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FOREWORD 

This book covers the requirements in Unit M2 of the new WJEC syllabus and also most 

of the topics required in the Unit MS. Statics, which is required in Unit MS is covered in 

the M3 book. 

The treatment of vectors is confined to those aspects which are relevant to Mechanics. 

We are indebted to a number of teachers who made various suggestions. In particular, we 

extend our thanks to Kevin McGuire, John Langley and Elwyn Davies who checked and 

sent us answers to exercises in the old Ml book, which are also used in this book. 

Every effort has been made to eliminate errors present in previous versions. However, 

any that remain are the responsibility of the authors. 
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Rectilinear Motion 

Chapter 1 

Rectilinear Motion 

After working through this chapter you should 

• be able, given one of displacement, velocity or acceleration as a function of time, to 

find the other two. 

• be able to solve simple problems involving forces dependent on time. 

1.1 Problems needing the use of calculus 

You have already learnt in Ml, chapter 4, how to solve problems involving motion in a 

straight line under constant acceleration. In this chapter, problems where acceleration 

depends on time will be considered. 

The basic relations between displacement x, velocity v and acceleration a are 

dx 
v 

dt 

dv d 2x 
a 

dt 

The simplest types of problems that can arise are those when x is given in terms of t and 

it is required to find v and/or a, or v is given in terms of t and a has to be found. 

Solutions to problems of this type only require differentiation ofthe given quantities. 

A slightly more complicated class of problems is that where a is given in telms of t and 

x has to be found. In these cases, the given quantities have to be integrated with 

respect to time. Every integration produces a constant of integration so that values of x 

and/or v must be known for some values of t. 

In dynamics, as you will find in the next chapter, force is directly propOliional to 

acceleration. Therefore problems involving the action of forces normally mean having 

to find v and/or x from a given acceleration. In practical circumstances the acceleration 
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may not be a function of t only but may depend on x and/or v. Problems of this type are 

harder to solve and will be considered in M3. 

Example 1.1 

The displacement of a particle at time t s is (t 3 + 4t 2 + 6t) m; find its velocity and 

acceleration. 

Differentiation with respect to t gives the velocity as (3t 2 + 8t + 6) ms -I and a further 

differentiation the acceleration as (6t + 8) ms . 

Example 1.2 

Find the acceleration of a particle at time t s given that its velocity is t sin 3t ms -I . 

The acceleration is found by differentiating the velocity with respect to time. In this 

case the product rule for differentiation has to be used, so the acceleration is 

(sin 3t + 3t cos 3t) ms 

Example 1.3 

Find the position of a particle at time t s given that its acceleration is t ms -2 and that at 

time t 0 the displacement of the particle from a fixed point and the velocity of the 

particle are 3 m and 6 ms -1 , respectively. 

In this case 
dv 

d! 
= t, 

where the velocity is v ms-I, and integrating this equation with respect to t gives 
1 2 1 v -t + constant. Since the velocity is 6 ms ... at time t 0 this gives the constant to 
2 

be 6. 

d, -'!"t 2 + 6 
dt 2 ' 

where x m denotes the displacement. Integrating this equation with respect to t 

x=-'!"t 3 + 6t + constant. Since the displacement is 3 m at time t = 0 substitution of 
6 

t = 0 into the expression for x gives the constant as 3. 

Therefore the displacement is (-'!"t 3 + 6t + 3)in. 
6 

An alternative method which would avoid introducing a constant 1S to integrate 

between 1 0 and t = t , this gives 

[x ] - [x j 
1 '6 t + 6t, 

at t at t 0 

substituting for [x ] as 3 gives the previous result. 
at t= 0 

2 
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The method to be used in problems where the acceleration is given in terms of t 

essentially consists, as in the above example, of two steps:-

(i) Integrate with respect to [ to find v, remembering to introduce an arbitrary constant 

or to integrate between limits if v is given for some value of t. 

(ii) Integrate the expression for v to find x, remembering to introduce a second constant 

or to integrate between appropriate limits if possible. Then find the constants using the 

given initial conditions. 

Example 1.4 

A particle moving under an acceleration of t ms -2 at time t s has a velocity of 

1 ms -J when [ 3 and its displacement from a given point is 4 m when [ 12. Find its 

displacement from the given point when t = 9. 

The velocity v ms -1 at time t s satisfies the equation 
dv 

= t 2 
• 

dt 

Integrating this with respect to t gives v = } [3 + c, where c is a constant Substituting 

v = 1 and t = 3 in this equation gives 1 = 9 + c, so that c = -8. Therefore 
dx 1 3 

dt = 3" t 8, 

where x m denotes the displacement This equation needs to be integrated again. One 

method is to integrate directly introducing another arbitrary constant and find this by 

using the value of x at t = 12. The altemative, which is the one used here, is to integrate 

fromt 12tot t. 

This gives 

[x] [x] 

at t at t = 0 

Substituting for the value of x at t 12 and evaluating x at t = 9 gives the 

displacement from x = 4 at time t = 12 as -1157.25 m. So the actual 

displacement is 1157.25 + 4 = -1153.25m 

In slightly more complicated problems, the form of the acceleration may differ from 

one time interval to another. In such cases, the general solutions should be found for 

each of the time intervals separately and the constants detem1ined from the given 

conditions. The values of x and v at the end of one time interval may be needed to 

work out the appropriate constants in the succeeding interval. 

3 
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Example 1.5 

A particle starts from rest with acceleration (2 + 6t) ms -2 at time t s and after 2 s the 

acceleration changes to the constant value of 14 ms -2 and is then maintained at this 

value. Find the distance covered in the first 5 s of the motion. 

For the first 2 s, 
dv 

dt 
2 + 6t. 

Integrating with respect to t gives v = 2t + 3t 2 + b, where b is a constant Substituting 

the values at t ° gives b = ° and so v = 2t + 3t 2
• A second integration with respect to 

t gives 

x t 2 +t 3 +C, 

where c is a further constant. At t = 0, x 0, and so c ° and so x t 2 + t 3. So after 

2 s the particle has velocity 16 ms -I and has covered a distance of 12 m. It now moves 

with a constant acceleration of 14 ms -2 with initial speed 16 ms -1 for a further time of 

(5 - 2) s 3 s. Using an equation for constant acceleration gives 
1 

s 16 x 3 + 2 x14 x 9 = Ill. 

Therefore the required displacement is (12 + 111) m 123 m. 

Exercises 1.1 

The following questions refer to a particle moving along Ox, where x m denotes the 

displacement from 0 of the particle at time t s, and v ms -I and Cl 111S -2 denote the 

velocity and acceleration in the sense of increasing x, at time t s. 

Ix 7t 4 +2t 3 +5,finda. 

2 v=3t 3 +4t 2 + 1, finda. 

3 a=24t2 +18t+2,v 2andx=Owhent=0;findx. 

4 a 20t 3 +12t 2
, x=lwhent=O,v 6whent=l;findx. 

5 a e -( , x = 2 and v 4 when t 0; find x. 

6 a = 6t when 0 ::; t ::; I, Cl 6 when t':i:. I, v = 1 and x = 0 when t 

find x for t 1 and t 2. 

7 Cl 24t 2 + 6 when 0 ::; t ::; I, a = 30t, t':i:. 1, v = 2 and x 1 when t 

find x for t > 1. 

1.2 Forces dependent on time 

O' , 

O' , 

In practical situations, forces acting will not be constant. For example, even for a car 

working at a constant rate the force will depend on velocity, and it is often not very 

straightforward to find the position and velocity given the force. You have already 

seen that finding the displacement from the force is 110t difficult when the force is 

constant. The other case which can be done fairly easily is that when the force is 

4 
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known in tenns of t. The equation of motion F ma gives the acceleration in tenns of t 

and therefore x and v can be found exactly as in 1.1. 

Example 1.6 

A particle of mass Oo4kg is moving under the action of a force in the positive 

x-direction which at time t s is 4 exp !.-- N and which acts for 0 ::; t ::; 4. At time t 0 the 
4 

particle is at rest at the point x = O. Find its velocity and displacement when t 4. 

Ifv ms -1 denotes the velocity in the positive x-direction, then Newton's second law 

gives 

004 dv 
dt 

t 
4 exp 

4 

Integrating this equation from t = 0 to t = t gives 

v = 40 (exp ~ - 1 J 
where the condition v 0 at t 0 has been used. Substituting t = 4 gives the velocity 

at t= 4 as 68.73 ms-I. 

Therefore 
dx ( t 'I 
dt = 4°l eXP4 1)' 

where x m denotes the displacement at time t s, and integrating this equation from t = 0 

to t t gives 

x 40(4exp !.-- t I 40(4) 
4 ) 

where the condition x = 0 at t = 0 has been used. Substituting t 4 gives the 

displacement at t 4 as 115m. 

Exercises 1.2 

1. A particle of mass m kg moves in a straight line under the action 0 f a force acting 

along the same straight line and which at time t s is m (2 + 6t )N. The particle is 

moving at 20ms -1 when t = 2. Calculate the speed of the particle when t O. 

2. A body of mass 2 kg starts from rest at 0 and moves along the x-axis under the 

action of a force (61 - t 2 )N acting in the positive x direction. What is the speed of 

the body (i) after 3s, (ii) after 9s from the start? 

3. A particle of mass m kg starts from rest at the origin and moves in a straight line 

under the action of a force along this line, which at time 1 s is O.2me 2I N. Find the 

velocity of the particle when t = 3, and the distance of the particle from the origin 

when t 2. 

4. A particle of mass m moves up a line of greatest slope of a smooth incline plane, the 

angle a made by this line of greatest slope with the horizontal being such that 

5 
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3 
tan Cl, = -. There is a force acting on the particle up this line of greatest slope 

4 

which at time t s is given by m (12 - 3t )N. Find the velocity acquired when starting 

from rest in (i) 2s, (ii) t s. Find the distance travelled in 3s from rest. 

Miscellaneous Exercises 1 
1 A particle P moves along the x-axis so that its velocity at time t s is v ms -] where 

v=9t 2 -4t+1. 

Given that P is at the origin when t = 0, find 

(a) the distance of P from the origin when t = 1, 

(b) the acceleration of P when t = 1. 

2 A particle moves along a straight line so that its acceleration at time t seconds is 

(6t - 8) ms -2. At t = ° seconds the particle passes through the fixed point 0 with a 

velocity of 4 ms -]. Find 

(i) the distance from 0 of the point where the particle first comes to instantaneous 

rest, 

(ii) the total time T seconds taken by the particle to return to the starting point, 

(iii) the greatest speed of the particle for 0< t < T. 

3 A particle moves in a straight line so that its speed at time t s is inversely 

proportional to (t + 3), and when t = 2 s, the particle has a retardation of 4/25 ms -2. 

Given that the particle is at 0 at time t = 0, find its distance from 0 when t = 1. 

4 The acceleration, at time t, of a particle moving in a straight line is k sin pt, where le 

and p are constants. At time t = ° the particle is at the point 0 and moving with 

velocity u. Show that its velocity at any subsequent time is 
k 

u + -(1 - cos pt). 
P 

Show that, for u = 0, the particle first comes to instantaneous rest after travelling a 
. 2nle 

dIstance of --2-' 

P 

5 A particle, moving in a straight line, starts from rest at time t = ° s, and at time t sits 

velocity v ms -] is given by 

v = 3t(t - 4) for o:s; t:S; 5 , v = 75/t 5:S; t:S; k, 

where le is a constant. 

(i) Sketch the velocity-time diagram for the particle for ° :s; t:S; k. 

(ii) Find the range of values of t for which the acceleration of the particle is 

positive. 

(iii) Show that the total distance covered by the particle in the interval ° :s; t:S; 5 is 

39 metres. 

(iv) Given that the distance covered by the particle in the interval 5 :s; t :s; le is also 

39 metres, find, to 2 significant figures, the value of k. 

6 
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6 In order to model the final stages of the motion of a bird it is assumed that its speed 

is (a + bt ) ms -] , where a and b are constants. The speed of the bird when t 0 is 

4 ms and it comes to rest when t 3. Find the values of a and b. 

A more refined model is then sought which is such that the acceleration of the bird 

is zero when it comes to rest. Assuming that in this case, v = p + qt + rt ,where p, 

q and r are constants, find the values of these constants. 

Detemline, for this model, the distance travelled by the bird in the last three seconds 

of its flight. 
7 A particle P of mass 0.2 kg is acted on by a variable force so that its velocity in 

ms -I at time t s is 16 - t 2
. Find the distance covered by P from time t 0 until it 

comes to rest instantaneously. Find also the force acting on the particle at time t s. 

8 Two bodies of mass I kg and 2 kg, initially at the points A and B respectively, start 

from rest at l 0 and move along the horizontal straight line AB. The first is acted 

on by a force of (6t + 2)N towards B and the second by a force of2 (12t 2 + 16)N 

towards A. Find 

(a) the speed of each body after 1 second, 

(b) the distances covered by each body during the first second. 

Given that the bodies collide after 1 second, find the distance AB. 

9 An electric train of mass M kg moves from rest along a straight level track. The 

tractive force of the motor, initially P N, decreases at a constant rate with time to 

RN over a period of T s and then remains constant at RN. The total resistance to 

motion is R N. Show that the acceleration a of the train at time t s after it starts to 

move is given, for 0 s t s T, by 

Ma = P + (R p)~ R. 
T 

Find the maximum speed achieved by the train and the distance it travels before 

reaching that speed. 

Find the power developed by the motor at time (i) T ,(ii) 3T . 
2 2 

lOA car of mass 1000 kg moves along a horizontal road with acceleration proportional 

to the cube root of the time t seconds after starting from rest. When t 27, the 

speed of the car is 8 ms -I. Find the rate at which the engine driving the car is 

working when t = 64. Frictional resistances may be neglected. 

7 
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Chapter 2 

Work, Energy and Power 

After working through this chapter you should 

• be able to calculate the work done by constant forces and those dependent only on 

position, 

• know what is meant by kinetic energy, potential energy and power, 

• be able to use the work-energy principle to find the work done by a force, 

• know when the total mechanical energy is conserved and use the principle of 

conservation of mechanical energy to solve simple problems, 

• be able to calculate the power necessary for engines such as water pumps to carry 

out their tasks. 

2.1 Work done by a constant force 
You will probably connect the word work with something which requires effort, for 

example if you push a wheelbarrow up a hill, or just cycle up a hill, you will feel that 

you have done some work. In Mechanics it is possible to give a precise definition of 

work which is, in fact, consistent with this general idea of expending effort. The 

simplest definition is for the case when the force is constant. 

The work done by a constant force moving a particle along a line is the product of the 

distance moved by the particle and the component of the force in the direction of 

motion. 

The work done by a force of I newton moving through I metre is the unit of work and 

is called the joule (1). 

The work done can be positive or negative according as to whether the force is acting 

towards, or away from, the direction in which the particle is moved. 

Example 2.1 

Find the work done by a horizontal force of magnitude 30 N which pushes a heavy 

parcel a distance of 4 m along a smooth floor. 

30N 

The work is the product of the distance and the component of force in the direction of 

motion and is therefore 30 x 4] = 120 J. 

8 
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Example 2.2 

The diagram shows a particle on a horizontal wire being pulled along by a constant 

force of magnitude 40 N inclined at an angle of 60° to the wire. Find the work done 

by the force in moving the particle a distance of 0.4 m along the wire. 

The component of force along the wire is 40 cos 60
0

N 20 N and therefore the work 

done is 20 x 0.4 J = 8 J. 

Sometimes it is not the work done by a force that is required but the work done 

against it and you have to be clear as to which you are calculating. For example if a 

parcel of mass m is lifted a vertical distance h then the work done by gravity is -mgh, 

since the component of gravity in the direction of the motion of the particle is -mg. 

In order to find the work that has to be done in the lifting, it is assumed that the lifting 

is carried out extremely slowly at a constant speed so that the total force acting is zero 

and the lifting force therefore exactly balances the force of gravity. The magnitude of 

the lifting force is therefore mg and the work done by the lifting force is mgh. For a 

wheelbarrow moving up a hill the force of friction and the component of the weight 

along the hill are both in the opposite direction to the motion and so the work done by 

them is negative. If the wheelbarrow is moving at a constant speed, then the pushing 

force just balances the other forces at all times and the work done by it is minus the 

work done by friction and gravity. In general the work done against a particular force 

is taken to be minus the work done by the force. 

Example 2.3 

A particle of mass 0.5 kg is pulled a distance of 4 m, at a constant speed, up a slope 

inclined at an angle a to the horizontal, where tan a 
3 
4' pulling force acts 

parallel to a line of greatest slope of the plane. The coefficient of friction between the 

particle and the plane is 0.5. Find the work done in this motion by the pulling force. 

R P 
\~ 

9 

2J3 
4 
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The left hand diagram diagram shows the forces acting on the particle with F, Rand P 

denoting the magnitudes of the friction force, the normal reaction and the pulling 

force, respectively. The reaction of the plane does no work since its component in the 

direction of motion is zero, similarly it is only the component of the weight along the 

plane that does work. There are two ways of carrying out the calculation. One way is 

to find the work done by the friction and the work done by gravity separately and add 

them together. The work done by the pulling force is then minus this work. The other 

way is to say, since the particle is moving at a constant speed and has therefore no 

acceleration, that the force acting along the plane is equal in magnitude but opposite 

in direction to the components of friction and gravity along the plane, and work out 

the work done by this force. This second method is the one that will be used. The 

reaction is found by resolving perpendicular to the plane and is 0.5 x 9.8 x cos Cl N. 
4 

The right hand diagram above shows that cos Cl ="5 and therefore the reaction is 3.92 

N and the force of friction is 1.96 N. The component of the weight down the plane is 

0.5 x 9.8 x sin Cl = 2.94 N. The total pulling force is therefore 

(2.94 + 1.96) N = 4.9 N. The work done is therefore 4.9 x 4 I = 19.61. 

Before calculating work done you should check that the force is constant before 

mUltiplying it by the distance moved. This method only makes sense for constant 

force. For forces which vary with position you need to use the definition in the 

following section. 

Exercises 2.] 

1 Find the work done by a horizontal force of magnitude 2 N pushing a particle a 

distance of 0.8 m along a horizontal surface. 

2 A climber of mass 55 kg, climbing at a constant speed, does 1000 J of work. Find 

the distance climbed. 

3 A parcel of mass 5 kg is lifted, at a constant speed, through a height of 5 m. Find, 

modelling the parcel as a particle, the work done against gravity. 

4 A particle of mass 0.2 kg is pulled at a constant speed of 5 ms- l along a rough 

horizontal surface. Given that the coefficient of friction is 0.3, find the work done 

against friction in 4 s. 

5 A patiicle of mass 0.3 kg is pulled at a constant speed up a smooth plane inclined 

at an angle of 20
0 

to the horizontal. Find the work done against gravity in moving 

the particle a distance of 3 m up the plane. 

6 A packing case is pulled a distance of 4 m at a constant speed across a horizontal 

floor by a rope attached to it and inclined at an angle of 40
0 

to the horizontal. 

10 
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Given that the total work done by the pulling force is 80 J, find the tension in the 

rope. 

7 A toboggan of mass 20 kg is pulled at a constant speed a distance of 12 m up a 

snowy slope inclined at an angle of 20° to the horizontal. The coefficient of 

friction between the toboggan and the snow is 0.6. Find 

(i) the work done against gravity, 

(ii) the work done against friction. 

Given that the toboggan is being pulled by a rope attached to its front, find the 

tension in the rope for the two cases when 

(a) the rope is parallel to the slope, 

(b) the rope is at an angle of 45° to the slope. 

8 A particle of mass 5 kg is pulled with constant speed up a plane inclined at an 

angle a to the horizontal, where sin a = 3 The coefficient of friction between the 
5 

plane and the particle is ~. Given that the pulling force acts along a line of 
3 

greatest slope, find the work done in moving the particle a distance of 10 m. 

