(T \ge 4)$ = 0.8497	m1 A1	Accept summing individual probabilities
	- 0.6497		probabilities
(b)	Let G = number of games lasting more than 1 hour	B1	
	<i>G</i> is B(44,0.06) which is approx Po(2.64)	DI	si
	$P(G>2) = 1 - e^{-2.64} \left(1 + 2.64 + \frac{2.64^2}{2} \right) = 0.492$	M1A1	M0 no working
6(a)	$E(X) = \frac{1}{54} \left(2 \times 2^2 + 3 \times 3^2 + 4 \times 4^2 + 5 \times 5^2 \right)$	M1	
	=4.15 (112/27)		Allow MR for wrong range
		A1	
	$E(X^{2}) = \frac{1}{54} \left(2^{2} \times 2^{2} + 3^{2} \times 3^{2} + 4^{2} \times 4^{2} + 5^{2} \times 5^{2} \right) (18.11.)$	M1A1	
	$Var(X) = 18.11 4.1481^{2} = 0.904 (659/729)$	A1	
(b)			
	The possible values are 4,5,5	D1	si
	-	B1	51
	$P(Sum = 14) = \frac{4^2 \times 5^2 \times 5^2}{54^3} \times 3$	M1A1	
	= 0.191	A1	Accept 0.19

Ques	Solution	Mark	Notes
7(a)(i)	$P(+) = 0.05 \times 0.96 + 0.95 \times 0.02$	M1A1	
	= 0.067	A1	
(ii)	$\mathbf{P}(\text{diagonal}_{\perp}) = 0.05 \times 0.96$	D1D1	
	$P(disease +) = \frac{0.05 \times 0.96}{0.067}$	B1B1	FT denominator from (i)
	= 0.716 cao	B1	
(b)(i)	$P(2^{nd} +) = 0.716 \times 0.96 + (1 - 0.716) \times 0.02$	M1	FT from (a)
	= 0.693	A1	
(ii)	$P(disease 2^{nd} +) = \frac{0.716 \times 0.96}{0.693}$	M1	Accept
	= 0.992 cao (2304/2323)	A 1	0.05×0.96^2
		A1	$\frac{0.05 \times 0.96}{0.05 \times 0.96^2 + 0.95 \times 0.02^2}$
8(a)(i)	F(2) = 1	M1	
	so $12k = 1$ giving $k = \frac{1}{12}$	A1	Convincing
(ii)	Use of $F(x) = 0.95$	M1	
	$x^4 - x^2 - 11.4 = 0$	A1	
	$x^2 = 3.913$	A1	
	x = 1.98	A1	
(iii)	$P(X < 1.25 X < 1.75) = \frac{F(1.25)}{F(1.75)}$	M1	
	$=\frac{1.25^4-1.25^2}{1.75^4-1.75^2}$	A1	
	$1.75^{\circ} - 1.75^{\circ}$ = 0.14	A 1	
(b)(i)		A1	
(b)(i)	f(x) = F'(x)	M1	M1 for knowing you have to differentiate
	$=\frac{1}{6}(2x^3-x)$	A1	differentiate
(••)	0		
(ii)	Use of $E\left(\sqrt{X}\right) = \int \sqrt{x} f(x) dx$	M1	FT from (b)(i) if answer between
	$1 \int (2 \cdot 3 \cdot 3) dx$	A 1	1 and 2
	$=\frac{1}{6}\int\sqrt{x}(2x^3-x)\mathrm{d}x$	A1	
	$=\frac{1}{6}\left[\frac{4x^{9/2}}{9}-\frac{2x^{5/2}}{5}\right]^{2}$	A1	
	= 1.29	A1	
			1

GCE Maths (S1) MS Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S2 0984-01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