9 A man and bicycle are of total mass 100 kg. He travels, at a constant speed, a 

distance of 1 km up a hill inclined at an angle a to the horizontal, where 

srn a _1_ The other resistances acting on him and directly opposing his motion 
20 

total 20 N. Find the total work done by the cyclist. 

10 The cyclist in the previous question is travelling at a constant speed down a hill 
1 

inclined at an angle a to the horizontal where sin a -- and does 1200 J of 
160 

work in travelling a distance of 400 m. Find, assuming that it is constant, the total 

resistance to his motion. 

2.2 Work done by a force dependent only on position 
If a force is not constant, but depends on position, then it is not sensible to define 

work as force times distance since you would not know at what point to calculate the 

force! In order to find a more sensible definition it is necessary to have a graphical 

interpretation of work. 

F F 

P \---_--,--__ ,.-__ 

o L-I ---'-a----:b--+· x o~1 --~a----~b----~. x 

11 
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If the component of force in the positive x direction is denoted by F then the left hand 

diagram shows the graph of F for a constant force of magnitude P and the right hand 

diagram a possible graph when F is not constant but depends on position i.e. x. If F 

has the constant value P, then the work done moving from x a to x = b is P(b - a); 

this is the area under the straight line in the left hand diagram. Therefore a sensible 

definition of the work done moving from x Cl to x b when F depends on x would 

be the area under the curve in the right hand diagram between the lines x Cl 

and x = b. This is the definition used, and since the area under a curve can be 

represented as an integral, the work done in a displacement of the point of application 

of the force from x Cl to x = b is defined as 
b 

JF(x)dx. 

This definition, as has been shown above, reduces to the original definition when the 

force is constant. 

The integral definition is actually valid for all forces but, when the force depends on 

other variables such as t and v, the integral is not easy to evaluate. 

Example 2.4 

When the displacement of a particle from the origin is x rn, the force acting on it is of 

magnitude (lO + 4e-X ) N and acts in the positive x direction. Find the work done 

when the particle moves from x = 0 to x 1. 

The work done is 
I 

J(lO+4e-x )dx J=lO-4(e- 1 I) J=14 4e- 1 J 

Exercises 2.2 

1 When a particle P is at a point on the positive x-axis at a distance of x m from the 

origin, the force in the positive x direction is of magnitude 4x N. Find the work 

done by the force when 

(i) the particle moves from the point x = 1 to x 2, 

(ii) the particle moves from the point x 4to x = 3. 

2 When the displacement of a particle from the origin is x rn, the force in the positive 

x direction acting on it is denoted by F(x) N. Find the work done in moving the 

particle from the point x = Cl to the point x = b when 

(i) F=4x 3 +3x 2 ,a=l,b 2, 

Oi) F=3+4e-x ,a=O,b 1, 

(iii) F = 4 Cl = 2, b 4. 

12 
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3 A truck is pulled along a straight horizontal track by a horizontal force whose 

magnitude, when the truck is at a distance of x m from its starting point, is 

(8 - 2~ ) N. Find the work done as the truck moves a distance of 100 m. 

2.3 Work done by the tension in an elastic string 

T 

As 'Ax - - - --
A 1< T . I I 

I 
I ----)J>-:+ s ..... : I ,....-- 0 S x 

If an elastic string has one end fixed at a point A and the other end is extended a 

distance s beyond its natural length, then Hooke's law shows that the tension T is of 

magnitude I::..~ where A is the elastic modulus and I is its natural length. This tension 
1 

acts away from the extended end as shown in the left hand diagram and therefore its 

component towards the fixed end is t.,s. The right hand diagram shows the variation 
I 

of tension with extension s. The magnitude of the work done by the tension when the 

string is extended from s 0 to s = x is therefore the area under the straight line 

between s 0 and s x; this is ;u-2. Since the tension is directed away from the 
21 

direction of extension, the work done by it in the extension is - ;u-2 . The same result 
21 

is obtained by integrating the force in the direction of the extension, i.e. 

s 0 and s = x, this gives 

;u-2 

21 

As t' -, rom 
1 

The particular letter used for the variable of integration is not very important, it is 

what is known as a dummy variable, but it is better, and avoids confusion, 110t to use 

as a variable of integration a variable which occurs in one of the limits. 

Therefore the work done against the tension in extending an elastic string a distance x 
o 2 

is AX and this can also be shown, in a similar way, to be true when a spring is 
21 

compressed a distance x. 

13 
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The work done against the tension in increasing the extension of an elastic spring 

from a to b is 

Exercises 2.3 

Find the work done in extending an elastic string of natural length 1 m and 

modulus le N a distance of x m from its unstretched length when 

1 1 = 2, le 100, x = 0.2. 

2 1 = 3, le = 300, x = OA. 
I 

3 1=2.5, le = 500,x= -
4 

Find the work done in increasing the extension of an elastic string of natural length 1 

m and modulus le N from a m to b m when 

4 1=2, le 300, a = 0.2, b = OA. 

S 1=3, le 600,a=OA,b=0.7. 

6 A light elastic string of modulus 30 Nand natural length 1 m hangs unstretched. 

Find the work done by a man in stretching the string a distance of 0.1 m. 

How much extra work is needed to extend the string by a further 0.3 m? 

7 An elastic string of natural length 1 m and modulus 50 N is horizontal and has one 

end fixed and is stretched by applying a force of 5 N to the other. Find the work 

done by this force. 

2.4 Kinetic energy and the work-energy principle 
The word energy occurs very often in everyday life and there are many different 

fonus of energy e.g. heat energy, electrical energy, chemical energy. The use of the 

word is often very loose but in any scientific work it is necessary to be a little more 

preCIse. 

The energy of a particle is its capability to do work. This is not a particularly clear 

definition but one which you may understand a little bit more clearly by considering 

one particular fonn of energy encountered in Mechanics. This is Kinetic Energy 

(K.E.), which, for a particle of mass m moving with speed v, is defined as ~ mv2. 

Kinetic energy is effectively the energy possessed by a particle by virtue of its 

motion. The unit of kinetic energy is the joule (1). 

The kinetic energy can be related to the capacity of a particle to do work by imagining 

a particle of mass m set off with speed v on a rough horizontal floor. The friction 

force will act in the opposite direction to the motion and reduce speed. The point of 

application of the force of friction moves and therefore the force does work until the 

particle comes to rest. Therefore the moving body had some capacity to do work. 
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This can be made more precise by assuming that the friction force F is constant so 

that the retardation of the particle is - F. Denoting the distance that the particle has 
In 

moved by s and applying v 2 F 
u 2 + 2as with v = 0, U = v and Cl = - glves 

In 

° 
o F 

v- - 2--s, 
In 

1 ) 
and therefore Fs = '2 InV-. Therefore the work done in reducing the speed to zero is 

equal to the particle's original kinetic energy. This should make clearer the idea of 

energy as a capability to do work. 

The above result relating the work done to a change in kinetic energy is a simple 

example of a general result proved in 2.7 which is known as the work-energy 

principle and which states that 

Change in K.E Total work done by the forces acting. 

This general principle can be used to solve many mechanical problems very simply. 

A particular advantage of using it is that there are some forces which do no work and 

they do not have to be considered at all. The simplest example of such forces is the 

reaction of a smooth surface, if a particle moves along such a surface then the reaction 

has no component in the direction of motion and therefore does no work. Another 

example is the tension in a taut light string. 

T 
• > 

A 

The tension act away from the ends as shown in the diagram, and if A moves a 

distance d then so does B and therefore the total work done is zero. This is still true if 

the string passes over a smooth pulley. 

Another advantage of using the work-energy principle is that, even if the precise 

nature of the forces acting is not known, it can be used to find the total work done, 

provided the change in kinetic energy is known. 

Many problems involving motion under constant forces can often be solved just as 

easily by using the constant acceleration formulae and it often is just a matter of 

preference which method you use. In examinations you may however be told 

something like "using energy considerations find ... ", and then you would have to use 

the work-energy principle. 

The principle of conservation of mechanical energy described in 2.5 is a very slight 

variant of the work-energy principle and in many circumstances is effectively 

identical to it. 
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Example 2.5 

A particle is dropped from rest at a height of 3 m above a horizontal floor, find the 

speed with which it hits the floor. 

The mass of the particle is not given and it will be denoted by m 

If the speed with which the paI1icle hits the floor is v ms -] then the in its 

kinetic energy is ~ mv 2 J. The force of gravity is acting in the direction of motion so 

the work done by it is 3 x 9.8 m J = 29.4 m J. Equating these gives v 2 58.8 and 

v 7.67. 

This problem can also be solved by using the constant acceleration formulae. 

The downwards acceleration is 9.8 ms-I and substituting a = 9.8, s 3, 

u o in v2 = u2 + 2as the same answer. 

Example 2.6 

A paliicle of mass 0.3 kg, dropped from a height of 4 m reaches a speed of 8 ms -) just 

as it hits the floor. Find the work done by air resistance. 

change in kinetic energy is ~ x 0.3 x 64 J = 9.6 J. 
2 

The work done by gravity is 0.3 x 4 x 9.8 J = 11.76 J. 

work-energy principle then gives 

9.6 11.76 + work done by air resistance, 

the work done by the air resistance is therefore -2.16 J, the minus sign showing that 

the resistance is acting in the opposite direction to the motion. 

Example 2.7 

A particle of mass 0.3 kg moves on a smooth horizontal plane under the action of a 

horizontal force of magnitude] 2 N. Find the speed of the particle after it has moved 

a distance of 5 m from rest. 

reaction of the plane does no work and neither does the force of gravity since it 

also is perpendicular to the motion. (These forces need not have to be considered 

separately since, as mentioned in 5.1 of Ml book, forces perpendicular to the line of 

motion are in equilibrium. Therefore the nett force is zero and therefore so is the work 

done). 

work done during the motion is therefore 12 x 5 J 60 J. This is equal to the 

change in kinetic energy, i.e. 1 0.3 x v 2 J, where the final speed is v ms -). This 
2 

v "400 = 20 .. 
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The acceleration along the plane of the particle is ~,~ ms -2 = 40 ms -2 and again 

using v 2 
U 2 + 2as with this value of a gives the same result 

Example 2.8 

A heavy parcel of mass 10 kg is pushed along a rough horizontal floor by a force and 

its speed increases from 1 ms -J to 2 ms -I whilst it travels a distance of 5 m. Given 

that the coefficient offriction is 0,5, find the work done by the pushing force. 

Find also this force for the two cases 

(i) when it is assumed to be constant, 

(ii) when it is assumed to be of the form /ex where x is the distance moved from the 

point where the speed is 1 ms -I , 

(i) The change in kinetic energy is 5 x (22 _12) J = 15 1. The reaction is 98 N and 

therefore the force of friction is 49 N, The force of friction acts in the opposite 

direction to the motion and therefore the work done by it is - 49 x 5] = - 245 J. 

The work done by gravity and by the nonnal reaction are, as in Example 2.7, zero. 

Therefore the work-energy principle gives 

15 J = Work done by pushing force -245 J, 

the work done by the pushing force is therefore 260 1. 

If the pushing force is assumed to be F N, then the work done would be 5F] so 

F 52, 

(ii) If the force is assumed to be of the fonn /ex N, where x m is the displacement 
5 

from the point where the speed is 1 ms -I, then the work done is f /ex d, J == 12,5 k1. 

This gives k = 20.8. 

Example 2.9 

A particle of mass 0,3 kg moves along the x-axis under the action of an attractive 

force directed towards the origin and of magnitude 6
2
- N when the particle is at a 

x 

distance of x m from the origin, It is projected in the positive x direction with a speed 

of] ° ms -I from the point where x 1. Find its speed for x = 2. 

Denoting the speed when x = 1 by V 1115 -I, the change in kinetic energy is 

(0.15v 2 0.15 x 100) J. The force is acting in the opposite direction to the motion so 
2 

fr' J (~ 
1 

the work done is J -3 J, 

17 



Work, Energy and Power 

The work energy principle gives 

0.15v 2 -15 =-3, 

glVlng v = -J86 8.94. 

Example 2.10 

When the displacement from the origin of a particle of mass 0.4 kg is x m, the 

component of force acting on it in the positive x direction is (8 + 6e-X) N. Given that 

the particle has speed 2 ms -1 at the origin, find its speed when x = 1. 

If the speed when the particle is at a distance of 1 m is denoted by v ms -1 , the change 

of kinetic energy is (0.2 v 2 
- 0.2 x 22 ) J = (0.2 v 2 

- 0.8) J. 

The motion is in the direction of the force and the work done moving from x = 0 to 
1 

X = 1 is f (8 + 6e-x )dx N. The work- energy principle gives 

1 

0.2 v2 - 0.8 f (8 + 6e-X )dx , 

1 

l.e. 0.2 v2 f (8 + 6e-')dx + 0.8 = 14.8 - 6e-1 = 12.59, 

gIvmg v = 7.93 ms-i. 

For problems where the forces acting are dependent only on position it is possible, 

from the work - energy principle, to derive the principle of conservation of 

mechanical energy. This is slightly simpler to apply in cases where all the forces are 

of a standard type. 

Exercises 2.4 

1 Find the kinetic energy of 

(i) a particle of mass 0.2 kg moving with a speed of 8 ms -I, 

(ii) a car of mass 800 kg moving at a speed of22 111S -I, 

(iii) a woman of mass 55 kg running at a speed of 4 111S -I . 

2 A car of mass 600 kg decreases its speed from 25 ms -I to 20 ms -I. Find the 

change in its kinetic energy. 

3 A particle of mass 0.4 kg moving with speed 20 ms -I has its kinetic energy 

suddenly reduced by 10 J. Find the new speed of the particle. 

4 A bullet of mass 0.02 kg moving with speed 100 ms -I enters a block of wood and 

comes to rest after moving a distance of 0.05 m. Find the resistance of the wood 

(i) assuming that it is constant, 

(ii) assuming that it is directly proportional to the distance the bullet has entered 

the wood. 
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5 When the brakes are applied, a car of mass 1000 kg comes to rest, from a speed of 

12 ms ~l, in a distance of 40 m. Assw11ing that the other resistances acting on the 

car are of magnitude 90 N, find the work done by the braking force. 

6 A car of mass 1000 kg is pushed by two men, one at each back corner. Each one 

exerts a force of 100 N at an angle of 15° to the direction of motion of the car and 

there is a constant resistance of magnitude 80 N acting. Find 

(i) the work done by the men in moving the car a distance of 10 m, 

(ii) the speed attained from rest in 10 m. 

7 A boy of mass 30 kg slides a vertical height of 5 m from rest down a water chute. 

Find the speed he attains. 

8 A man pushes a wheel barrow, of mass 35 kg, with a force of magnitude 20 N at 

an angle 30° to the horizontal. There is a resistance to motion of magnitude 10 N. 

Find, given that the wheel barrow is moved a distance of 10 m from rest, 

(i) the work done by the man, 

(ii) the speed attained. 

9 A ball of mass 0.4 kg thrown vertically upwards with a speed of 10 ms -I comes to 

instantaneous rest at a height of 4.5 m above the point of projection. Find the 

magnitude of the work done by the air resistance. Assuming that the magnitude of 

the work done by the air resistance is the same on the downwards path, find the 

speed with which the ball returns to the point of projection. 

10 The speed of a particle of mass 0.15 kg sliding on a rough floor decreases from 

7 ms -I to 4 ms -I while it moves a distance of 6 m. Find 

(i) the work done by friction, 

(ii) the coefficient of friction. 

11 A particle of mass 0.4 kg is projected with speed 15 ms -I up a rough plane 

inclined at an angle of 40° to the horizontal, the coefficient of friction being 0.3. 

Use the work-energy principle to find the distance that the particle moves up the 

plane before coming to rest. 

12 A particle of mass 0.5 kg, free to move along the x-axis, is attracted towards the 
. . 10 . 

ongm by a force N, when the particle is at a distance of x m from the ongin. 

Given that it is projected from the point x 1 with speed 10 ms -I in the positive x 

direction, find its speed when x = 2. 

13 A particle of mass 0.5 kg moves along the x-axis under the action of an attractive 

force directed towards the origin and of magnitude I
O

N when the particle is at a 

distance of x m from the origin. It is projected in the positive x direction with a 

speed of u ms from the point where x =0 1. Find the condition that u has to 

satisfy in order that the particle does not return to its initial position. 
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2.5 Potential energy and energy conservation 
For forces, like those considered in 2.2, which depend only on position it is possible 

to define a second forn1 of energy, the potential energy, which can be used to solve 

relatively complicated problems where more than one type of such force is involved. 

This approach is particularly useful where two or more standard type forces, such as 

gravity and the force in an elastic string, are involved. 

Potential Energy (P.E.) can only be defined for which depend on position and 

is the work done against the force to move its point of application (usually a particle) 

from a standard position to its present position. Alternatively it can be regarded as the 

work done by the force in moving its point of application from its present position to 

a standard one. Potential energy is energy possessed by a particle by virtue of its 

position. 

If the force in the positive x direction is F(x), the work done against it in moving from 

the standard position x = a to the position x x IS 
.Y 

f F(s)ds, 
a 

where the standard position (i.e. the position of zero potential Pl1,Qrn" IS X a. 

Potential energy due to gravity 

For the force of gravity, the standard position is often taken to be ground level, but 

any appropriate level is satisfactory. If x is measured upwards then the force in the x 

direction acting on a particle of mass m is -mg, so the potential energy due to gravity 

(the gravitational potential energy) at height h above the zero level is mgh. Similarly, 

the potential energy at height H below the zero level is 

If a particle is released from rest at a height 11 above ground, it immediately starts 

moving i.e. work is being done. This again is consistent with energy being a capacity 

to do work. By the time the particle reaches the ground, its potential energy is zero but 

it will have gained kinetic energy. 

In working out the gravitational potential energy of a particle you should remember 

that it is positive if the particle is above the zero level and negative if it is below this 

level. 

Potential energy of an elastic string 

For an elastic string, the zero of potential energy is the point where the string is just 

unstretched i.e. the extension s is zero. The work done the tension in 

. 'f' AS d x, IS I s extending the string, moving from s o to s where A is the 
21 

() 

elastic modulus and I is the natural length. The potential energy of a stretched string, 
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extended a distance x, is therefore "'f" As -ds= 
I 21 

This is sometimes called the elastic potential energy or the energy stored in the string. 

The same result holds for a spring compressed by a distance x. 

The potential energy is effectively a method of calculating the work done by 

particular kinds of forces and the idea of potential energy can be used to state the 

work-energy principle in a slightly different way. The details are given in 2.7 where 

it is shown that 

Total mechanical energy is constant provided all forces are 

dependent only on position, 

where the total mechanical energy is the sum of the kinetic energy and the potential 

energy of all the forces acting. 

This is the principle of conservation of mechanical energy, and forces which depend 

only on position are, for obvious reasons, called conservative forces. 

Forces which do no work, like those normal to the direction of motion and the tension 

in a taut string, can be ignored in working out potential energy. 

If there are non-conservative forces present, the principle of conservation of 

mechanical energy has to be replaced by 

Change in total mechanical energy = Work done by non-conservative forces. 

If a force is conservative, i.e. depends only on position, the work done in moving 
b 

from x a to x = b is IF(x)dx and the work done in going back from x b to 

a b 

x=alS IF(x)dx I FC x)dx. The total work done from x a to x = b and back 

from x b to x = a is therefore zero. Therefore another way of testing whether a force 

is conservative is to say that the total work from a point to another one and back is 

zero. This test can be used to show that frictional forces, which at first sight appear 

to be constant, are not conservative. If a particle slides on a rough horizontal plane, 

then there is a frictional force of magnitude ).lmg acting on the particle, where ).l is the 

coefficient of friction. Moving directly from x = 0 to x = a, the work done by the 

force of friction is -).lmga, since the motion is in the opposite direction to the force. 

On moving back from x a to x = 0, a further amount of work ).lmga is done by the 

friction force since it is again acting in the opposite direction to the motion. Therefore 

a non-zero amount of work is done moving from a point and then back:. Therefore 

frictional forces are not conservative. 

The principle of conservation of mechanical energy can be used whenever the forces 

are conservative but it is most useful in problems involving springs or strings and the 

force of gravity, since the potential energies for these are known. Questions involving 
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the use of conservation of energy will give information at various points of the motion 

and it is a good idea to set out a solution in a way which shows clearly the energies at 

these points and then apply the conservation of mechanical energy for all possible 

points. 

Example 2.11 

A particle of mass m is thrown vertically upwards with an initial speed u. Find (i) the 

greatest height reached, (ii) the speed when the particle is at a height h which is less 

than the greatest height. 

i 
H 

1 

.eH 

v 

t-J A 
h U 

i_ 1 0 

The points involved in the problem are the initial point 0, the point A at height hand 

the point B of greatest height which will be taken to be at a height H. At this point the 

speed will be zero. The speed at A will be denoted by v. 

At 0, 

At A, 

At B, 

P.E. = 0, 

P.E. = mgh, 

P.E. mgH, 

I ? 

K.E. "2 mu~, 
I ? 

K.E. = "2mv-

K.E. 0. 

Putting the total mechanical energy at 0 equal to that at B gives 
1 
-mu = mgH 
2 ' 

u2 

so that H = Equating the total mechanical energy at A to that at 0 gives 
2g 

I ? 
"2mv· + mgh 

Solving for v gives v ~~2 2gh. 

This particular problem could have been solved just as simply by using the equations 

of motion under uniform acceleration. 
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Example 2.12 

Diagram (a) shows two particles A and B of masses Sm and m attached one to each 

end of a light inextensible string passing over a smooth light pulley. Initially the 

particles are held at rest with the string taut and then released. Find, by using 

conservation of energy, the speed of A when it has dropped a distance d. 

The total work done by the tension is zero and therefore, if both particles are 

considered, the total mechanical energy is conserved. Both particles also move with 

the same speed and if one drops a distance d the other rises by the same distance. The 

initial position and that when particle A has dropped a distance d are shown in 

diagrams (a) and (b). 

Diagram (a) Particle A : K.E. 0, P.E. = 0, 

Particle B : K.E. 0, P.E. = 0. 

Diagram (b) , 
I 2 

Particle A K.E. = '2 Smv ,P.E. = -5mgd, 

Particle B K.E. 

Equating the total energy at both positions gives 

3mv" - 4 mgd= 0. 

V -- f4g3~' Therefore ~- -

1 1 '2 mv", P.E. mgd. 

This example could have been solved as in 5.3 m the Ml book by finding the 

acceleration and using the constant acceleration formulae but, in this instance, the use 

of conservation of energy avoids the calculation of acceleration. 

Example 2.13 

A particle is released from rest at a point A on a smooth plane inclined at an angle of 

30° to the horizontal. Find its speed when it has moved to a point B a distance of 8 m 

down the plane. 
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Apart from gravity, the only force acting on the particle is the reaction of the plane. 

This is perpendicular to the motion and does no work; therefore total mechanical 

energy is conserved. 

The mass is not given so it will be denoted by m kg and the speed at B will be denoted 

by v ms-I. At A the particle will be at a height of 8 x sin 30° m = 4 m above B. 
At A : K.E. = 0, P.E. = 1119.8 x 4 J 39.2m 1. 

AtB: K.E. 
1 2 "2 mv J, P.E. = O. 

Equating the total energies gives 

39.2m 
1 ? '2 1nV-, 

so that v2 = 78.4 and v 8.85. 

This problem could have been solved by finding the component along the plane of the 

force of gravity; this is t mg. The acceleration down the plane is therefore; g and the 

constant acceleration formulae can be used. 

Example 2.14 

A particle of mass 0.4 kg is attached to one end of an elastic string of modulus 2 N 

and natural length 0.25 m. The other end of the spring is attached to a fixed point 0 

on a smooth horizontal table. The string is extended a distance of 0.05 m and the 

particle then released from rest. Find 

(i) the speed of the particle when the string returns to its un stretched position, 

(ii) the speed when the extension is 0.02 m. 

--I 
o 

0.3 m __ 

• 
Q 

--0.25 m-__ 
I • vrns 
o A 

-1 
-- 0.27 rn---+ __ -1 

I • urns 
o B 

The diagrams show the initial position, when there is zero extension and when the 

extension is 0.02 m. 

There are three points that have to be considered, the initial point Q, the point A of 

zero extension and the point B with extension 0.02 m. The velocities at A and Bare 

denoted by v ms -I and Lt ms -I ,respectively. The nett force perpendicular to the table 

is zero and therefore does no work. 

The fonnula for the potential energy of an elastic string shows that when the string is 

2x2 
extended by x m its potential energy is J 

I 2 x 0.25 
4x2 J. 

AtQ, P.E. 4 x (0.05)2 = 0.01 J, K.E. O. 

AtA, P.E. 0, 
1 ; 

K.E. = 2 x O.4v- 0.2v" .I, 

At B, P.E. 4 x (0.02) 2 .I, ICE. 0.2u 1 J. 
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Equating the energy at Q to that at A gives 

0.2 = 0.01, 

so v 0.22. 

Equating the energy at Q to that at B gives 

0.2 u 2 + 4x(.02) 2 0.01, 

so that u = 0.2. 

Example 2.15 

A particle of mass 0.6 kg is attached to one end of an elastic string of modulus 352.8 

N and of natural length 0.5 m. The other end of the string is attached to a fixed point 

O. Initially the particle is held at 0 and released from rest. 

Find the maximum extension of the string. This is a model of bun gee jumping. 

o 

i 
xm 

1 
A 

The two positions of the particle are shown in the diagram. It will drop until it comes 

to instantaneous rest at the point A at a distance x m below 0, so the kinetic energy is 

zero at the start and the end of the motion. 

There are two terms which contribute to the potential energy, the gravitational 

potential energy and the elastic potential energy. The formula for the potential energy 

of the elastic string shows that the elastic potential energy when the particle is at a 

depth of x m below 0 is 352. .1 provided x> 0.5, otherwise it is zero. 
2 x 0.5 

At 0, Gravitational P.E. 0, 

Elastic P.E. 0, 

AtA, 

K.E. = O. 

Gravitational P.E. = - 0.6 x 9.8 x = - 5.88x .1, 

Elastic P.E. = 352.8(x - 0.5)2 J, 
2 x 0.5 

K.E. O. 

Equating the total energy at 0 and A gives 

352.8(x 0.5)2 
5.88x O. 

2 x 0.5 
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Expanding (x 0.5) 2 and collecting the terns in the equation gives 

352.8x 2 
- 358.68x + 88.2 = O. 

This is a quadratic equation for x. Using the formula for solving the quadratic gives 

the roots as 0.6 and 0.417. The equation obtained is only valid when the elastic string 

is taut, x> 0.5, so the correct solution is x = 0.6. 

Find the speed of the particle in the above example when the particle is 

(i) at a depth 0.3 m below 0, 

(ii) at a depth 0.55 m below O. 

(a) 

o 

r 
O.3m 

-I 
VIDS 

o 

r 
0.55 m 

j (b) 
Q I 1 

"urns 

Diagram (a) shows the point P corresponding to the first case and diagram (b) shows 

the point Q corresponding to the second case. The velocities at P and Q are denoted 

by v ms -I and u ms respectively. 

Case (i) 

The string will be slack at P and therefore will have no elastic potential energy. The 

point 0 is taken to be the zero level of potential energy. 

At 0, Gravitational P.E. = 0, 

Elastic P.E. = 0, 

AtP, 

Equating the total 

so that 

Case (ii) 

AtQ, 

K.E. O. 

Gravitational P.E. = - 0.6 x 9.8 x 0.3 J = - 1.764 J, 

Elastic P.E. 0, 
1 7 ) 

K.E. 2 x 0.6 v- J 0.3v- 1. 

at 0 and P gives 

0.3 1.764= 0, 

v = 2.42. 

Gravitational P.E. '" - 0.6 x 9.8 x 0.55 J = - 3.234 J, 

Elastic P.E. 352.8(0.55 - 0.5)2 J = 0.882 J, 
2 x 0.5 
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KE. = 0.3u 2 • 

Equating the total energies at 0 and Q gives 

0.3u 2 - 3.234 + 0.882 = O. 

The solution of this is u =2.8. 

Example 2.17 

A pm1icle of mass 0.4 kg is attached to one end of an elastic string of natural length 1 

m and modulus 19.6 N, the other end of the string being attached to a fixed point O. 

Initially the particle is in equilibrium with the string vertical. It is then pulled to a 

point A at a distance of 0.2 m below the equilibrium position and released from rest. 

Find 

(i) the length of the string in the equilibrium position, 

(ii) the speed of the particle when it is at a depth of 0.1 m below the equilibrium 

position, 

(iii) the position of the pmiicle when it next comes to rest. 

The first step is to find the equilibrium point E. If the extension of the string is y m 

then 

19.6y = 0.4 x 9.8, 
1 

so that y = 0.2 and so the length of the string in the equilibrium position is 1.2 m. 

i 
E 

lxm 
A B 

The diagram shows the initial point A of the particle and that when the particle is at a 

point B at a depth of x m below E. The extension in this position is (0.2 + x) m and 

h h . . . 19.6(0.2 +x)2 h'" l' . t erefore t e elastic potentIal energy IS T e 1111tlal e astIc potentIal 
2 

energy is found by substituting x = 0.2 in this. The zero of potential energy is taken at 

the equilibrium position. 

At A, Gravitational P.E. ~~ - 0.4 x 9.8 x 0.2 J = -0.784 J 

Elastic P .E. 
19.6(0.4 

J = 1.568 ] 
2 

K.E. = O. 

At B, Gravitational P.E. = 0.4 x 9.8 x J - 3.92x J 
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Elastic P.E. 
19.6(0.2 + x)2 
------J 

2 

K.E. 0.2v 2 J. 

Equating the total energies at A and B gives 

19. 2 
------'-- - 3.92x + 0.2v = 1.568 - 0.784. 

2 

The equation simplifies to 9.8x 2 0.2v 2 0.392. 

Substituting x = 0.1 gives v 1.21. 

Substituting v 0 gives x = ± 0.2 so the particle next comes to rest at a 

height of 0.2 m above the equilibrium position where the string just becomes slack. 

Since this point is not an equilibrium point, the total force there is not zero and 

therefore it will move away from it. You can check that the force at this point is 

directed downwards so the particle will move down. It will stop instantaneously at the 

point A and the cycle then repeats itself. 

Example 2.18 

Answer (ii) and (iii) of Example 2.17 when the particle is pulled a distance of 0.3 m 

below the equilibrium point. 

The only difference between this question and the previous one is that the initial 

position corresponds to x = 0.3. This means that the equation of energy is now 
19.6(0.2 + x)2 19. 5 

O.4x 9.8 x + 0.2v 2 
= - OAx 9.8 x 0.3. 

2 2 
Expanding (0.2 x) 2 and collecting terms gives 

9.8x 2 + 0.2v 2 0.882. 

Substituting x = 0.1 gives v = 1.98. 

Substituting v 0 gives x = ± 0.3 so the particle next comes to rest at a height of 

0.3 m above the equilibrium point. The string will however have become slack when 

the particle is at a distance of 0.2 m above the equilibrium position and therefore the 

above equation will only be valid for x S; 0.2. At this position 0.2v 2 0.49. 

From this position on, the only potential energy is that due to gravity and taking the 

zero of potential energy at this point gives, on applying conservation of energy 

0.49 0.4 x 9.8 h, where h denotes the height when the speed is zero and this is 

0.125. So the height above the equilibrium position is 0.325 m. 

Exercises 2.5 

1 Find the change in potential energy in the following cases 

(i) a particle of mass 0.3 kg moved upwards through a vertical distance of 1.5 m, 

(ii) a man of mass 60 kg walking a distance of 50 m along and down a hill 

inclined at an angle of 45° to the horizontal, 
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(iii) a stone of mass 2 kg dropped a distance of 5 m from a bridge. 

2 Find the increase in the gTavitational potential energy of a man of mass 70 kg who 

climbs to the tenth floor of a block of flats. (Ground floor is floor 0). The distance 

between the floors is 3 m. 

3 A stone is dropped from rest from a bridge to the water 10 m below, find the speed 

with which it hits the water. 

4 A particle is projected with speed 5 ms -I up a line of greatest slope of a smooth 

plane inclined at an angle of 40° to the horizontal. Use the principle of 

conservation of energy to find the distance the particle moves along the plane 

before coming to instantaneous rest. 

5 Answer the previous question when the plane is rough with coefficient of friction 

0.2. 

6 A particle of mass m rests on a smooth horizontal table and is connected by a light 

inextensible string, passing over a smooth pulley, to a particle of mass 3m. The 

particles are held at rest with the string taut and then released. Find, by using 

conservation of energy, the speed of the particles when the heavier one has 

dropped a distance h. 

7 Two particles of masses 0.8 kg and 0.6 kg are connected by a light inextensible 

string passing over a small smooth pulley. They are released from rest with the 

string taut. Find their speeds when the heavier particle has dropped a distance of 

0.2 m. 

8 

nJoDo01f601JlJl0 
The diagram shows a spring, with one end fixed, in a horizontal tube. The spring 

is of natural length 0.2 m and elastic modulus 160 N. A particle of mass 0.02 kg 

is placed on the free end and the spring compressed a distance of 0.05 m and then 

released. Find the speed of the particle when the spring is at its unstretched 

position. 

9 Two particles each of mass m are connected by a light elastic string of natural 

length a and modulus 4 mg. The string lies on a smooth horizontal table and is 

stretched by equal forces until it is of length 1.6a. Both particles are then released 

simultaneously. Assuming that both particles move with the same speed, find the 

value of the speed when they are a distance a apart. 

In questions 10 to 12, one end of a light elastic string, of modulus kmg N and natural 

length I m, is fixed at a point 0 and a particle of mass In kg is attached to the other 

end. The particle is then released from O. Find the extension of the string when the 

patiicle first comes to instantaneous rest. 

10 k I,! = 1. 
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In questions 13 to 14, one end of a light elastic string, of modulus kmg N and natural 

length I m, is fixed at a point 0 and a particle of mass m is attached to the other 

end. The particle is initially at rest in equilibrium and is then pulled down a distance 

d m and released from rest. Find the distance below 0 of the point where the particle 

first comes to instantaneous rest. 

13 1= 3, k 6, d = 0.5. 

14 1= 2, k = 8, d 0.4. 

2.6 Power 
A machine, in practice, is required not only to do a certain amount of work but to do 

that work in a limited interval of time. A powerful car shows its power by 

accelerating rapidly Le. it produces kinetic energy more rapidly than a car of lesser 

power. 

Power is the rate at which work is done. If 1 joule is produced 1 second, the rate of 

working is 1 watt. The watt (W) and the kilowatt (kW = 10 3 W) are the standard 

units of power. 

If the point of application of a force F moves a small distance 8x in a small time 

interval8t then the change in work, denoted by 8W, is P 8x. The rate of doing work 

is found by dividing 8 W by 8t and letting 8t become very small. Therefore the rate of 

working, i.e. the power, is the value of p8x as both 8x and 8t become very small. 
8t 

This, from the idea of a derivative as a rate of change, is F d<: and, from the definition 
dt 

of velocity, is Pv. 

When working out problems for moving vehicles, the rate of working of the engine of 

a vehicle can be calculated from analysing its motion. 

It is then assumed that all this power is transmitted without loss to the driving wheels. 

If the work done between some standard time and time t is denoted by W(t), since it 

could vary with time, then the definition of power P gives 

P 
dW 

dt 

Since W depends on t, then so will P and therefore the work done between t 0 and 

t T is found by integrating this i.e. 
T 

Work done fPdt. 

() 
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For a constant power, but only then, 

Work done over a time interval T is PT. 

The relation between power and work can be used to work out the power necessary 

for a pump to bring water up through a height h and then pump it out at speed v, as in 

the diagram. 

h 

The work done by the pump is converted into the kinetic and potential energy of the 

water and the amount of work done per second is therefore k mv 2 + mgh, where m 

denotes the mass per second lifted. Since the power P is assumed to be constant, this 

work is equal to P and therefore 

P = k mv 2 + mgh. 

Example 2.19 

The force acting on a particle of mass 0.2 kg and moving along a straight line is such 

that, at time t s, the velocity of the particle is t 4 ms -}. Find the rate at which the force 

acting on the particle is working. 

The first step is to find the force, this is 0.2 x acceleration. The acceleration can be 

found by differentiating the velocity and is 4t 3 ms -2. Therefore the rate of working is 

0.8 [3 X velocity = 0.8 t 7 W. 

Example 2.20 

The rate of working at time t s, of the force acting on a particle 0.4 kg moving on a 

straight line is 6t 5 W. Given that the particle has speed 2 ms -I at time [ = 0, find its 

speed at time [= 1. 

The change in kinetic energy is the work done, and the work done between t 0 and 
I 

1 is f6t 5dt J 1 J. 

lfthe speed when t = 1 is v ms ,then the change of kinetic energy is 0.2V2 0.8 J. 

Therefore v 2 9 and v 3. 
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Example 2.21 

A pump is required to raise 100 kg of water a second, through a height of 15 m and 

discharge it through a nozzle with speed 10 msl. Find the minimum rating of pump 

required if the pump is 

(i) 100% efficient, 

(ii) 50 % efficient. 

The change in P.E. per second is 100 x 9.8 x 15 J 14700 J. 

The change in K.E. per second is 50 x 10 J = 5000 1. 

The total change in energy per second, i.e. the work done per second is 19 700 J. 

Therefore the minimum rate of working, if the pump is 100% efficient, is 19.7 kW. 

For 50% efficiency, the rate would have to be 39.4 kW. 

2.7 Derivation of basic results 
In this section, a derivation of the work-energy principle will be given for the case of 

a particle of mass In, moving along the x-axis, under the action of a force whose 

component in the positive x direction is denoted by F. The velocity in the positive x 

direction at time t will be denoted by v. 

Newton's second law of motion gives 
dv 

m
dt 

=F. 

Multiplying this equation by v gives 
dv 

lnY(lt Fv. 

The left hand side can be written, on using the product rule for differentiation, as 

~O-mv2) which is the rate of change of kinetic energy. The right hand side is the 
dt\2 

power, i.e. the rate of doing work. The equation is therefore 

Rate of change of kinetic energy Rate of doing work. 

Therefore integrating this gives 

Change of kinetic energy over any interval = Work done over the interval. 

This is the work-energy principle in its simplest form. The proof is effectively for a 

particle moving on a line and the work done is that done by forces along the line. It 

also holds when the work done by forces not along the line is included, this is because 

the work done by the components of these force perpendicular to the line will be zero, 

since the motion of these components will be perpendicular to the line. 

If the only forces acting are dependent on position, then introducing the potential 

energy produces the principle of conservation of mechanical energy. This can be 

shown as fo Hows. 
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The work done by a force F in moving from x = x I to X = X 2 is J F{x) dx. This can 

be rewritten from the properties of integrals as 

a 

x 
I 

The potential energy at x = x p for example, is, }F(X) dx, therefore the above 

expression for the work done is equal to 

-P.E. atx X2 + P.E. atx XI' 

The work energy principle can therefore be rewritten as 

(K.E. at x =: x, K.E. at x =: XI) = - (P.E. at x == X2 + P.E. at x == XI)' 

This can again be rearranged as 

(K.E. at x = x2 + P.E. at x = Xl) = (K.E. at X = XI + P.E. at x XI)' 

The sum of the Kinetic and potential energy is the total mechanical energy and 

therefore 

Total Mechanical energy is constant provided all forces are 

dependent only on position. 

Potential energy can only be defined for conservative forces. If there are non­

conservative forces present, then the work done by all the forces is 

change in P.E. of the conservative forces + work done by the non-conservative forces. 

The principle of conservation of mechanical energy has then to be replaced by 

Change in total mechanical energy Work done by non-conservative forces. 