Ques	Solution	Mark	Notes
1(a)	E(X) = 2.0, E(Y) = 1.6	B1	si
	$\mathbf{E}(W) = \mathbf{E}(X)\mathbf{E}(Y)$	M1	
	= 3.2	A1	
	Var(X) = 1.2, Var(Y) = 1.28	B1	si
	$E(X^{2}) = Var(X) + [E(X)]^{2} = 5.2$	M1A1	
	$E(Y^2) = Var(Y) + [E(Y)]^2 = 3.84$	A1	
	$Var(W) = E(X^2)E(Y^2) - [E(X)E(Y)]^2$	M1	Allow
	= 9.73	A1	
(b)	$P(W=0) = P\{(X=0) \cup (Y=0)\}$	M1	$P(W=0) = 1 - P(X \ge 0)P(Y \ge 0)$
	$= P(X = 0) + P(Y = 0) - P\{(X = 0) \cap (Y = 0)\}$	m1	=1 - (1 - P(X = 0))(1 - P(Y = 0))
	$= 0.6^5 + 0.8^8 - 0.6^5 \times 0.8^8$	A1	$= 1 - (1 - 0.6^5)(1 - 0.8^8)$
	= 0.232	A1	= 0.232
2	Under H_0 , the number, X, of breakdowns in 100		
	days is Poi(80) which is approx N(80,80)	B1B1	
	$z = \frac{64.5 - 80}{\sqrt{80}}$	M1A1	Award M1A0 for an incorrect or
	•		no continuity correction and FT
	= - 1.73	A1	for the following marks $64 \rightarrow z = -1.79 \rightarrow p$ -value = 0.0367
	p-value = 0.0418	A1	$63.5 \rightarrow z = -1.84 \rightarrow p$ -value = 0.0329
	There is strong evidence to conclude that the mean	A1	
	number of breakdowns per day has been reduced.	AI	FT the <i>p</i> -value
3 (a)	90 th percentile = μ +1.282 σ	M1	
5(u)	= 128	A1	
	Let $X =$ weight of an apple, $Y =$ weight of a pear		
(b)	Let <i>S</i> denote the sum of the weights of 10 apples		
	Then $E(S) = 1100$	B1	
	$Var(S) = 10 \times 14^2$	M1	
	= 1960	A1	
	1000-1100		
	$z = \frac{1000 - 1100}{\sqrt{1960}}$	m1	
	= (-) 2.26	A1	
	Prob = 0.01191	A1	
(c)	Let $U = X_1 + X_2 + X_3 - Y_1 - Y_2$	M1	si, condone incorrect notation
	$E(U) = 3 \times 110 - 2 \times 160 = 10$	4.1	si, condone meorreet notation
	$Var(U) = 3 \times 14^{2} + 2 \times 16^{2} = 1100$	A1 M1A1	
	We require $P(U > 0)$	1411/71	
	$z = \frac{0-10}{\sqrt{1100}}$	m1	
	= (-) 0.30	A1	
	Prob = 0.6179	A1	
	1100 - 0.0177	AI	

S2 - June 2017 - Markscheme

Ques	Solution	Mark	Notes
4(a)	Let <i>x</i> , <i>y</i> denote distance travelled by models A,B		
	respectively. $\overline{1}$		
	$\bar{x} = 166.9; \bar{y} = 163.9$	B1 B1	
	Standard error = $\sqrt{\frac{2 \times 2.5^2}{8}}$ (=1.25)	M1A1	
	95% confidence limits are 166.9-163.9±1.96×1.25 giving [0.55,5.45]	M1A1 A1	
(b)	The lower end of the interval will be 0 if 1.25z = 3 z = 2.4 Tabular value = 0.008(2) cao Smallest confidence level = 98.4%	M1 A1 A1 A1	FT their SE and \bar{x}, \bar{y} (for the first two marks only)
5(a)(i)	Under H_0, X is B(50,0.75)	B1	si
	Since $p > 0.5$, we consider X' which is B(50,0.25)	M1	
	$P(X \le 31) = P(X' \ge 19) = 0.0287$	A1	
	$P(X \ge 44) = P(X' \le 6) = 0.0194$	A1	
	Significance level $= 0.0481$	A1	
(ii)	If $p = 0.5$, P(Accept H ₀) = P(32 $\le X \le 43$) = 1 - 0.9675 = 0.0325	M1 A1	
(b)(i)	Let <i>Y</i> now denote the number of heads so that		Award M1A0 for incorrect or no
	under H ₀ , Y is B(200,0.75) \cong N(150,37.5)	B1	continuity correction but FT for
	$z = \frac{139.5 - 150}{\sqrt{37.5}}$	M1A1	following marks $139 \rightarrow z = -1.80 \rightarrow p$ -value = 0.0359 $138.5 \rightarrow z = -1.88 \rightarrow p$ -value = 0.0301
	=(-)1.71	A1	*
	Tabular value $= 0.0436$	A1	Penultimate A1 for doubling line
	p-value = 0.0872 (accept 0.0873)	A1	above
(ii)	There is insufficient evidence to reject H_0 .	A1	FT the p-value