Exercises 2.6 

1 A particle is of mass 0.5 kg and the component of its velocity in the positive 

X direction at time t s is 4 exp 3t ms -I. Find the rate at which the force acting on it 

is working. 

2 Find the total work done in 10s by a force when the rate of working is 

(i) 3 kW 

. ( (t 'I) (i1) 3 II -exp - 10) kW. 

3 A particle of mass 0.8 kg has speed 4ms -I at time t = Os and the force acting on it 

is working at a rate of lOt'! W at time ts. Find its speed when t = 2. 
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4 A water pump is to raise 50 kg of water a second through a height of20m. The 

water emerges as a jet with speed 50ms -1. Find the kinetic energy and the 

potential energy given to the water each second and hence find the power that the 

pump would have to develop if 

(i) it were 100% efficient, 

(ii) it were 75% efficient. 

5 A pump delivers 220 kg of water per minute, the water being delivered in a 

horizontal jet at a speed of 30 ms -I. Find the kinetic energy of the water delivered 

each second. The efficiency of the engine driving the pump is 35%. Find the rate 

at which this engine is working. 

2.8 Problems involving vehicle motion 

The problems already encountered involving vehicle motion have been such that the 

driving force has been given explicitly. This is not what happens in practice since 

what is normally known for a vehicle engine is its rate of working or power. 

For cars, the old fashion unit of power, which is often referred to, is horse power 

(H.P.) and 1 H.P. 745.7 watt. If an engine is working at P watts and the point of 

contact of the wheels with the ground is moving at speed v ms -I, then the driving 

force F N at the wheels satisfies the equation 

P=Fv. 

This can be used to work out the driving force for vehicles working at a rate of P W 

moving with speed v ms -I. (When a car is not skidding, the speed of the point of 

contact of the wheels is equal to that of the car, and this will normally be assumed). 

Problems where the power developed by a vehicle is given are very similar to 

previous problems involving vehicle motion except that the force has to be worked 

out from the power and speed. Some problems require finding the steady speed at 

which a vehicle can travel when the engine is working at a given power. Since the 

vehicle is moving at a steady speed, the acceleration is given, it is in fact zero. 

Sometimes the maximum speed may be given. A maximum is a stationary point, so 

dv = 0, i.e. the acceleration will be zero. 
dt 
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Example 2.22 

A particular motor cycle develops a maximum power of 24 kW and, when working at 

this rate, its speed is 40 ms -I. Find the driving force. 

The driving force F N is such that 

24000 40F, 

giving F as 600. 

Example 2.23 

A car travels at constant speed, with its engine working at a rate of 40 kW, against a 

resistance of 1600 N. Find the speed. 

1600N ....-

_F 

The forces acting are shown in the diagram. If v ms -I denotes the speed of the car 

then F = 40 000 N. Since the acceleration is zero, the force is equal to the 
v 

resistance i.e. 
40000 

v 1600, 

so that v = 25. 

Example 2.24 

The engine of a lorry of total mass 2 tonnes is working at 50 kW. The lorry is 

travelling at a constant speed of 20 ms -I , along a level road. Find the total resistance 

to the motion. 

If the power is increased to 60 kW, find the acceleration of the lorry at the instant it is 

moving with speed 20 ms -I assuming that the resistances to motion remain constant. 

When the power is 50 kW, the driving force F N is given by 

Fx 20 50000, 

so that F 2500 N. 

Since the lorry is moving at constant speed, the acceleration must be zero, i.e. the total 

force is zero so the resistance is 2500 N. 

When the power is 60 kW, the driving force F N at the instant the speed is 20 ms IS 

6~_~~~ N == 3000 N. 
20 

The total force on the lorry is (3000 - 2500) N 500 N, the equation of motion is 

2000a 500, 

where a ms -2 is the acceleration, therefore a = 0.25. 
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Example 2.25 

A car of mass 1000 kg has a maximum speed of 35 ms -Ion a level road against a 

resistance of 400 N. Find, assuming the engine works at the same rate and that the 

resistance is unchanged, its maximum speed up a hill inclined at an angle a to the 
1 

horizontal where sin a T 

In this case the power is not given and will be assumed to be P W, the driving force is 
P 
35 N and, since at maximum speed the acceleration, and hence the total force, is zero 

P 
35 400. 

Therefore P 14 000. 

The forces acting on the car when moving at speed v ms -I up the hill are shown in the 

diagram. 

14000N --v 

1000 x 9.8 N 

The total component of the force in N acting in the sense up the hill is 

14000 400 -1000 x 9.8 x sin a 14000 -1800. 
v v 

When the speed is a maximum the total force is zero i.e. 
14000 

v = 1800 = 7.8. 

Exercises 2.7 

1 Find the power developed when a force of 1500 N pulls a cart at a constant speed 

of 6 ms-I. 

2 Find the power that is developed by the engine of a car moving at a speed of 

12 ms· 1 
, given that the driving force is 750 N. 

3 A car, whose engine is working at a rate of 5 kW, is moving with speed 10 ms , 

find the driving force. 

4 A car travels along a horizontal road against a resistance of 600 N. Given that the 

engine is working at a constant rate of 4.8 kW, find the maximum speed of the 

car. 

5 A car of mass 1000 kg moves on a horizontal road against a resistance of 600 N 

with the engine working at a rate of 8 kW. Find the acceleration of the car at the 

instant it is moving with a speed of 10 ms -I. 
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6 A car of mass 1200 kg travelling along a horizontal road, with its engine working 

at a constant rate, against a resistance of 500 N, has a maximum speed of 25 ms -1 • 

Find the rate at which the engine is working. 

Find also the maximum speed with which the car can climb a hill inclined at an 

angle a to the horizontal, where sin Cl = /4' assuming that the resistances and the 

rate of working of the engine are unchanged. 

7 A train of mass 300 tonnes travels along a straight level track. The resistance to 

motion is 18 kN. Find the tractive force required to produce an acceleration of 

0.1 ms -2 , and the power in kW which is then developed by the engine when the 

speed of the train is 10 ms-I. 

Find also the maximum speed attainable when the engine is working at a rate of 

360 kW. 

8 A car of mass 1500 kg travels up a slope of inclination a to the horizontal, where 

sm a ;9' against constant frictional resistances of 3600 N. Find the maximum 

speed of the car given that the engine works at a rate of 80 kW. After reaching the 

top of the slope the power is switched off and the car descends a slope of 

inclination ~ to the horizontal against the same constant frictional resistances at 

constant speed. Calculate sin ~. 

9 A car of mass 1000 kg has a maximum speed of 15 ms -1, against a constant 

frictional force equal to one eighth of the weight of the car, up a slope inclined at 

an angle a to the horizontal where sin a =~. Find the maximum speed of the car 

on a horizontal road assuming that the engine works at the same rate. 

If the car descends the same slope with its engine working at half this rate, find 

the acceleration of the car at the moment when its speed is 25 ms -1 • 

10 The resistive forces opposing the motion ofa train of total mass 50 tOlmes are 

5000 N. 

(a) Find the power necessary to keep the train moving along a straight level track 

at a constant speed of 10 ms -1 . 

(b) If this power is suddenly increased by 10 kW when the train is moving along 

the level track at 10 ms -I , find the initial acceleration of the train. 

(c) When the train climbs a hill, of inclination a to the horizontal, at a constant 

speed of 8ms -I, the engine of the train is working at a rate of 180 kW. Find 

the value of sin a. 

11 A car of mass 1600 kg climbs a slope of inclination a to the horizontal, where 

sin a ~, at a steady speed of 12 ms -1. Given that the frictional resistance is 
14 

400 N, calculate the power, in kW, developed by the car. 
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When the car reaches the top of the slope, the power is switched off and the car 

descends a slope of inclination ~ to the horizontal, where sin ~ _1_. Assuming 
28 

that the frictional resistance remains at 400N, calculate the acceleration with 

which the car descends this slope. 

12 A car of mass 1600 kg is moving along a horizontal road. The resistance to the 

motion of the car is 800 N. Calculate the acceleration of the car at the instant 

when its speed is 7.5 ms -J and its engine is working at 15 kW. 
13 When the car is moving with speed v ms -I the resistance to its motion is 

(200 + 2.5v)N. Find the maximum speed of the car when its engine is working at 

a rate of 5 kW. 

Miscellaneous Exercises 2 

1 A particle is thrown vertically upwards with a speed of 5 ms from a point 2 m 

above the ground. Find 

(a) the greatest height above the ground reached, 

(b) the speed of the particle when it hits the ground. 

2 A girl throws a ball vertically upwards so that its initial speed is 10 ms -I . 

(a) Draw a diagram showing the forces acting on the stone and state clearly the 

cause of each force. 

(b) Find the maximum height that the ball would reach if the only force acting 

were that due to gravity and which may be assumed to be constant. 

(c) It turns out that the ball, which has a mass of 0.2 kg, only reaches a height of 

4.5 m; find the work done by the resistance as the ball travels from the girl's 

hand to its maximum height. 

3 A boy of mass 60 kg starting with a speed of I ms -J slides down a chute in a 

swimming pool and strikes the water at a speed of 9 ms . Find the work done 

against friction if the chute is 5 m high. 

If the length of the slide is 20 m find the frictional force, assuming it to be 

uniform. 

4 A toboggan run is straight, 1213 m long and drops 157 m from start to finish. One 

day a toboggan and its rider with a combined mass of 112 kg, starting from rest, 

achieved a speed of 117 kmh at the finish. 

(a) Calculate the gain in kinetic energy. 

(b) Find the loss in potential energy. 

(c) Determine the work done against resistive forces assumed constant. 

5 A vehicle of mass 4000 kg is moving up a hill inclined at an angle a to the 

horizontal where sin a = _1_. Its initial speed is 2 ms-I Five seconds later it has 
20 
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travelled 15 m up the hill and its speed is then 6 ms -I, Find the change in the 

kinetic energy and potential energy of the vehicle. 

Given that the engine is working at a constant rate of 44 kW, find the total work 

done against the resistive forces (which may not be assumed to be constant) 

during this five second period. 

6 An elastic spring which obeys Hooke's law has natural length 0.5 m. When the 

extension is 0.05 m the tension in the spring is 50 N. Find the work done when 

the spring is extended from a length of 0.6 m to a length of 0.7 m. 

7 The gravitational force per unit mass at a distance r ( R) from the centre of the 

earth is , where R is the radius of the earth and g is the acceleration due to 

gravity on the earth's surface. Find the work done in moving a particle of mass m 

from r = 2R to r 3R. 

Find the speed when r = 3R of a particle whose speed when r = 2R was ~ g: . 
8 A catapult consists of two lengths of elastic, each of modulus 20 N and natural 

length 0.2 m. The catapult is stretched so that the length of each elastic is 

increased by 0.08 m. 

Ignoring the effect of gravity and using energy considerations, find the speed that 

the catapult will give to a stone of mass 0.02 kg. 

9 The end A of a light elastic string AB of natural length 1.2 m is fixed. When a 

particle of mass 2.4 kg is attached to the shing at B and hangs freely under 

gravity, the extension of the string is 0.09 m. Find the modulus of elasticity of the 

string. 

The particle is now pu lied vertically a further 0.12 m and released from rest By 

energy considerations, find the greatest height above the point of release in the 

subsequent motion. 

10 A particle P of mass 0.02 kg is attached to one end of a light elastic spring of 

natural length 0.5 m and modulus 1.6 N, the other end of which is attached to a 

fixed point A on a smooth hOlizontal table. The particle is released from rest on 

the table when the spring is straight and its extension is 0.25 m. Find the speed of 

the particle 

(i) when the spring is at its natural length, 

(ii) when the spring is compressed by 0.10 m. 

11 A particle of mass 2 kg is attached to two elastic strings, each of natural length 

0.5 m and modulus 15 N, the other ends of the strings being attached to two fixed 

points A and B which are at a distance of 1 m apart in the same horizontal line. 

The particle is dropped from rest from the midpoint of AB. 

(a) Show that the tension T N in each string is given by T 15(sec e -1), 
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where El denotes the angle between each string and the horizontal. 

(b) Find, correct to two decimal places, the acceleration of the particle 

when El = 60°. 

(c) Using energy considerations find, correct to two decimal places, the speed of 

the particle when El 60°. 

12 A particle is suspended from a fixed point 0 by a light elastic string which is of 

natural length a and hangs in equilibrium at a distance 5: below 0. Given that 

the particle is released from rest at 0, find the distance it falls before it first comes 

to rest. 

13 One end 0 of a light elastic string of natural length 41 is attached to a fixed point. 

A particle P of mass m is attached to the other end P of the string and the string 

hangs in equilibrium with OP = 5t. The particle is pulled down vertically a further 

distance & and released from rest. Show that P rises a distance I before first 

coming to instantaneous rest. 

14 Find also, for the configuration in the previous question, the maximum height to 

which P would rise if it had been released from rest at a depth of 21 below the 

equilibrium position. 

15 One end of a light elastic string of modulus 4.9 N and natural length 0.5 m is 

attached to a fixed point A and a particle of mass 0.1 kg is attached to the other 

end. The particle is held at A and released from rest. Its speed when it has dropped 

a distance of x m is v ms -1 • 

(i) Write down an expression for its speed when x 0.5. 

(ii) Show by use of energy that, forx:::>:0.5, v 2 = 117.6 x-9.8x 24.5. 

16 In the dangerous sport of bungee diving an individual attaches one end of an 

elastic rope to a fixed point on a river bridge. He/she is then attached to the other 

end and jumps over the bridge so as to fall vertically downwards towards the 

water. The rope should be such that the diver comes to rest just above the surface 

of the water. In order to find which particular ropes are suitable, experiments are 

carried out with weights, rather than people, attached to the rope. In one 

experiment it was found that when a weight of mass m was attached to a particular 

rope of natural length a and dropped from a bridge at a height 3a above the water 

level, then the weight just reached the level of the water. Show that the modulus 

. . h . 3mg 
of elastrcIty of t e rope IS 2 . 

The weight of mass m is removed and a weight of mass 5; is then attached to this 

rope and dropped from the same height. Find the speed of the weight just as it 

reaches the water. 
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When the weight emerges from the water, its speed has been reduced to zero by 

the resistance of the water. Show, by using conservation of energy, and assuming 

that the rope does not slacken, that the subsequent speed v of the weight at height 

h above the water level is given by 
g! 

v
2 

5a(2a - 3h). 

Describe the subsequent motion of the weight. 

17 A particle of mass In is attached to one end of an elastic stTing of modulus 4 mg 

and natural length a, the other end of the string being attached to a fixed point 0. 

The particle is released from a point at a distance 5a directly below 0. 
3 

Find (i) the height to which the particle will rise, 

(ii) the speed of the particle when it is at a distance of 3a below 0. 
2 

18 A water pump raises 40 kg of water a second through a height of20m and ejects it 

with a speed of 45 ms -I. Find the kinetic energy and potential energy per second 

given to the water and the effective rate at which the pump is working. 

19 A car of mass 1000 kg, whose engine is working at a rate of P watts, moves at a 

constant speed of20 ms -Ion a horizontal road. Find, in terms of P, the total 

frictional resistance on the car. 

The car then freewheels (i.e. without the engine exerting any force) down a hill 

inclined at an angle a to the horizontal, where sin a = ~ , at constant speed. 
14 

Find P. 

Assuming the same frictional resistance and that the engine is working at the rate 

of P watts, find the numerical value ofthe acceleration of the car at the instant it is 

moving uphill with speed 7 ms l 
. 

20 A car of mass 1000 kg moves, with its engine working at its maximum rate, at a 

constant speed of lams -I up a hill inclined at an angle a to the horizontal, where 

sma ~. The functional resistance to motion is RN. Express the maximum 
14 

rate of working in terms of R. 

With the engine still working at its maximum rate, the car descends the hill at a 

constant speed of 20 ms-I. Given that the frictional resistance is now 4R N, find 

the value of R. 
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21 A locomotive of mass M kg working at a rate of R kW ascends a straight track 

which is inclined at angle a to the horizontal. When the speed is v ms ~I , the 

acceleration is a ms -2. Find an expression for the resistance at speed v ms -I . 

22 A car of mass 1500 kg is moving along a horizontal road. The resistance to the 

motion of the car is 750 N. Assuming that the car's engine works at 15 kW find 

(i) the maximum constant speed at which the car can travel, 

(ii) the acceleration of the car when its speed is 8 ms -I . 

23 A car of mass 1300 kg tows a trailer of mass m kg along a level road. The 

resistance on the car is 1000 N and that on the trailer is 1.5m N. Find the total 

power developed by the engine when m 600 and the car and trailer are 

moving at a steady speed of20 ms -I. For m = 1700 and the car moving at a 

speed of25 ms-I and its engine working at a steady rate of75 kW, find 

(i) the acceleration of the car and trailer, 

(ii) the tension in the coupling between the car and trailer. 

State whether or not the car can maintain a steady speed of25 ms -I with the 

engine working at a steady rate of25 kW. 

Given that the safest minimum speed for travel on a motorway is 18 ms -I and 

that the car engine is working at a rate of72 kW, find the range of possible 

values of m so that the car and trailer can travel at steady speeds which are no 

lower than the safest minimum speed. 

24 A car travels at a constant speed of 20 ms -Ion a horizontal road against constant 

resistance oflOOON. Find the rate of working of the engine. 

The car is then attached to a caravan by a towbar and the resistance to the motion 

of the caravan is 800 N. Given that the rate of working of the engine is 35 kW, 

find the maximum speed of the car and caravan on a horizontal road and obtain 

the tension in the tow bar. 

The total mass of the car and the caravan is 1.8 tonnes and the car pulls the 

caravan directly up a hill which is inclined at an angle a to the horizontal, where 

sin a = _1_. Given that the car is working at a rate of 42 kW, calculate the 
35 

acceleration up the hill when the car and caravan are travelling at 14 ms -I. The 

non-gravitational resistances to the motion of the car and the caravan may be 

assumed constant. 
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25 The maximum speed of a car, whose engine can develop 15 kW, on a level road is 

30 ms -1. Find the total resistance to the motion of the car at its maximum speed. 

Given that the non-gravitational resistance to the motion ofthe car varies as the 

square of the speed and that the mass of the car is 800 kg, detennine the power 

developed by the engine when the car moves at a constant speed of 35 ms- 1 

directly up a hill which is inclined at an angle a to the horizontal where a = 2-. 
~ 21 

26 A car of mass 800 kg is moving at a constant speed of 50 ms -Ion a level road. 

The non gravitational resistance to the motion ofthe car at all speeds and on all 

roads is 700 N. Calculate the rate at which the engine of the car is working. 

When the car climbs directly up a certain hill, it has a maximum speed of25 ms-I 

and the engine is working at a rate of20 kW. Calculate the angle of inclination of 

the road to the horizontal. 

Find the acceleration of this car when travelling at 25 ms -I up a hill inclined at an 

angle a to the horizontal, where sin a 2-, with its engine working at the rate of 
21 

15 kW. 

27 A car of mass 800 kg is pulling a trailer of mass 200 kg up a hill inclined at an 

angle a to the horizontal, where sin a = 2-. When the total force exerted by the 
14 

engine is 1000N, the car and trailer move up the hill at a steady speed. Find the 

total frictional resistance to the motion of the car and trailer. 

When the car and trailer are travelling at a steady speed of 10 ms -J up the hill, the 

power exerted by the engine is instantaneously increased by 2 kW. 

Find 

(i) the instantaneous acceleration, 

(ii) the instantaneous tension in the coupling between the car and trailer, given 

that the total resistance on the trailer is 75 K 
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Chapter 3 

Impulse and Momentum 

After this chapter you should 

• be able to apply the impulse momentum principle to forces which are dependent 

on time, 

• know what is meant by impulsive tension, 

• be able to solve problems where bodies are connected together by inelastic strings. 

3.1 Impulse-momentum Principle 

In Ml 6.1, we have seen that, for a constant force P acting on a particle of mass m for 

a time T, such that the velocity of the particle in the direction of the force changes 

from u to v, then 

P.T m(v-u), 

that is, impulse change in momentum. 

It is very unlikely that the force will be constant throughout contact and therefore a 

generalisation of the definition of impulse is necessary. As in the case of work, the 

generalisation can be seen from a graphical interpretation of impulse. Both the 

following diagrams show the behaviour of the component of force in a given direction 

with time t. 

F F 

o '--__ ..L..-__ __ 

T o 

The left hand diagram shows the component to have a constant value whilst the right 

hand one shows variation with time; this is more likely to be a realistic form for a 

sharp blow since it vanishes at t = 0, and t T. 
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therefore the shaded area under the line and this suggests that the impulse is defined 

T 

as f F dt. The next step is to see whether this can enable a change of velocity to be 

found simply in terms of the impulse. 

Newton's Law of motion gives 

dv 
F=m-. 

dt 

Integrating this equation from tOto t T gives 

T I~T dv 
fFdt = f m-
o f~O dt 

The right hand side of this equation is the change in momentum, the left hand side is 

the impulse acting and therefore the impulse-momentum principle holds for all forces. 

Example 3.1 

A ball of mass 0.3 kg is moving with speed 5 ms -1 just as it hits a horizontal floor and 

bounces off the floor, with a speed of2 ms -I. Find the impulse exerted on the ball by 

the floor given that the time of contact is 0.05s. 

Taking the reference direction as upwards. 

The momentum of the ball immediately after impact is 0.3 x 2 = 0.6 Ns upwards, and 

immediately before impact, it is 0.3 x (-5) -1.5 Ns. The total change of momentum 

isO.6 (-1.5) 2.INs. 

The total force acting is (F - 0.3 x 9.8) N, where F N is the force exerted by the floor. 

0.05 

The total impulse is f (F 0.3 x 9.8)dt Ns 

0.05 

f Fdt - 0.147 Ns 
o 

Total impulse change in momentum 
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0.05 

J Fdt=0.147 2.1 
o 

0.05 

J Felt 2.247 Ns 

Exercises 3.1 

1 A tennis ball of mass 0.08 kg moving horizontally towards the racquet with speed 

6 ms -I is hit by the racquet and leaves the racquet horizontally with a speed of 

12 ms . The ball and racquet are in contact for 0.04 s. Find the force acting 

assuming 

(i) that it is constant, 

(ii) that it is of the form ct N, where t is the time, in seconds, measured from 

impact and c is a constant. 

2 A cricket ball of mass 0.15 kg moving horizontally with speed 14 ms -I just as it 

reaches a batsman, is hit straight back horizontally with a speed of24 ms -I. The 

bat and the ball are in contact for 0.05 s. Find the fonn of the force exerted by the 

bat on the ball assuming that it can be expressed as kt(0.05 - t) N, where k is a 

constant. 

3 A ball of mass 0.2 kg falls vertically and when moving with speed 6 ms -I is 

struck by a bat which is moving vertically upwards so that after the ball leaves the 

bat, it has a speed of 4 ms -I vertically upwards. Find, assuming that the bat and 

ball are in contact for 0.05 s, the impulse exerted by the bat. 

3.2 Impulsive Tensions 

Strines 

When a string jerks, equal and opposite tensions act suddenly at each end. So equal 

and opposite impulses act on the objects which are attached to each end of the string. 

If one end of the string is fixed, the impulse which act at the fixed end has no effect 

on motion. The object attached to the free end will undergo a change in momentum 

equal to the impulsive tension along the string. The momentum in the direction 

perpendicular to the string will remain unchanged. 
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Example 3.2 

A light intextensible string of length 21 is fixed at one end to a point 0 on a smooth 

horizontal floor. A particle P of mass In kg is attached to the other end of the string. 

p is initially at a point A a distance I from O. P is projected horizontally with speed 

u ms -1 at right angles to OA. Find the velocity of P immediately after the string 

becomes taut and the magnitude ofthe impulsive tension. 

0 

1 
0 

:0 
1 21 

j 
I: , 

A P 

A P 
u ms- l 

At the instant the string becomes taught, OP = 2/, OA = 1 and oAp = 90°. 

So cosAop 1 1 ' 
- = -and AOP 60°. Just before the jerk, P has velocity u cos 60° 
21 2 

perpendicular to the string and u sin 60° in the direction ofthe string. After the jerk, 

P can no longer travel in the direction of the string which is now taut and P has 

velocity component v perpendicular to the string. 

o 
:0 :0 

u cos 8 

: / Cl _________________________ _ 

P~ 
u sin 8 

Impulse 

Along OP J 

Perpendicular to OP 

o 

v 

change in momentum 

o (-mu sin 8) 

mufj 
2 

1nV mu cos 60° 

u 

2 
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3.3 Impulsive motion of connected particles 

Particles moving along the same line 

_U _U 

I 

A B 

The typical problem is as shown in the diagram, two particles A and B, of mass m and 

M, respectively, are connected together by a light inextensible string and, when the 

string is taught, an impulse 1 is applied to B in the direction from A to B. Both 

particles will move with the same speed u as shown and therefore there will be an 

impulse J acting at A in the direction A to B. By Newton's third law, there will be an 

impulse of equal magnitude acting at B from B to A. This impulse which is acting 

along the string is usually called the impulsive tension even though it is not a force. 

The total applied impulse is I and this, by the impulse momentnm principle for a 

system of particles, is equal to the total change in momentum i.e. (m + M)u. 

Therefore 

1 
u=---

m+M 

The impulsive tension can now be found by applying the impulse momentum 

principle to particle A, i.e. mu = J, so that 

ml 
J=--

m+M 

An alternative method would have been to apply the impulse momentum to both A 

and B. The equation obtained for B would be 1 J Mu. Eliminating J gives u as 

before. It is simpler for problems of this type, as for problems involving the motion 

of two particles, to consider the whole system first and then one ofthe particles. 

Some care has to be used in considering the impulsive motion of connected particles. 

The diagram shows the two particles A and B discussed above moving with speed u in 

the direction AB when an impulse of magnitude 1 is applied to B in the sense from A 

to B. 

_U _U _v _v 

A B 

Before After 
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After the impulse has been applied they will both be moving with a new speed v and 

the impulse momentum principle for a system of particles gives 

(m + Ni) (v u) 1. 

Therefore v can be found. 

If the impulse had been applied from B to A and it had been assumed that both 

particles still moved together, then this would have given that they would both be 

moving to the left with speed v where 

(m + .M)(v + u) = 1. 

This would mean that there would be an impulsive tension to the left on the particle A. 

This is impossible and therefore in this case the impulse would only affect the particle 

B. 

Example 3.3 

Car A in the diagram is about to tow car B. The tow rope is slightly slack so that car A 

can reach a speed of 2.5 ms -I before the rope tightens. Detennine the motion of the 

cars immediately after the rope tightens. The masses of cars A and Bare 1500 kg and 

1250 kg respectively. 

____ 2.5 ms-I ...... ums-I -ums-I 

B~~ B~~ 
Before Afer 

Immediately after the rope tightens the cars will be moving at the same speed of 

u ms -I. In this case there is no applied impulse and the principle of conservation of 

momentum may be applied. 

The principle of conservation of momentum gives 

1500 x 2.5 = (1500 + 1250)u 

so that u = 1.36. The impulsive tension in the rope is 1250u Ns 1700 Ns. 

Example 3.4 

Two particles A and B of mass 2m and 6m lie in a straight line, joined by an 

inextensible string, which isjust taut. An impulse of magnitude 16mUis applied to B 

in the sense trom A to B. Detennine the subsequent motion. 

__ v __ v 

16mU 

A 

The only possible motion will be along the string and since the string is inextensible 

both particles move with the same speed v. The total momentum after the particles 

start moving is 2mv + 6mv = 8 my. The impulse momentum principle gives 
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8mv 16711U, 

so that v 2U. 

The impulsive tension acts on A towards B and is denoted by 1. 

Applying the impulse momentum principle to A gives 1= 2mv 4m U. 

If the original impulse had been from B to A, then there would have been no 

impulsive tension in the string, so A would not move and 6mv 16mU, giving 
8U 

v =3' 

Problems involving pulleys 

Problems involving particles on a string passing over a pulley can be solved by 

considering the system as a whole, as for the case of general motion involving 

pulleys, but it is not really a safe approach. It is better to apply the impulse 

momentum principle carefully to each paliicle. The most commonly occurring types 

of problems are illustrated in the following examples. 

Example 3.5 

Two particles of mass 0.4 kg and 0.6 attached one at each end of an inextensible 

string passing over a smooth pulley, as shown in the diagram, are set in motion. At 

the instant when the particles have a common speed of 3 ms ~I , the heavier particle 

hits a horizontal surface off which it does not rebound. (Thc surface is referred to as 

being inelastic.) Find the speed with which the heavier particle is first jerked into 

motion. 

3 rns~1 ~ ~ 
~l 

~I urns 
0.4 kg 

urns 

i 
0.6 kg 

Before After 

Once the heavier particle has stopped the lighter one continues upwards under gravity 

to its highest point and then falls, reaching the point where the string is about to 

become taut with speed 3 msl. When the string becomes taut there will be an 

impulsive tension T Ns in the string and the heavier particle will jerk off the plane 

and both particles will start to move with a common speed u ms ~I . 

Applying the impulse momentum principle to the heavi.er particle gives T 0.6u. 
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The impulsive tension acting on the lighter particle will be upwards, the velocity of 

the particle will have changed from 3 ms ~I downwards to u ms -\ downwards. 

Therefore the change in linear momentum downwards is O.4(u 3) and this is equal to 

- T. Eliminating T gives 

O.4(u 3) + 0.6 u 0 

l.e O.4u + 0.6 u 1.2 

so that the heavier particle is jerked off with speed 1.2 ms -1 • 

The equation for u is exactly the same as if the two particles had been in a straight line 

and the principle of conservation of momentum applied. That method should not be 

used to solve a problem in an examination as it needs careful justification but it could 

help as a check. 

Example 3.6 

3 ms-I! 
0.4 kg 0.9 kg 

0.6 kg 0.6 kg 

Before After 

When the particles are moving freely with a speed of 3 ms -I as shown in the diagram, 

the lighter particle picks up a mass 0.5 kg which is lying on a fixed ring through 

which the particle passes. Find the common speed of the system immediately after 

the mass has been picked up. 

The particles move with a new unknown speed u ms ~I . 

There will be an impulsive tension T in the string and this is the impulse acting on the 

combined particle so, applying the impulse momentum principle to this combined 

particle, T = (0.5 + O.4)u - 3 x 0.4. The velocity of the heavier particle, downwards, 

will change from 3 ms l to u ms -I so the change in its linear momentum downwards 

is 0.6u 0.6 x 3 and this is equal to -T. Eliminating T gives 

(0.5 + O.4)u 0.4 x 3 + 0.6u 0.6 x 3 0 

I.e. (0.5 + O.4)u + 0.6 u 0.4 x 3 + 0.6 x 3, 

and u 2. 

51 



Impulse and Momentum 

Exercises 3.2 

1 Two particles P and Q of mass 4 kg and 3 kg, respectively, lie on a smooth table 

connected together by a light inextensible string. Particle P is projected away from 

Q with speed 8 ms-I. Find the common speed of the particles after the string 

becomes taut and the impUlsive tension in the string. 

2 Particle A, of mass 0.2 kg, lies at rest on a smooth horizontal table and at a distanee 

of 0.4 m from its edge. The surface of the table is at a height of 2 m above the 

floor. Particle A is joined by a light inelastic string of length 0.9 m to a second 

particle B of mass 0.4 This particle is placed at the edge of the table and then 

pushed over the in such a way that the string is perpendicUlar to the edge of 

the table. Find the speed of A when it starts moving and also the impulsive tension 

in the string. 

Questions 3 to 6 refer to two particles A and B, of masses In kg and M kg respectively, 

cOIDlected by a light inextensible string passing over a light smooth pulley. 

3 m = 0.3, M 0.2, the system is set ofT from rest and, when both particles are 

moving with speed 2 ms-I, the particle B picks up from rest an additional particle 

of mass 0.3 kg. Find the further distance moved before the system first comes to 

instantaneous rest. 

4 m 0.5, M = 0.3, the system is set off from rest and, after descending 5 m, the 

particle A strikes an inelastic floor and comes to rest. Find the time that it remains 

on the floor and the speed with which it is jerked off. 

S m 0.8, M = 0.4, when both masses are moving with speed 2 ms -I A passes 

through a small ring and a mass of 0.5 kg is removed from it. Find the time that 

elapses before A next passes through the ring. 

6 m = 0.5, M 0.2, the system is at rest with A resting on a smooth plane. A falling 

particle of mass 0.2 kg moving with speed 4 ms -I strikes B and sticks to it. Find 

the height to which A 

More Examples 

Example 3.7 

Particles P, Q, each of mass m kg, are attached, one to each end of a light inextensible 

string of length 21 m. The particles lie on a smooth horizontal floor. Initially P is at 

point A and Q is at point B, a distance I m from A. Q is projected across the floor with 

velocity Lt ms -I perpendiCUlar to AB. Find the velocity of the particles immediately 

after the jerk and the magnitude of the impUlsive tensions. 
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A P 
, 
:600 21 

I: J , , 

1_ ums' 

B Cl --------------------------- Q 

B Q 

Just before the Jerk, P is at rest, Q has velocity u cos 60
0 

perpendicular to the string 

and u sin 60' along the string. 

Just after the Jerk, P, Q both move along direction of string with velocity v. 

Perpendicular to the string, there is no impulse on either particles and the velocities in 

this direction remain unchanged. 

P 

u cos 60° 

/ 
Q~ 

u sin 60° 

Impulse change in momentum 

Along the string 

furP J mv 

forQ -J mv -

Adding 2v 
u.J3 

2 

u.J3 
v 

4 
Just after the Jerk, 

mu.J3 
2 

P 

~J 

velocity ofP 
u.J3 

along string 
4 
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velocity of Q = 

in direction mn' f .. (~~ I to the string 

\uJ% 
I.e. tan -I ( ~) to the string 

Also J mv 

Example 3.8 

mu-fi Ns 
4 

A light inextensible string of length 2fm carries masses P, Q, each of m one at 

each end and a mass R of 3m kg at its midpoint. P, Q and R are initially at rest on a 

smooth horizontal table at the corners of an equilateral triangle of side f m. R is given 

a blow of impulse J along the perpendicular bisector of PQ. Find the velocities of the 

particles 

(a) immediately after the blow, 

(b) just before P and Q collide. 

(a) Immediately after the blow, the velocities of P, Q and R are as shown in the 

diagram. 

P/v ~Q 

In direction of J 

J 3mu + mv cos 30" + mv cos 30 " 

3mu + mv-fi (i) 

Also, since the particles are connected, the velocities of the particles along the 

at the two ends must be the same. 
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So for P and R, or for Q and R 

v = u cos30° u.J3 
2 

(ii) 

Solving these two equations gives 
2J J.J3 

u and v = --. 
9m 9m 

(b) Immediately before P and Q collide, their velocities are as shown in the diagram. 

We now have J 

Vy 

R 

3mVy + mVy + mVy 

J 

5m 

which is the velocity of R. 

In order to find Vx, it is necessary to remember that there is no change in K.E. 

immediately after the blow and just before p. Q collide. 

Therefore, conservation of energy gives 

1 2 
-.3mu 

1 ,1 ) 
2.-mv- = .3m Vy-

2 2 2 

Substituting for u, v and Vy, we obtain 

Vx 
J 

mJ9i5 
and 

Therefore P and Q have velocity with magnitude !.-~ 23 in a direction which makes 
m 450 

an angle of tan -1 r r5 j with the direction ofthe blow. 
\ VI8 ) 
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Exercises 3.3 

1 Two particles P and Q, each of mass 5 kg, are connected by a light inextensible 

string of length 2m. Initially, they lie at rest on a smooth horizontal table with P at 

A and Q at B where A and B are a distance lm apart. Particle Q is projected across 

the table with velocity 4ms- 1 at a direction which makes an angle 8 with AB. Find 

the speed of P when it begins to move, and the impulsive tension in the string when 

(a) 8 = 0 

(b) 8 = 120° 

(c) 8 45° 

(d) 8 = 90°. 

2 Two balls P and Q, of mass 4 kg and 2 kg respectively, lie on a smooth horizontal 

plane and are connected by a light inextensible string. Initially Q is due East of P. 

Q is given a blow such that, ifit were free, it would move in a direction North-East 

with velocity 21 ms -I. Show that Q actually moves with velocity 15.65 ms l in a 

direction North 72° East. Calculate the impulse applied to Q and the impulsive 

tension in the string. 

3 Two particles of masses 4 and 3 kg are lying on a smooth table and are 

connected by a slack string. The first particle is projected along the table with a 

velocity of 21 ms -I in a direction directly away from the second particle. Find the 

velocity of each particle after the string has become taut, and calculate the loss in 

kinetic energy. 

The second particle is attached to a third particle of unknown mass by another 

slack string. After both strings have become taut, the common velocity of the 

particles is 10 ms -I. Find the mass of the third particle. 

4 Three small bodies of masses 0.4, 0.5 and 0.6 kg, respectively, lie in order in a 

straight line on a large smooth table, the distance between consecutive bodies being 

0.15m. Two slack strings which are light and inextensible, each of length 0.6m, 

connect the first mass with the second and the second mass with the third. The 

third body is projected with speed 4.5 ms directly away from the other two. 

Calculate the time which elapses before the first mass starts to move and the speed 

of the first mass when it starts to move. Calculate the loss in kinetic energy of the 

system. 

Show that the ratio of the impulsive tensions in the two strings when the first mass 

is jerked into motion is 8 : 15. 
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Miscellaneous Exercises 3 

1 

2 

The diagram shows two cars A and B of masses 1200 kg and 1800 kg on a 

horizontal road. Car A has broken down and car B is about to tow it. The speed of 

B just as the tow rope tightens is 5 ms -1. Modelling the cars as particles and 

assuming that the tow rope is light and parallel to the road along the line joining the 

cars, find 

(i) the common speed of the two cars immediately after car A has started moving, 

(ii) the impUlsive tension in the tow rope. 

The two cars then continue to move along the horizontal road until they reach a 

steady speed of 15 ms -1. They then continue at this constant speed. Given that 

car B is working at a constant rate of20 kW, find the total resistance acting on the 

two cars. 

Given further that the resistance on each vehicle is proportional to its mass, find 

the tension in the tow rope. 

S 
2m 

p 

2m 

11 R 
6m 

The diagram shows a particle P of mass 2m on a rough horizontal table and 

attached by light inextensible strings to particles Rand S of mass 6m and 2m 

respectively. The coefficient of friction between P and the table is 0.5. The 

strings pass over light smooth pulleys on opposite sides of the tab le so that Rand 

S can move freely with the strings perpendicular to the table edges. Given that the 

system is released from rest, find the magnitude of the common acceleration of the 

particles and the tension in the string joining P and S After falling a distance d 

from rest, the particle R strikes an inelastic tloor and is brought to rest. Find, for 
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the period after R strikes the floor, the further distance that S rises. Find also 

assuming that in the subsequent motion P remains on the table and S never 

reaches the table, the speed at which R is jerked off the floor. 

3. Two particles A and B each of mass m kg are connected by a light inextensible 

of length 21! , and rest on a smooth horizontal table at a distance I! apart. B is 

a horizontal impulse mu Ns in a direction perpendicUlar to AB. Given that 

(i) A is fixed 

(ii) A is free to move, 

find the impulse in the string on tightening and the velocity of B immediately 

afterwards. Show that the loss in kinetic energy in (i) is twice the loss in kinetic 

energy in (ii). 

4. A smooth plane inclined at an angle of 30 0 to the horizontal is fixed such that its 

lower edge is at a height a m above a horizontal table. Two particles each of mass 

m kg are connected by a light inextensible string length of 2a m. Initially, P is 

held at the lower edge of the inclined plane and Q rest on the table vertically 

below P. P is then projected with velocity u ms -1 where u >..;g;; upwards along 

the line of greatest slope of the plane. 