Ques	Solution	Mark	Notes
6(a)(i)	$f(x) = \frac{1}{b-a}, a \le x \le b$ = 0 otherwise	B1	Allow <
(ii)	$E(X^2) = \frac{1}{b-a} \int x^2 \mathrm{d}x$	M1	
	$= \frac{1}{b-a} \left[\frac{x^3}{3} \right]_a^b$	A1	Condone omission of limits
	$=\frac{b^3-a^3}{3(b-a)}$	A1	
	$=\frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$	A1	
(iii)	$=\frac{(b^2+ab+a^2)}{3}$		
	$Var(X) = E(X^{2}) - (E(X))^{2}$	M1	
	$=\frac{b^{2}+ab+a^{2}}{3} - \left(\frac{a^{2}+2ab+b^{2}}{4}\right)$	A1	
	$= \frac{4b^2 + 4ab + 4a^2 - 3a^2 - 6ab - 3b^2}{12}$ $= \frac{(b-a)^2}{12}$	A1	Convincing
(b)(i)	$E(Y) = \frac{1}{b-a} \int \frac{1}{x} dx$	M1	
	$=\frac{1}{b-a}\left[\ln x\right]_{a}^{b}$	A1	Condone omission of limits
	$=\frac{\ln b - \ln a}{b - a}$	A1	
(ii)	$P(Y \le y) = P\left(\frac{1}{X} \le y\right)$	M1	
	$= P\left(X \ge \frac{1}{y}\right)$	A1	
	$=\frac{b-\frac{1}{y}}{b-a}$		

Ques	Solution	Mark	Notes
(iii)	PDF = derivative of above line	M1	
	$=\frac{1}{(b-a)y^2}$	A1	

GCE Maths (S2) MS Summer 2017

wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S3 0985-01

© WJEC CBAC Ltd.