(a) Find the impUlsive tension in the string when Q is jerked into motion. 

(b) Calculate the tension in the string while Q is moving. 

(c) Given that Q just reaches the edge of the table, determine the value of u. 

5 Two particles of masses 1 kg and 3 kg are connected by a light inelastic string of 

length 0.8 m. The string passes over a smooth peg. Initially the particles are held 

in contact with the peg. They are then dropped from rest at the same instant, one 

on each side of the peg. 

(i) Find the speed of each particle immediately after the string tightens. 

(ii) Calculate the loss in energy due to the sudden tightening of the string. 

(iii) Find the time that elapsed from the time when the particles were dropped 

until the lighter particle reaches the peg again. 
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Chapter 4 

Motion Under Gravity in 2 Dimensions 

After working though this chapter you should 

• be able, for motion in a plane, to find the magnitude and direction of velocity of a 

particle in two dimensions, given its component, and vice-versa. 

• have a clear idea of the form of the path of a particle moving under gravity and be 

able to solve problems of a particle being projected from a point. 

4.1 Basic kinematics 

All the dynamical problems that you have come across so far have involved motion in 

a line where it is only possible to move backwards and forwards. The situation is not 

quite as simple for motion in a plane, for example, a ball moving on a horizontal plane 

can move in an infinite number of different directions. It is therefore necessary to 

generalise the idea of velocity to problems involving two dimensional motion. 

Velocity is defined to be something which completely represents the rate of change of 

position of a body, both the rate at which distance is covered and the direction in 

which the body is moving. It is not particularly easy at this stage, except for motion 

in a straight line, to give a clear definition of rate of covering distance though if you 

walk along any kind of curved path you are still aware of some kind of 'speed'. The 

basic point however is that velocity is something which has associated with it both a 

magnitude and a direction: its 'speed' and the direction of motion. The velocity of a 

man moving with constant speed 2 ms -I at an angle e :"Jorth of East as in the left hand 

diagram is defined to be of magnitude 2 ms -I at an angle 8 North of East. 
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N 

9 
W+------t'''----~E 

direction 
of motion 

s 

direction 
of motion 

If the man were to walk round a circle as the right hand diagram so that each small 

arc of the circle is described in equal time, then the direction of motion at a point 

would be along the tangent to the circle. His velocity at any point on the circle is then 

defined to be along the tangent to the circle at that point and its magnitude to be the 

circumference of the circle divided by the time to describe a complete circle. A more 

precise definition of this magnitude will be given later. 

Therefore the velocity at a point can be represented by a line, the direction of the line 

representing the direction of motion and its length representing the magnitude. 

Velocity is therefore, like force, a vector. This means that any velocity can be 

regarded as a combination of two, or more, separate motions or components. A 

simple example is the motion of rain when it is windy. If there is no wind the rain 

will fall vertically downwards but when it is windy it falls at an angle. This is 

because the actual velocity of the rain is a combination of the velocity due to falling 

under gravity and the wind velocity. 

vertical ~ direction of rain 1 ~ ~ wind velocity 

Velocities combine, like forces, according to the parallelogram rule. 

y y ~ 
C c ! 

c 

A 6m M 
A 3mM / 

8m / 

M 4m 
/ B / /9 / 9 

o (A) B x 0 x 0 
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Motion Under Gravity in 2 Dimensions 

You can see this by imagining a large board on an ice rink and with two perpendicular 

edges AB and A C pointing East and North. Initially the board is placed, as shown in 

the diagram, with A at a fixed point 0 and AB and AC parallel to fixed lines drawn 

East and North through O. These lines are taken to be co-ordinate axes Ox and Oy. 

The board is then pulled northwards with speed 4 ms- I and at the same time a small 

animal M is imagined to move along the line AB with speed 3 ms -I. After I s, OA 

will be 4 m and AM will be 3 m so that, referred to the axes Ox, Oy, M will have 

coordinates (3,4) and OM will be ~42 + 32 m 5 m. After 2 s the coordinates will 

be (6, 8) and OM 10 m. Therefore M will move along the line through 0 and the 

point (3, 4), its speed will be 5 ms -I. Therefore the motion of M with speed 5 ms -I at 

an angle e to Ox, where tan e = ~ is a combination of the two separate motions i.e. the 

components of the velocity are 3 ms-I along Ox and 4 ms -I along Oy. This confirms 

the validity of the parallelogram of velocities in a simple case. 

It is easier in more general motions to define the components in two perpendicular 

directions first rather than try and define directly something which represents the rate 

of change of position. If the components of velocity along Ox and Oy are defined by 

u and v, 

y c 

o '--------+ x 

respectively, then the velocity is represented, as shown in the diagram, by the 

hypotenuse of the right angled triangle ABC where AB is parallel to Ox and 

proportional to u and BC is parallel to Oy and proportional to v. The length of the 

line AC represents the speed w which is defined by w = . The velocity is 

therefore defined to be of magnitude wand in the direction making an angle e, where 

tan e ~,with the positive x direction. 
u 

From the right angled triangle ABC , !:!:.. = cos e, ~ = sin e, 
u w w 

1.e. u w cos e, v = w sin e. 

The above equations let you convert the magnitude-direction definition of velocity to 

component form and vice-versa. 
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The equations are precisely the same as those relating the magnitude and direction of 

a force to its components and you have to be careful, as in Statics in 2.3 in M1, that 

you choose the correct quadrant for the direction of the velocity. 

The position of a particle moving in a plane is specified completely by its x and y co­

ordinates; these may depend on time. These co-ordinates are generally referred to as 

the displacements of the particle from the origin. The x- and y-components of 

velocity, u and v respectively, are defined by 
_dx _~ 

u - dt' v - dt' 

If you have not yet covered differentiation, then the velocity components can be 

defined, as in 4.1 in M1, as the slopes of the graphs ofx andy against time. 

Therefore, given x and y, u and v can be found and therefore the magnitude (i.e. the 

speed) and direction of the velocity. As t varies, the point with co-ordinates x and y 

will describe a curve, the path of the particle, as shown in the diagram. 

Y direction of motion 

/ 
L-------------~x 

The motion of the particle will be at an angle e to the x-axis where 

tan e v 
u 

~ 
dt 
dx 
dt 

~ 
dx' 

therefore the direction of motion ofthe particle will be along the tangent to the path. 

. d 2 x d 2 y 
Acceleration is also defined as a vector and Its components are -2- and -2-' 

dt dt 

However the acceleration due to gravity is constant and vertically downwards and 

therefore, if the x and y axes are chosen horizontally and vertically, only one 

component of acceleration has to be considered in problems of motion under gravity 

as considered in 4.2. 

Example 4.1 

Find the x- and y-components ofthe following velocities 

(i) 4 ms -1 at an angle of 40° to the positive x-axis, 

(ii) 8 ms -1 at an angle of 140° to the positive x-axis, 

(iii) 14 ms -1 at an angle of 60° below the positive x-axis. 
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The velocities are all shown in the diagram below where the x-axis is taken to be 

across the page to the right and the y-axis to be up the page. 

y y 

Yi 4 ms-I 8 ms-I 

40° 40· 

0 
x X 

o~>x 
14 ms-I 

(i) (ii) (iii) 

(i) The x- and y-components are 

4cos 40° ms -I 3.06 ms -I and 4 sin 40° ms -I = 2.57 ms -J . 

(ii) The x- and y-components are 

8 cos 140° ms-I 6.13ms-1 and8sin1400ms-1 5.14ms-l. 

These components could also have been found, as in problems in Statics, by taking 

components along the positive y direction and the negative x direction. 

These are 8 cos 40° ms -I = 6.13 ms -I and 8 sin 40° ms -I 5.14 ms -I. 

The x-component is then found by changing the sign of the first component. 

(iii) In this case the simplest way is to find the components along the positive x- and 

negative y-axes; these are 

14 cos 60° ms-I 7 ms-I and 14 sin 60° ms-I 1 = 12.1 ms-I 

The x- andy-components are therefore 7 ms-I and -12.1 ms-I. 

Example 4.2 

Find the magnitude and direction of the following velocities given that their x- and y­

components are respectively 

(i) 6ms- I,3ms-l , (ii) -7ms-I,5ms-l, (iii) -2ms-I,-3ms-l. 

(i) (ii) (iii) 

The components are shown in the above diagram where the x-axis is taken to be 

across the page to the right and the y-axis to be up the page. 
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(i) The speed is ms -I = 6.71 ms -I and the motion is at an angle 8 to the 

positive x-axis where tan 0 ~ so that 0 = 26.6° and therefore the velocity is 

6.71 ms -I at an angle of 26.6° to the positive x-axis. 

(ii) The speed is ~72 + 52 ms -I = 8.6 ms -I and the motion is at an angle 8 to the 

negative x-axis where tan 0 ~ so that 0 = 35.5° and therefore the velocity is 

8.6 ms -I at an angle of 144.5° to the positive x-axis. 

(iii) The speed is ms = 3.61 ms -I and the motion is at an angle 0 to the 
3 

negative x-axis in the third quadrant where tan 0 2 so that 0 = 56.3° and therefore 

the velocity is 3.61 ms -I at an angle of 236.3° to the positive x -axis. 

Example 4.3 

The x and y displacements, in metres, of a particle from the origin at time t s are 

(3t, 4t - 3rl). Find the velocity components when t 1 and t = 3. Detennine also 

the direction of motion for t 1. 

The velocity components are found by differentiating the displacements and this gives 

u 3 ms -I, V = (4 - 6t) ms -I. The velocity components for t = 1 are therefore 

3ms-1 and-2ms-l ,andfort 3 are 3 ms-land 14ms-l . 

r:: 3

=' 

2 ms-I 

The components for t 1 are shown in the diagram, with the x and y directions as 

defined in Example 4.2. The velocity is at an angle 0 below the x-axis where 

2 ° tan 0 = :3 so that 8 33.7. 

Exercises 4.1 

In the following questions the x and y displacements of a particle from the origin are 

denoted by x m and y m respectively and the x- and y-components of velocity by 

u ms -I and v ms respectively. 

1 Taking the x-axis to be across the page to the right and the y-axis to be up the page, 

find u and v in the following cases. 
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/9ms-
1 

~ 
(i) 

~ 
~ms-I 

(iv) 

15 ms-I 

~ 
(ii) 

L 10 ms-1 

(v) 

2 Find the magnitude and directions of the velocities corresponding to 

(iii) 

(i) u 2,v 6, (ii)u=-3,v 8, (iii)u=4,v=-12, (iv)u= 9,v -4, 

(v)u=12,v -15. 

3 Find u and v when 

(i) x=5t, y=2t+4t 2
, (ii) x 3t, y=4t 3t 2

, (iii) x 8t 2
, y 5t 2 +4t 3

, 

(iv) x = e -/ , Y e -/ + e -21. 

4 Find the speed and the direction of motion for 3(i) and 3(ii) at t 2. 

4.2 Equations of motion 
The motion of any body moving under gravity (such a motion is generally referred to 

as projectile motion with the moving body being called the projectile) is governed by 

Newton's second law of motion. You have already met this for motion along a line in 

the form mass x acceleration. The form for general motion is basically the same 

except that it is now necessary to take into account that the motion is no longer in a 

straight line. In more general circumstances Newton's law is 

Mass x component of acceleration in any direction = component of force in that 

direction. 

In projectile motion the modelling assumptions made are that all bodies are modelled 

as particles and that there are no resistive forces acting so that the only force acting is 

that due to gravity. If the x-axis is chosen horizontally and the y-axis vertically 

upwards then there is no x-component of force and the y-component of force is -mg, 

where g is the acceleration due to gravity. Therefore Newton's law gives 

mass x x-component of acceleration 0, mass x y-component of acceleration - mg, 

i.e. x-component of acceleration 0, y-component of acceleration - g. 

The first equation shows that the x-component is a constant e.g. u, so that the 

horizontal displacement of a particle from its initial position is ut. The second 

equation shows that the vertical motion will be the same as that of a particle falling 

freely under gravity i.e. with downwards acceleration g. The vertical displacement 
1 ? 

can therefore be found from s = ut + 2' ar with a = -- g and u equal to the value of 
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the upward velocity component at time t 0; this will be denoted by v. Therefore the 

horizontal and vertical displacements at time t of a particle from a point 0 are given 

by 

x ut and y vt 
1 
2 

where u and v are the components of the velocity of the particle at time t 0 at the 

initial point O. Therefore if a particle were projected from 0 with velocity 

components u and v, as shown in the left hand diagram, its co-ordinates would be 

given by the above equations. 

:L. /v 
0-------

It is often more usual to give, as in the hand diagram, the magnitude V and 

direction a to the horizontal of the initial velocity. Therefore u V cos a, v = V sin a 

and substituting into the expressions for the displacements gives 
1 ? 

x V cos at and y V sin at 2 gt - . 

Either of the above sets of equations can be used to solve any projectile problem but 

on the whole it is better to tackle any problem from first principles. It is impOliant to 

notice that the equations detennining the vertical and horizontal displacements are 

independent of each other. The horizontal motion is a motion at constant speed and 

the vertical motion is that of a particle moving vertically; you solved problems of this 

type in 4.3 in Ml. The actual motion of the particle is the combination of the two 

independent motions. 

It is also possible to generalise the principle of conservation of energy to cover 

projectile motion and use of this can a quick method of finding speed. The 

principle of conservation of energy applies to the vertical motion in the fonn 

1111 (vertical component of velocity) 2 + gravitational P.E = constant. 

The horizontal component of velocity is constant and therefore the above equation 

holds if t m (horizontal component of velocity) 1 is added to both sides. Also 

(horizontal component of velocity) 2 (ver1ical component of velocity) 2 = (speed) 

The definition of kinetic energy can be generalised to plane motions by 
1 ? 

K.E. 2" 111 (speed) ~ , 

and therefore with this definition the mechanical energy is conserved. 
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An alternative but completely equivalent way of finding the displacements would be 

to use the definition of acceleration in terms of a derivative to get 

d2x 
- = 0 and g. 
dt 2 dt 2 

These can be integrated to give x and y and obviously this again gives the same 

expressions as found directly from the constant acceleration formulae. 

The expressions found for x and y above can be used to give some general fornmlae 

such as that for the greatest height risen. In many examinations full credit will not 

normally be given for using these fornmlae without derivation and this is stated in the 

M2 syllabus. These formulae are however useful in showing the general behaviour of 

a projectile and their derivation is given in 4.3. 

Before working through some examples you may find it useful to have some general 

idea of the path of a proj ectile under the assumptions of the model. The actual path 

will be slightly different mainly due to the effect of air resistance. You will already 

have some idea of how a projectile moves from watching the motion of a football, 

tennis ball or cricket ball. You can get a particularly clear picture by looking at the 

water coming out of a hose pipe pointed at an angle. 

H 

A ~ (b) 

~ r=~ o (c) (d) 

Diagram (a) shows the path taken by a projectile projected from level ground and 

landing on level ground. It rises to its highest point H and then hits the ground again, 

the curve described is known as a parabola and it is symmetric about the vertical line 

through its highest point H. At H the particle will be moving horizontally and, in 

view of the symmetry, the time to reach H will be one half of the time taken to reach 

A. The distance OA from ground to ground is called the range, R. Diagram (b) shows 

the variation in range with different angles of projection for a given speed of 

projection. Curve 1 shows that for a large angle of projection the range is relatively 

small. It increases as the angle of projection decreases until it reaches a maximum 

value for a projection angle of 45°, this is curve 2. Thereafter the range decreases 

with the angle ofprojection as shown by curve 3. Any range other than the maximum 

value can be attained for a given speed with two angles of projection; if ex 0 is one such 
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angle then 90°_ c/ is the other. This is shown in diagram (c). If the particle is 

projected from the top of a cliff the path will be as in di agram (d). 

The basic method of solving any problem is to write down the displacements from the 

point of projection at any time. These will involve the initial components of the 

velocity of projection, or equivalently, the speed and angle of projection. will 

either be known or sufficient information will be given to find them. In cases of 

projection from ground level it is usually better to take the y-direction vertically 

upwards. For problems involving projection from a point above ground level it may 

be worth taking the y-direction downwards. In such a case you should remember to 

h 
.. 1 2 

use t e correct SIgns 111 s ut + '2 at 

In all the following examples the horizontal and upwards vertical displacements of a 

particle at time t s are denoted by x m and y m respectively and u ms ~I and v 

ms ~I denote the horizontal and vertical components of the initial velocity and g will be 

assumed to be 9.8 ms -2. 

Example 4.4 

A particle is projected from a point 0 on level ground with velocity components of 

7 ms- l horizontally and 19.6 ms ~I vertically upwards. Find the distance from 0 of 

the point where the particle next hits the ground and also find the greatest height 

reached above O. 

Since there is no horizontal component of acceleration, the horizontal component of 

velocity has the constant value 7 and therefore 

x = 7t. 

Applying s = ut + t at with a = - 9.8, u = 19.6 

y = 19.6t-4.9 2
• 

The particle is on the ground when y= 0 i.e. 

19.6t 4.9t" = 0, 

so that t = 0 or t = 4, so it next hits the ground when t 4 and x = 28. The greatest 

height is reached at the point where there is no vertical velocity. Applying v u + at 

with u 19.6 and a = - 9.8 shows that the vertical velocity v is given by 

v = 19.6 - 9.8t. 

vanishes when t = 2. This result could also have been deduced from the 

symmetry about the vertical through the point of greatest height. Substituting t 2 

into the expression for y gives the greatest height as (39.2 19.6) m = 19.6 m. 

An altemative method for finding the greatest height would have been to use 

v2 u2 2as,withu 19.6,a 9.8andv=0. 

68 



Motion Under Gravity in 2 Dimensions 

Example 4.5 

A particle is projected from a point 0 with a speed of 25 ms-1 at an angle e to the 
4 

horizontal where tan e 3' Find the equation of the path of the particle and also its 

direction ofmotion when t 3. 

tJ4 
-1 

rms 

/25 ms-' _, 

Lums 
3 

The left hand diagram shows that cos e ~ and sin e = :' it then follows from the 

right hand diagram that the horizontal component of velocity is 25 cos e = 15 and the 

vertical component of velocity is 25 sin e = 20. 

The horizontal component of velocity will have the constant value 15 and therefore 

x 15 t. 

A I · ] ? 'h . pp ymg s ut + '2 ar WIt a = 9.8, u = 20 gIves 

y 20t 4.9t 2
• 

Substituting for t in terms ofx gives 

20 4.9 x
2 

y = T5 x 225 

which is the equation of the path. 

The vertical component of velocity is found by substituting u 20 and a - 9.8 into 

v u + at giving 

20 9.8t. 

(This could also have been obtained by differentiating y with respect to t.) 

For t = 3 the vertical component of velocity is - 9.4 and the components of the 

velocity are as shown in the diagram. 

~15 

9.4 

The particle is therefore moving at an angle ~ below the horizontal where 

tan ~ = 0.63, so that ~ 32.1°. 

The direction could also have been obtained by differentiating the equation of the path 

with respect to x and finding the gradient for t = 3 i.e. for x = 45. 
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4 9.8x 
dx 3 225' 

and its value for x = 45 is 0.63. The minus sign shows that it is moving below the 

horizontaL 

Example 4.6 

A ball is projected from ground level so that after 2 s it just clears a wall at a distance 

of 6 m away and 3 m high. Find the initial horizontal and vertical components of 

velocity. 

In this case the initial components of velocity are not given but, as in the previous 

examples, the co-ordinates can be expressed in terms of them as 

x = ut. 

Y =vt-4.9t 2
• 

The conditions give x = 6 for t 2, and substituting into the equation for 

x gives u 

Substituting t = 2 and y 3 into the equation for y gives 

3 = 2v - 4.9 x 4 , 

so that v = 11.3. 

Example 4.7 

A golf ball is projected from the ground with speed 35 ms -I at an angle e to the 

horizontal where tan e !. On its downward path it just clears a tree 5.6 m high. 