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

$\overline{x} = 59.1 \text{ si}$ Var estimate = $\frac{349425}{99} - \frac{5910^2}{100 \times 99} = 1.4545(16/11)$ (Accept division by 100 which gives 1.44) 99% confidence limits are 59.1±2.576 $\sqrt{1.4545/100}$ giving [58.8,59.4] cao	B1 M1A1	
(Accept division by 100 which gives 1.44) 99% confidence limits are $59.1\pm 2.576\sqrt{1.4545/100}$		
99% confidence limits are 59.1 \pm 2.576 $\sqrt{1.4545/100}$	N <i>T</i> 1 A 1	
$59.1 \pm 2.576 \sqrt{1.4545/100}$	N#1 A 1	
	N/1 A 1	
giving [58.8,59.4] cao	M1A1	M0 if 100 or $$ omitted, A1 correct z
	A1	
Let <i>S</i> denote the score on one of the dice. Then,		
$P(S \le x) = \frac{x}{6} \text{ for } x = 1,2,3,4,5,6$	M1	
So		
	A1	
$=\left(\frac{x}{6}\right)^3$		Convincing
$P(X = x) = P(X \le x) - P(X \le x - 1)$	M1	
$=\frac{x^3-(x-1)^3}{216} \left(\frac{3x^2-3x+1}{216}\right)$	A1	
A valid attempt at considering relevant	М1	
probabilities.		
Most likely value = 6	A1	
$\bar{x} = 41.1; \bar{y} = 34.9$	B1	
$s_x^2 = \frac{84773}{49} - \frac{2055^2}{49 \times 50} = 6.3775(625/98)$	M1A1	
$s_y^2 = \frac{61121}{49} - \frac{1745^2}{49 \times 50} = 4.5$	A1	
$SE = \sqrt{\frac{6.3775}{50} + \frac{4.5}{50}} =$	M1A1	M0 no working
	m1A1	
=2.57 (2.60) <i>p</i> -value = 0.005	A1 A1	
Very strong evidence in support of Mair's belief (namely that the difference in the mean weights of male and female dogs is more than 5kg)	A1	FT the <i>p</i> -value if less than 0.05
	$P(S \le x) = \frac{x}{6} \text{ for } x = 1,2,3,4,5,6$ So $P(X \le x) = P(\text{All three scores } \le x) = \left(\frac{x}{6}\right)^{3}$ $P(X = x) = P(X \le x) - P(X \le x - 1) = \frac{x^{3} - (x - 1)^{3}}{216} \left(\frac{3x^{2} - 3x + 1}{216}\right)$ A valid attempt at considering relevant probabilities. Most likely value = 6 $\overline{x} = 41.1; \ \overline{y} = 34.9$ $s_{x}^{2} = \frac{84773}{49} - \frac{2055^{2}}{49 \times 50} = 6.3775(625/98)$ $s_{y}^{2} = \frac{61121}{49} - \frac{1745^{2}}{49 \times 50} = 4.5$ [Accept division by 50 giving 6.25 and 4.41] $SE = \sqrt{\frac{6.3775}{50} + \frac{4.5}{50}} = 0.4664 (0.4617)$ $z = \frac{41.1 - 34.9 - 5}{0.4664} = 2.57 (2.60)$ $p-value = 0.005$ Very strong evidence in support of Mair's belief (namely that the difference in the mean weights	$P(S \le x) = \frac{x}{6}$ for $x = 1,2,3,4,5,6$ M1 So $= \left(\frac{x}{6}\right)^3$ A1 $= \left(\frac{x}{6}\right)^3$ M1 $P(X = x) = P(X \le x) - P(X \le x - 1)$ M1 $= \frac{x^3 - (x - 1)^3}{216}$ $\left(\frac{3x^2 - 3x + 1}{216}\right)$ M1 A valid attempt at considering relevant probabilities. M1 Most likely value = 6 A1 $\bar{x} = 41.1; \bar{y} = 34.9$ B1 $s_x^2 = \frac{84773}{49} - \frac{2055^2}{49 \times 50} = 6.3775(625/98)$ M1A1 $s_y^2 = \frac{61121}{49} - \frac{1745^2}{49 \times 50} = 4.5$ A1 [Accept division by 50 giving 6.25 and 4.41] M1A1 SE = $\sqrt{\frac{6.3775}{50} + \frac{4.5}{50}} = 4.5$ M1A1 $a = 2.57 (2.60)$ m1A1 A1 p -value = 0.005 Mair's belief (namely that the difference in the mean weights A1

S3 – June 2017 – Markscheme

Ques	Solution	Mark	Notes
4 (a)	$\hat{p} = 0.32$ si	B1	
	$\text{ESE} = \sqrt{\frac{0.32 \times 0.68}{75}} \ (= 0.05386) \text{ si}$	M1A1	
	95% confidence limits are 0.32±1.96×0.05386 giving [0.21,0.43]	M1A1 A1	M0 no working A1 correct z
(b)	The statement is incorrect because you cannot make a probability statement about a constant interval containing a constant value.	B1	
	EITHER The correct interpretation is that the calculated interval is an observed value of a random interval which contains the value of p with probability 0.95. OR	B1	
	If the process could be repeated a large number of times, then (approx) 95% of the intervals produced would contain p .	(B1)	
5 (a)	$\sum x = 306; \sum x^2 = 10407.52$	B1B1	
	UE of $\mu = 34$	B 1	No working need be seen
	UE of $\sigma^2 = \frac{10407.52}{8} - \frac{306^2}{72}$ = 0.44	M1 A1	M0 division by 9 Answer only no marks
(b)	DF = 8 si t-value = 2.306	B1 B1	M0 for using Z
	95% confidence limits are $34 \pm 2.306 \times \sqrt{\frac{0.44}{9}}$	M1	FT from (a)
	giving [33.5,34.5] cao	A1	