Find the distance of the tree from the point ofprojection. 

The horizontal and vertical components of velocity are given by u = 35 cos e and 

v 35 sin e. Since tan e } it follows by drawing a right angled triangle as in 

example 4.5 that cos e = ~ and sin e = t so that u = 28 and v 21. 

The displacements from the initial point are given by 

x = 28t. 

y=2It-4.9t 2
• 

Substituting y = 5.6 into the expression for y gives 

5.6 = 2It - 4.9t 2 
• 

This is a quadratic equation for t, this can be solved using the standard formula and 

the roots are t = 4 and t 0.29. The questioh states that the ball hits the tree on its 

downwards path so the correct root is the larger one i.e. t 4. Substituting this into 

the expression for x gives the distance to the foot of the tree as 112 m. 
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Example 4.8 

A particle is projected horizontally with speed 32 ms -I , as shown in the diagram, 

from the top of a vertical cliff to horizontal ground at a distance of 80 m below the 

point of projection. Find the distance of the point of impact from the base of the cliff. 

80m 

1 
In this case, since the motion is entirely downwards, the y direction can be chosen 

vertically downwards. The initial vertical velocity is zero and therefore the 

displacements are given by 

x = 32t, 

Y 4.9t 2
• 

The particle hits the ground when y = 80 so that 80 4.9t 2 glVlng t = 4.04. 

Substituting this in the expression for x shows that the particle hits the ground at a 

distance of 129.3 m from the base of the cliff. 

Example 4.9 

A particle is projected with speed 25 ms -I and with an initial upwards component of 

velocity of magnitude 19.6 ms l 
, as shown in the diagram, from the top of a vertical 

cliff to horizontal ground at a distance of 58.8 m below the point of projection. Find 

(i) the distance of the point of impact from the base of the cliff, 

(ii) the speed of the particle on impact. 

o 

In this question v is given but not u. The angle of projection e above the horizontal 

can be found from 19.6 25 sin e which gives e c= 51.6
0 

and u 25 cos e 15.52. 

In this case the y direction will be taken upwards so that the displacements are 

x 15.52t. 

y =19.6t-4.9t 2
. 

71 



Motion Under Gravity in 2 Dimensions 

The particle hits the ground when y = -58.8 so that 

- 58.8 = 19.6t - 4.9t 2 
, 

this equation simplifies to 

t 2 - 4t - 12 = 0, 

which factorises as 

(t - 6)(t + 2) = 0. 

The positive root is t = 6 and substituting this into the expression for x shows that the 

particle hits the ground at a distance of 91.2 m from the base of the cliff. 

The speed V ms -Ion impact can be found using the principle of conservation of 

energy which gives 
I? 1 ? 2" m (25)- +m x 9.8 x 58.8= 2" mV-, 

where m is the mass of the particle and the level of the base of the cliff has been taken 

as the zero level of potential energy. This equation gives V = 42.16. 

Exercises 4.2 

Questions 1 to 6 refer to a particle projected from the origin with horizontal and 

vertical components of velocity u ms -1 and v ms -1 (or with speed V ms -1 at an angle 

ex above the horizontal), the displacements of the particle at time t s after projection 

are denoted by x m and y m, respectively. Also g should be taken as 9.8 ms -2. 

1 u = 4, v = 5, find x and y in tenns of t and find when the particle is next at the level 

of projection and its horizontal displacement from the point of projection at this 

time. 

2 u = 6, v = 11, find x and y in tenns of t and find its maximum height above the 

level of proj ection. 

3 u = 4, v = 12, find x and y in tenns of t and find the magnitude and direction of its 

velocity when t = 1 and when t = 8. 

4 V = 25, ex = 30°, find x and y in tenns of t and find when the particle is next at the 

level of projection and its horizontal displacement from the point of projection at 

this time. 
S V = 30, sin ex = t, find x and y in tenns of t and find its maximum height above the 

level of projection. 

6 V = 40, ex = 20°, find x and y in tenns of t and find the magnitude and direction of 

its velocity when t = 1 and when t = 8. 

7 One second after projection a particle has a horizontal component of velocity of 

8 ms -1 and an upwards vertical velocity component of 25 ms -1. Find the 

maximum height reached above the point of projection. 
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8 A ball is thrown with speed 20 ms -I at an angle of 20° above the horizontal and 

just clears the top of a wall at a distance of 18 m from O. Find the height of the 

wall above the level of O. 

9 A stone is thrown from the top of a cliff at a height 75 m above sea level with 

initial speed 25 ms -I at an angle a above the horizontal, where cos a = t. Find 

the distance from the base of the cliff to the point where the stone hits the sea. 

10 A particle projected from the origin and moving under gravity has coordinates 

(l0, 5) two seconds later. Find its initial velocity components. 

11 A particle projected from level ground rises to a height of 19.6 m above it. Find 

the vertical component of its initial velocity. 

12 A stunt motor cyclist attempts to cross a river 60 m wide by taking off at a speed 

of 35 ms -I from a ramp at an angle of 25° to the horizontal. Determine whether 

he will be able to cross. He estimates that air resistance will be such that the 

distance travelled will only be 60% of that predicted by the model neglecting air 

resistance. Find the minimum speed with which he should leave the ramp. 

4.3 Basic projectile formulae 
In this section some of the basic formulae for projectile motion will be derived and 

used to establish some of the properties of the path that were described in 4.2. You 

should be aware of these formulae and know how to derive them but in examinations 

it is likely that quoting them without proof could bring a penalty. 

If a particle is projected from a point 0 with velocity of magnitude V acting at an 

angle a above the horizontal, then the horizontal and vertical components of its initial 

velocity are V cos a and V sin a. The horizontal velocity remains constant and 

therefore the horizontal displacement is V cos at. 

F h . I' I' 1?'1 d V' I or t e vertlca motIOn, app ymg s = ut + '2 at - WIt 1 Cl = - g an Lt = sm a s 10WS 

that the vertical displacement is y 
. 1 

V sm at-

Therefore the horizontal and vertical displacements x andy are given by 
. 1, 

x V cos at, y = V sm at - '2gt L • 

The particle will be on the same level as the point of projection at the time t = T when 

y 0 i.e. 
1 ? 

Vsin aT '2 gT- = O. 

This gives, since the solution T 0 refers to the initial position, 
2Vsina 

T= 
g 
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and T is often referred to as the time of flight. Substituting T into the expression for x 

gives, for a particle projected from ground level, the distance of the point of impact 

from the point of projection. This is referred to as the range R which is therefore 

defined by 

R 
g 

You know from the symmetry properties of the trigonometric functions that 

sin( % - a J = cos a and cos (% - a J = sin a, 

therefore if a particular value of a gives a range R then so will ~ - a. It will be 
2 

shown in P3 that 2 sin a cos a = sin 2a and therefore the maximum value of R, for a 

given V, occurs when sin 2a = 1, i.e. when a = ~. A proof, not depending on 
4 

anything in P3, that the maximum value of range occurs for a = ~ is given at the end 
4 

of this section. 

Substituting u = V sin a and a = - g into v = u + at gives the vertical component of 

the velocity to be V sin a - gt, this vanishes at the point of maximum height above O. 

Therefore the time to reach this point is Vsina, which is half the time of flight. 
g 

Substituting this value into the expression for y shows that the greatest height h is 

given by 

h = V 2sin 2a 

2g 

(This could also have been obtained by substituting v = 0, U = V sin a and a = - g into 

v 2 = U 2 + 2as.) 

Substituting the value of the time to the point of greatest height into the expression for 
1 

x shows that the displacement of the point of greatest height is "2R. 

Eliminating t between the expressions for x and y gives 

gx 2 

y = x tan a - ---=---
2V 2cos 2 a 

gx 2 

= x tan a - -- sec2 a 
2V2 ' 

which is the equation of the path of the particle. 

You can check, by expanding the squared term in brackets, that the equation of the 

path can be rewritten as 

y = _ gsec
2
a [x _ V2

sinacosa)2 + V 2sin 2a 

2V2 g 2g 

This can be further simplified to 

y-h = _gsec2a(X_~RJ2, 
2V2 2 
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this shows the symmetry about the point x ~R i.e. the curve is symmetric about the 

vertical through the point of greatest height. 

Determination of angle for maximum range 

C 

y 

A L--___ --' B 
X 

The diagram shows a right angled triangle ABC with the angle BAC = a and AB == X 
Y X 

and BC Y. Therefore srn a cos a = and 

2 
. 2XY 

srn a cos a = 2 ) 
(X + 

Also (X - Y) 2 = X 2 + Y 2 2XY. 

The left hand side is positive and attains its minimum value of zero when X = Y, 

therefore 
2XY 

(X2 +f2) sI, 

with the equality holding for X Y. This therefore shows that 2 sin a cos a has its 

maximum value when cos a sma 
1 . r re 

= -{i' l.e. Jor a = 4' 

You may now care to use these results to answer Examples 4.4 and 4.5 and question 

1,2,5 and 6 of Exercises 4.2. 

Miscellaneous Exercises 4 
1 A golf ball is struck from a point 0 on horizontal ground so that initially it is 

moving with speed 25 ms -I at an angle e to the horizontal where tan e = %. 

Write down expressions for the horizontal and vertical components of its 

displacement from 0 at any subsequent time t. 

State two physical assumptions that you have made in determining the 

displacements. Determine the time to reach maximum height and the range as 

predicted by your model. 

2(a) A zoo-keeper fires a tranquillising dart at a rhinoceros. The dart is fired at a 

speed of 25 ms -I at an angle CJ" above the horizontal and, when it hits the 

rhinoceros, it is at the same height as that at which it was fired. 
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G· h 7. 24 fi d lven t at cos Cl = - and sm Cl = - m 
25 25 

(i) the time of flight of the dart, 

(ii) how close the keeper was to the rhinoceros when the dart was fired. 

(The dart is to be modelled as a particle and air resistance may be neglected.) 

(b) The zoo-keeper has to tranquillize another rhinoceros well beyond the range of 

the dart but which is running towards the keeper at a speed of 10 ms -I. The 

keeper fires the dart at the same speed and angle of projection as in (a). How far 

away should the rhinoceros be from the zoo-keeper when the dart is fired? 

3(a) At time t 0 a particle P is projected from a point 0 on horizontal ground with 
3 
y speed 40 ms -1 at an angle Cl to the horizontal, where cos Cl 

Write down expressions for its vertical and horizontal displacements from 0 at 

time t seconds and show that it reaches its greatest height after approximately 

3.27 s. 

Some time after attaining its greatest height the particle hits a screen, which is 

perpendicular to its plane of motion, at a point B at a height 49.6 m above the 

horizontaL 

(i) Show that the particle hits the screen 4 seconds after being projected. 

(ii) Find the gradient of the path immediately before impact. 

(b) The screen is then moved nearer to 0 so that the particle, when projected as 

above, still strikes it at the point B. Find, in metres correct to one decimal place, 

the perpendiCUlar distance of the screen from 0 in this case. 

(c) The screen is moved to the position where P, when projected as above, strikes it 

at the highest point of its motion. Given that the coefficient of restitution 

between the particle and the screen is ! find, in metres correct to one decimal 

place, the perpendiCUlar distance from the screen to the point where P first hits 

the ground. 

4 A particle P is projected from a point 0 on a horizontal plane with speed v at an 

angle Cl above the horizontal. It rises to a maximum height h above the plane and 

strikes the plane again at a distance r from O. Write down x and y, the horizontal 

and vertical displacements of P from 0 at time t after projection, in telIDS of v, Cl, 

g and t. Hence find rand h in terms of v, g and Cl. 

The particle passes through the point A whose horizontal displacement from 0 is 

pr, (0 < p < 0.5). Find, in terms of p and Cl, the tangent of the angle P between 

the horizontal and the path ofthe particle at A. State the horizontal displacement 

of the point B where the path is inclined at an angle P below the horizontaL 

Given that at A the particle is at a height a above the horizontal plane, express a 

in terms of p and h. 
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5 A golf ball is driven from a point 0 with an initial speed of 42 ms -1 at an angle 

a to the horizontal. Neglecting air resistance, derive the horizontal component x 

and the vertical component y, of the ball's displacement from 0 at time t after 

projection. Show that 
x 2 

Y = xtana -----
360cos2 a 

The golf ball just clears a tree at B where B is on the same horizontal level as 0 

and OB is 150 m. The tree is 5 m high. Verify that one value of a is such that 
3 

tan a 5' 

By using the identity _1_2 - = 1 + tan 2 a, find a quadratic equation satisfied by 
cos a 

tan a and hence find a second value of tan a such that the ball just clears the tree 

atB. 

6 A particle, projected with speed Vat an angle a to the horizontal from 0, moves 

freely under gravity. Find u and v, the horizontal and vertical components of its 

velocity, and x and y, its horizontal and vertical displacements, respectively, at 

time t after projection. Show that 

2 L.!: tan a. 
x u 

Given that the particle strikes a plane through the point of projection and inclined 

at an angle ~ to the horizontal, where tan ~ i at right angles, find the value of 

the ratio v at the instant of impact. Hence find the value of tan a. 
u 

7 A particle P is projected with speed V at an angle a to the horizontal from O. 

Find u and v, the horizontal and vertical components of its velocity, and x and y, 

its horizontal and vertical displacements, respectively, at time t after projection. 

Given that the particle strikes the horizontal plane through 0 after a time T, show 

that 

T 
2Vsina 

g 

Find, in terms of g and T, the maximum height of the particle above the level of 

O. 

Given that at time 5{ the particle is moving at right angles to its original direction 

of motion, find tan a. 

8 A particle is projected from a point 0 on level ground and next strikes the ground 

again after a time T at the point A, where OA 

vertical components of the velocity of projection. 
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9 A stone is projected with a velocity of 14.7 ms -J at an angle a to the horizontal, 

where sin a ~. Before reaching its maximum height it just misses the top of a 

pole of height 2 m. At the instant the stone is thrown a bird leaves the top of the 

pole and flies horizontally at a constant speed of v ms -J. Find v given that the 

stone hits the bird. 

10 Two seconds after a stone is thrown, it is moving at an angle a to the horizontal 

where tan a 2, a further second it is moving at an ~ to the 

horizontal, where tan ~ =1. 

F· d b 'd' . tana 
111, Y consl enng the ratIO 

tan~ 
the vertical component of the initial 

velocity of projection. Detennine also the horizontal component of the initial 

velocity of proj ection. 

11 A particle is projected from a point with speed 25 ms-1 at an angle a to the 

horizontal where tan a = ;5' Find the magnitude and direction of the velocity 

of the particle two seconds after projection. 

12 At a particular instant a particle P is projected from a point 0 with horizontal 

and upward components of velocity 3/1u and 5/1u, respectively, where /1 and u 

are positive constants. At the same instant a second particle Q is projected from 

a point whose co-ordinates referred to 0 are (16a, 17a), where the x-axis is 

horizontal and the y-axis is vertically upwards. 

The initial x and y components of the velocity of Q are 4u and 3u, 

respecti vely. 

Find the horizontal and vertical components of the displacements from 0 of P 

and Q at time t after projection and find the value of 11 such that the particles 

collide. 

13(a) A particle is projected from a point 0 with speed u at an angle a above the 

horizontal. 

(i) Write down expressions for the horizontal and vertical displacements of the 

particle from 0 at time { after projection, 

(ii) deduce that the particle first hits the horizontal plane through 0 at a 

2u 2 sina cosa 
distance from 0, 

g 

(iii) show that the greatest height reached by the particle above the level of 0 is 

u2 sill a 

2g 

(b) A particle P is projected from a point 0 with speed at the angle which 

gives maximum range on the horizontal plane through O. Find the tangent of 
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the angle between the velocitv of P and the horizontal at time I 3a after 
J , 8g 

projection. 

(c) A particle Q is projected with speed ...j12ga from a point A on the horizontal 

14 

floor of a room with a horizontal ceiling at a height 3a above the floor. Find, 
2 

assuming that Q must not hit the ceiling, the maximum value of the distance 

from A of the point at which Q first hits the floor. 

(a) 

Diagram (a) shows a simplified schematic diagram of a model of the action of 

a long jumper. The points 0 and 0' denote the positions of the centre of 

gravity of the jumper at the start and the end of the jump, respectively. In this 

model it is assumed that the points 0 and 0' are on the same horizontal level 

and that the only force acting on the jumper during the jump is the force due to 

gravity. The jumper is taken to be a particle occupying the position of his 

centre of gravity and projected at time t = 0 s with speed V at an angle ex to 

the horizontal. The horizontal and vertical components of the displacement 

from 0 at time t are denoted by x and y respectively. Write down expressions 

for x and y at time t and hence show that 

y = px qx 2
, 

where p and q are constants which should be found in tenns of V, g and ex. 

(b) 

Diagram (b) shows a more realistic model where it is assumed that the centre of 

gravity of the jumper drops a vertical distance of 0.3 m between take-off and 

landing. In one particular instance the values of ex and V (which you do not 
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need to find) are such that the above equation, with x and y measured in metres, 

becomes 
4 2 2 

Y = -x - -x 
3 9 

Find the difference between the horizontal displacement of the centre of gravity 

between take-off and landing calculated using this second model and that 

calculated using the first model. 

15 A golf ball is at rest at a point A on horizontal ground. Some distance away is a 

tree, 17.5 m high. The golf ball is struck so that the horizontal and vertical 

components of its initial velocity are 24.5 ms -I and 28 ms -I respectively. The 

golf ball just clears the top of the tree when it is on the downward part of its 

flight. Find 

(a) the time taken by the ball to reach the top of the tree, 

(b) the distance of the base of the tree from A, 

(c) the distance of the base of the tree from the point where the ball strikes the 

ground. 

16 A particle P is projected with speed 49 ms -I at an angle ex to the horizontal from 

O. Find x and y, its horizontal and vertical displacements, respectively, at time 

t s after projection. Hence show that for x = 140 

y = 140 tan ex - 40 sec 2 ex. 

The particle just clears a wall 20 m high at a distance of 140 m from the point 

of projection. Find, by using the result sec 2 ex = 1 + tan 2 ex, the two values of 

tan ex for which this is possible. 

17 A point 0 is vertically above a fixed point A of a horizontal plane and a particle 

P is projected from 0 with speed 5 Vat an angle ex above the horizontal, where 

3. .. 48V
2 h 

cos ex = 5' It hIts the plane at a pomt B at a dIstance -- from A. Show t at 
g 

the height of 0 above A is 64V
2 

and find the distance of P from 0 when it is 
g 

directly level with it. 

A second particle is now projected with speed 24W from 0 at an angle ex above 

the horizontal and it also hits the plane at B. Find an equation involving V, W, g 

and ex. Given that one value of ex is 45°, find V in terms of Wand show that the 

other value of ex is such that 

7 tan 2 ex - 6 tan ex - 1 = O. 

18 A particle is projected from a point 0 on a horizontal plane with speed u in a 

direction making an angle ex above the horizontal. At a subsequent time t, the 

horizontal and vertical displacements of the particle from 0 are denoted by x 

and y, respectively, and it is moving in a direction inclined at an angle ~ above 

the horizontal, with the upward vertical component of its velocity being v. 

80 



Motion Under Gravity in 2 Dimensions 

(a) Show, from the equations of motion, that 
2y 

(i) v + u sin a 
t 

(ii) x(tan a + tan ~) = 2y. 

(b) When moving at an angle of 45° above the horizontal, the particle just clears 

a wall of height 3 m and at a perpendicular distance of 2 m from O. The 

wall is perpendicular to the plane of motion of the particle. Subsequently, 

when moving at an angle of 45° below the horizontal, the particle just clears 

a second identical and parallel wall. Find 

(i) tan a, 

(ii) the distance between the walls, 

(iii) the range on the horizontal plane through 0, 

(iv) the maximum height reached above the plane. 
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Chapter 5 

Vectors 

After working through this chapter you should 

.. know what is meant by a vector, 

.. be familiar with the representation of a vector in terms of its cartesian components, 

.. be able to use the cartesian representation to find the magnitude of a vector and to 

add and subtract vectors, 

.. be able to calculate the scalar product of two vectors, 

.. be able to differentiate and integrate a vector in cartesian component form with 

respect to a parameter. 