Ques	Solution	Mark	Notes
6(a)	$S_{xy} = 2744 - 140 \times 107.3 / 6 = 240.33$	B1	
	$S_{xx} = 3850 - 140^2 / 6 = 583.33$	B1	M0 no working
	$b = \frac{240.33}{0.412} = 0.412$	M1	
	583.33	A1	
	$a = 107.3 - 0.412 \times 140 = 8.27$	M1	
	$a = \frac{107.3 - 0.412 \times 140}{6} = 8.27$	A1	
(b)(i)	$H_0:\beta = 0.4$; $H_1:\beta \neq 0.4$	B1	
(ii)	SE of $b = \frac{0.2}{\sqrt{583.33}}$ (0.00828)	M1A1	
	Test statistic = $\frac{0.412 - 0.4}{0.00828}$	m1A1	
	= 1.45	A1	
	Tabular value $= 0.0735$	A1	
	p-value = 0.147	A1	Award for doubling line above
(iii)	The data support Emlyn's belief.	A1	FT the <i>p</i> -value

Ques	Solution	Mark	Notes
7(a)(i)	$E(X) = p + \frac{2(1-p)}{3} + \frac{3(1-p)}{3} + \frac{4(1-p)}{3}$	M1	
	$=\frac{3p+2-2p+3-3p+4-4p}{3}$	A1	
	3 = 3 - 2p	A1	
(ii)	$E(X^{2}) = p + (2^{2} + 3^{2} + 4^{2})\frac{(1-p)}{3}$	M1A1	$\left(\frac{29}{3} - \frac{26}{3}p\right)$
	Var(X) = $p + (2^2 + 3^2 + 4^2) \frac{(1-p)}{3} - (3-2p)^2$	A1	
	$= \frac{2}{3} + \frac{10}{3}p - 4p^2$	A1	
(b)(i)	$=\frac{2}{3}(1-p)(1+6p)$		
	$E(U) = \frac{3 - E(X)}{2}$	M1	M0 if no E
	$=\frac{3-(3-2p)}{2}$	A1	
(ii)	= p (Therefore <i>U</i> is an unbiased estimator)		
	$\operatorname{Var}(U) = \frac{1}{4} \operatorname{Var}(\overline{X})$	M1	
	$=\frac{\frac{2}{3}(1-p)(1+6p)}{4n}$	A1	
(c)(i)	Y is $B(n,p)$	B 1	
(ii)	$E(V) = \frac{E(Y)}{n}$	M1	M0 if no E
	$=\frac{np}{n}=p$	A1	
	(Therefore V is an unbiased estimator)		
(iii)	$Var(V) = \frac{Var(Y)}{n^2}$	M1	
	$=\frac{p(1-p)}{n}$ oe	A1	

(d) $\frac{\operatorname{Var}(U)}{\operatorname{Var}(V)} = \frac{\frac{2}{3}(1-p)(1+6p)}{4n} \div \frac{p(1-p)}{n}$ M1	Ques	Solution	Mark	Notes
$= \frac{1+6p}{6p} \text{ oe cao} \qquad A1$ $> 1 \text{ oe} \qquad A1$ Therefore V is the better estimator. A1 $A1$		$\frac{\text{Var}(U)}{\text{Var}(V)} = \frac{\frac{2}{3}(1-p)(1+6p)}{4n} \div \frac{p(1-p)}{n}$ $= \frac{1+6p}{6p} \text{ oe cao}$ $> 1 \text{ oe}$	M1 A1 A1	

CE Maths (S3) MS Summer 2017