The aim in this Chapter is to the basic principles underlying the use of vectors so 

that these can be applied to various areas of Me cb ani cs. 

Essentially, this Chapter contains the Pure Mathematics necessary to use vectors in 

the remainder of the Mechanics course. 

5. 1 Vectors and scalars 
Scalars 

A scalar IS a quantity which is represented only by one number, generally its 

magnitude. Most of the quantities that you have met so far such as mass, speed and 

distance are scalars. 

Vectors 

A vector is a quantity which has both magnitude and direction. The simplest example 

of a vector is the distance and direction of a point B from another point A. 

This is called the displacement of B from A and extends the idea of displacement as 

defined in Chapter 1 ofMl to more than one dimension, The displacement of one 

point from another is sometimes in a direct fonn such as saying that a point B is 

5 km North of another point A, as shown in the left-hand diagram below. 

10 km 

10 km 
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Alternatively, the displacement can be given less directly by, for example, saying a 

plane travels 10 km East from A, then turns and travels 10 km North to the point C as 

shown in the right-hand diagram on the previous page. In this case the displacement 

ofC from A is .JI02 + 102 = 14.1 km on a bearing of 45°. 

A line joining two points with the sense being defined from one point to the other is 

called a directed line segment. Any vector can be fully represented by a directed line 

segment since this has magnitude, its length, and direction, the sense in which the line 
-?> 

is travelling, The notation AB is used to describe the line segment joining A to B in 

the sense from A to B. Equivalently, the line segment joining A to B in the sense from 
-?> -?> 

A to B is said to define the vector AB. Similarly BA is used to describe the line 

segment joining A to B in the sense from B to A. 

A vector is not generally fixed in space and the three parallel and equal line segments 
-?> -?> -?> 

AB, CD, EF in the diagram all represent the same vector. 

B H 

A~ I C~DE~FI~""'-J 
G 

-?> -?> 
The other two line segments GH and IJ , which are of the same length as the other 

line segments, do not represent the same vector as they have different directions. 

You have already met in your course, forces, which are vectors, in that they have both 

magnitude and direction. 

Vector notation 

There are essentially two different notations for vectors and the notation that you will 

use in writing vectors is not usually the one that is convenient to use in books. 

The displacement of B from A is often written, using the above notation for a line 
-?> -?> 

segment, as AB. The length of the displacement, a scalar, is written as i AB 1 or 

sometimes just as AB. Quite often a single letter is used to denote a vector and it is 

shown in print in bold, i.e. dark type, as a. The magnitude, or modulus, of a vector is 

a scalar and is written as 1 a 1 or a. 

In writing it is difficult to show darker letters and so a vector is shown by underlining 
-?> 

e,g. or by using a wavy underline, e.g. £, or by writing an arrow above it, e.g. a , 
-?> 

The magnitude of a vector is shown by writing 1 a I, 1 a I, 1 a 1 or a. Whatever 

notation you use, it is extremely important in anything that you write that you should 

show clearly the difference between a vector and a scalar. 
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Position vector 

In many problems most measurements are referred to some on gm O. The 
---';» 

displacement OP, is referred to as the position vector of P relative to 0 and is often 
---';» 

denoted by r, and its magnitude is r. The vector AB can be interpreted as the positon 

vector of B relative to A. 

5.2 Properties of vectors 
Magnitude of a vector 

The magnitude of a vector is the length of the line segment representing it. 

Equal vectors 

Two vectors are defined to be equal if they are of the same magnitude and act in the 

same direction. The vectors represented in the diagram above by the two parallel and 
---';» ---';» 

equal line segments AB and CD are equal. Equivalently, the line segments are two 

representations of the sanle vector. 

Negative vectors 

The vector -a is in the opposite direction to the vector a but of the same magnitude. 

I /-. 
This is shown in the and you have met this idea with forces. Similarly 

---';» ---';» 

BA -AB. 

Multiplication by a scalar and vectors in the same and opposite directions 

The vector m a, where In is a positive scalar, is a vector in the same direction as a but 

of magnitude m a or m I a I. The vector m a, where m is a negative scalar, is a vector 

in the opposite direction to a but of magnitude I In I a or I m 11 a I· 
It is particularly important when you come to write expressions like m a to show 

clearly, by underlining, which is the vector. If you don't do this you will have 

expressions like ma and have a scalar when you should have a vector. 

Vectors which are in the same, or opposite directions, are said to be parallel. 

The vectors a, 2a and -2a are shown in the diagram. 

2a -2a 
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Unit vectors 

A unit vector is one of unit magnitude. The unit vector in the direction of the vector a 

is found by dividing a by its magnitude and is therefore!. Alternatively if It denotes 

the unit vector in the direction of a vector a then a an or, equivalently, I a I n. 

Addition and subtraction of vectors 

The law of addition of vectors is the same as the combination of displacements. If you 

travel from A to B and then from B to C you will have been displaced from A to C. 

C 

A 
a 

~ ~ ~ 

The sum of the displacements AB and BC is the displacement AC. That is 
~ ~ ~ 

AB +BC AC. 
~ ~ ~ 

Therefore if AB represents the vector a and BC represents the vector b then AC 

represents the vector a + b. This is the triangle law which you have already met for 

forces. The sum a + b is sometimes referred to, as for forces, as the resultant of a 

and b. 

This definition can be extended to show how several vectors can be added together, a 

pair of vectors is added together, then a fmiher vector can be added etc. The left hand 

diagram shows the sum a -t- b + C of the three vectors a, band c, 

a a 

The order in which the vectors are added does not matter as can be seen fi:om the right 

hand diagram. 

It is important to realise that, before assuming that physical quantities like force can 

be added using the triangle law, it is necessary to verify experimentally that this is the 

case. Subtraction is defined by 

b-a b + a). 
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b-a 

a 

o 

In the diagram the position vectors of A and B are a and b, respectively, and therefore 
-7 

the vector - a can be represented by AO. Therefore b a is represented by 
-7 -7 -7 

AO + OB = AB 
-7 

i.e. AB = b a. 

This could have been found also from the triangle law which shows that 
-7 -7 -7 
OA +AB OB 

-7 
I.e. a + AB = b, 

-7 
and moving a to the right hand side gives AB. 

It is important to notice that vectors can be moved across equals signs, provided the 

sign is changed, just like scalars. 

Also vectors obey the normal algebraic rules like scalars i.e. 

pa + qa = (p + q)a, pa + qa + rb + sb (p + q)a + Cr + s )b, 

i.e. in adding vectors you can add the coefficients of the vectors exactly the same as in 

normal algebra. 

Representing vectors 

It is possible to write any two dimensional vector c as the sum of any two non parallel 
-7 

vectors. This can be seen from the following diagram where c is represented by OC. 

C 

c 

a 
o 

If a line is drawn from 0 in the direction of the vector a and one drawn from C in the 

direction of the vector b then the lines will intersect at D. Also, by the definition of 
-7 -7 

scalar multiplication, OD pa and DC qb, where p and q are scalars. The triangle 

law then shows that c = pa + qb. The vectors pa and qb are called component vectors 

of c. Their magnitudes, i.e. the lengths OD and DC, are called the components of c in 

the direction of the vectors a and b respectively. 

This representation, when a and b are perpendicular to each other, is the basis for the 

use of cartesian components described in section 5.3. 
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Example 5.1 

The diagram shows two points A and B with position vectors a and b, and C is the mid 
~ ~ 

point of AB. Find in terms of a and b the vectors AC and OC. 

C B 
A 

a 
b 

o 

From the definition of multiplication by a scalar 
~ 1 ~ 1 
AC '2AB '2(b - a). 

The addition law gives 
~ ~ ~ 

OC = OA+AC 

Example 5.2. 

The vectors p and q are defined by p 2a + 3b, q 4a + 5b. Express, in tenns of a 

andb, (a)p+3q,(b)2p q, (c)thevectorcsuchthat3p+q+c = a. 

(a) Substituting for p and q in p + 3([ gives 

p+3q 2a+3b+3(4a+5b) 

= 2a + 3b + 12a + I5b I4a 18b. 

(b) Similarly 

2p q = 2(2a+3b)-(4a+5b) b. 

(c) Substituting for p and q in 3p + q + c gives 

3p+q+c 3(2a+3b)+(4a+5b)+c 10a+14b+c. 

Equating this to a gives 

lOa + 14b + c = a, 

so that c = - 9a 14b. 

Example 5.3 

In the diagram the vector a is of length 2 and makes an acute angle of 45° with the 

dotted line sho\\;11 and the vector b is of length 3 and makes an acute angle of 60° with 

the dotted line. Find the magnitude and direction of2a + 3b. 

t· __ _ 
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-7 -7 
In the following diagram OA represents the vector 2a and is therefore of length 4, AB 

represents the vector 3b and is therefore of length 9. The angle OAB is 1650
• 

o 

-7 
OB represents 2a + 3b and applying the cosine rule to triangle OAB gives 

OB 2 4 2 +9 2 -2x4x9xcos165°, 

and therefore OB 12.91. 

Applying the sine rule to triangle OAB gives 

BOA sin165° 
9 OB 

giving angle BOA lO.4°. Therefore 2a + 3b is of magnitude 12.91 at an angle of 

55.4° to the dotted line. 

This is not really the quickest way of finding 2a + 3b and the alternative method using 

components and described in the following section is more efficient. 

Exercises 5.1 

1 
B .-------, C 

N 

0'----..........----' A 
M 

In the square OACB the midpoint of OA is 1v1 and the midpoint of OB is N. The 
-7 -7 

vectors OA and OB are denoted by a and b, respectively. Express in terms of a 
-7 -7 -7 -7 -7 -7 

and b (a) OM, (b) NO, (c) AB, (d) AC, (e) BA, (t) MN. 

2 
F 

r-----+-----------~C 

A'------------' 
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In the parallelogram AB CD, E is the point on AD where AE ~ AD and F is the 

1 -?>-?> 
point on DC where DF ="3 DC. The vectors AB and AD are denoted by a and b, 

respectively. 
-?> -?> -?> -?> -?> 

Express in tenllS of a and b (a) DF, (b) AC, (c) AF, (d) CF, (e) EF. 

3 
E D 
,-------.. 

F C 

-?> -?> 
In the hexagon ABCDEF the vectors AB and BC are denoted by a and b, 

-?> -?> -?> -?> 
respectively. Show that CD = b - a and express (a) DE, (b) EF, (c) FA in ten11S 

of a and b. The points P and Q lie on BC and respectively, with BP = ± BC 

and FQ 
-?> 

Express PQ in terms of a and b. 

4 The vectors p and q are defined by p = 4a + 6b, q 2a 5b. 

5 

Express, in terms of a and b, (a) 2p + 4q, (b) 3p 4q, 

(c) the vector c such that 2p + 5q -I- C 2a -I- 5b. 

In the diagram the vector a is of length 3 and an acute angle of 200 with 

the dotted line shown and the vector b is of length 4 and makes an acute angle of 

40° with the dotted line. 

Find the magnitude and direction of (a) a + b, (b) 3a + 4b. 

5.3 Vectors in two dimensions 
The basic ideas involved with vectors are the same in two and three dimensions but, 

in order to used to them, it is better to start with the slightly simpler case of two 

dimensions. 
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Cartesian components (or resolutes) 
M 

3j km 

OL.---~-----lA 
4ikm 

The diagram shows the final position of a man M who has travelled 4 km east from a 

point 0 to a point A and then travelled 3 km directly north from A. His final 

displacement is the vector sum of his displacements east and north i.e. 
-7 -7-7 
OM = OA AM. 

Unit vectors i and j can be chosen so that i points to the east and j points north. 

Perpendicular unit vectors like these are generally called cartesian unit vectors. 
-7 -7 

Then OA= OA i 4 i km and AM = AM j 3 j km and 
-7 
OM (OAi+AMj) = (4i + 3j)km. 

This alternative fonn of the displacement is called its cartesian component fonn and it 

is the most useful fonn for a vector. The lengths of OA and AM, i.e. the numbers 4 

and 3, are the cartesian components (or resolutes), in metres, of the displacement in 

the direction of i and j respectively. The adjective cartesian will, for brevity, 

nonnally be omitted in subsequent work. 

Any two dimensional vector can be expressed in the fonn c i -'- dj, the coefficients c 

and d of i and j, respectively, are called the components in the i and j directions, 

respectively. 

The components are not always positive. This can be seen from the diagram 

M' r iLi 3jkm 

A' 0 
-4ikm 

which shows the position M' of the man after travelling west a distance of 4 km to the 

point A' and then 3 km North from A'. In this case 
---;0. -7 ---7 
OM' OA'+A'M', 

-7 
however OA' is in the opposite direction to i and therefore 

-7 ---7 
OA'=- 4 i km and A'M' = 3 j km so that 

---;0. 

OM' = (-4i +3j)km, 

showing the possibility of a negative component. 
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~ 

The length OM, i.e. the magnitude of the vector OM IS, by Pythagoras' Theorem, 

5 km. This is the square root of the sums of the squares of the components and is the 

definition 0 f the magnitude of a vector in cartesian component form. 

The i, j notation is the one generally used in mechanics but an entirely equivalent 

representation is possible using column vectors when 

(:) km, and oM' = (-3
4

) km. 
~ 

OM 

Components of a position vector 

y 

P 

j 

y 

o "---X--A-'-----+ X 

In the diagram i and j denote unit vectors along the Ox and Oy axes. The 

perpendicular from the point P (x, y) to the x axis intersects it at the point A. 
~ ~ ~ ~ ~ ~ 

Therefore OA xi, AP = y j, and OP OA + AP = xi + y j. Also OP, the position 

vector of the point P is usually denoted by r so that 

r = x i + y j, 

and I r i = r = ~X2 + / . 

Example 5.4 

Find the position vectors of the points with cartesian coordinates (4, 6) and (-4, 3). 

The components of the position vectors are the coordinates and therefore the required 

vectors are 4i t 6j and -4i + 3j and have magnitudes -{52 and -125 = 5, 

respectively. 

The following summarises the properties of a vector when expressed in cartesian 

component fonn. 

Equality of vectors 

Vectors are equal if and only if all their components are equaL 
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Example 5.5 

Given that the vectors a (4 - x) i + 6 j and b 7 i + (5 - y) j are equal, find x and y. 

It is given that 

a = (4 x) i + 6 j = b 7 i + (5 y) j, 

the vectors can only be equal if their components are equal i.e. 

4 -x 7, 6 = 5 y, 

therefore x = -3 and y = -l. 

Negative vectors 

If a = c i + d j then a - ci - d .i, 
i.e. the signs of both components are changed. 

Multiplication by a scalar 

If a c i + d j then m a = mc i + md j, 

i.e. both components are multiplied by m. 

Addition and subtraction of vectors 

The sum or difference of one or more vectors is the vector whose components are the 

sums or differences of the corresponding components of the two vectors. 

Example 5.6 

The vectors p and q are given by p = 2i + 8j, q = Si 3j. Find, in cartesian 

component form, (a) p + q, (b) 2p + 4q, (c) 3p 2q. 

(a) p + q 2i + 8j + Si - 3j = 7i + 5j. 

(b) 2p + 4q 2(2i + 8,i) + 4(5i - 3j) 24i + 4j. 

(c) 3p - 2q 3(2i +8j) - 2(5i 3j) = 4i + 30j. 

Zero vector 

This is the vector with zero components and is denoted usually by O. The rule for the 

subtraction of two vectors shows that 

a - a = O. 

Vector joining two points 

If a and b are the position vectors of two points A and B then it was shown on page 86 
-i> 

that AB b - a. The components of a and b are the coordinates of the corresponding 

points. Therefore the rule for subtraction shows that the components of the vector 

joining two points are the differences in the corresponding coordinates of the points. 
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Example 5.7 
~ 

Find the vector PQ where the coordinates of P and Q are (2, 1) and (S, -3) 

respectively. 

The position vectors p and q of P and Q are p = 2i + j and q = Si 3j. 
~ 

Also PQ = q-p Si-3j (2i j)=3i 4j. 

Magnitude of a vector 

The magnitude of the vector cid j is ~ c2 + d 2 i.e. the magnitude is the square 

root ofthe sum of the squares of the components. 

Example 5.8 

Find the magnitudes of the vectors (a) 3i + 4j , (b) 7i 11j. 

The magnitude of a vector is the square root of the sum of the squares of the 

components. Therefore for (a) the magnitude is S and for (b) the 

magnitude is 

= 13.04. 

Example 5.9 

Find the vector in the direction of the vector Si + 12j and of magnitude 104. 

The required vector is k(Si + 12j), where k is a constant. The magnitude of the vector 

is k = 13k = 104 so that k = 8 giving the required vector as 40i + 96j. 

Unit vectors 

The unit vector in the direction of the vector a c i + d j IS 

Example S.10 

Find the unit vectors in the direction of the vectors (a) 3i - 4j, and (b) 4i + 7j. 

(a) The unit vector is found by dividing the vector by its magnitude. 

The magnitude is = S 

d 1 fi 
. . 3i-

an t lere ore the umt vector IS ---"-­
S 

(b) In this case the magnitude of the vector is 

. . 4i +7 i 
and the Ul1lt vector IS ~'. 
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Conversion to cartesian component form 

j B 

8 A ""---""-___ ---J:::-_+ i 
C 

~ 

In the above diagram AB represents the vector a and lines AC and CB are drawn 
~ ~ 

parallel to the cartesian unit vectors i and j. The vectors AC and CB are therefore 
~ 

AC i and CB j, respectively, and the law of vector addition gives AB = AC i + CB j. 
~ 

The cartesian component (i.e. resolute) of AB in the direction of i is therefore AC, 
~ 

which is equal to AB cos 0, where ° is the between AB and i. Similarly the 

cartesian component (i.e. resolute) of 

is equal to AB sin O. 

in the direction of j is therefore BC, which 

There is a current practice that the adjective cartesian is usually dropped and the 

component (i.e. resolute) of a vector in any direction is defined to be the product of 

the magnitude of the vector and the cosine of the angle between the vector and the 

chosen direction. You have already met this with forces in Ml. This definition is 

obviously not valid when the component directions are not perpendicular. Therefore 

if the word component is used then, unless there is evidence to the contralY, it should 

be interpreted as the cartesian component or resolute. 

In calculating the component fonn you have to be careful, as in Statics, to pick the 

correct angle and take its cosine correctly. Y Oll could also resolve a vector first into 

two positive components along the lines containmg i and j and then adjust the 

It is often helpful when doing theoretical work with vectors to label the components 

so that it is immediately obvious which is the i component and which is the j 

component. Since these unit vectors are usually taken to be parallel to the x and y 

axes, respectively, one method of identifying the components is to use a suffix 

notation i.e. the i and j components of the vector Cl are denoted by CLx and ay, 

respectively, so that a = ax i ay j. This notation will be used from now on. Another 

notation which is sometimes used is a numerical one with the i and j components of 

the vector Cl being denoted by (11 and respectively. 

Conversion from component form 

If a vector a is represented by 
components a, and a), are given by 

Cl, = GAcos 0, 

then the above argument shows that the 

Cl) = GA sin ° 
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Squaring and adding gives 

OA 

You can then find cos 0 (sin 0) and the signs of at and Cl v will tell you in which 

quadrant the vector lies and you can then find O. 

Example 5.11 (This is effectively Example 5.3 repeated) 

In the diagram the vector a is of length 2 and makes an acute angle of 45° with the 

unit vector i and the vector b is of length 3 and makes an acute angle of 60° with j. 

Convert the vectors a and b to cartesian component fon11 and find the cartesian 

component fOD}} of2a + 3b. Find also the magnitude and direction of2a + 3b. 

The components of a in the direction of i and j are 2 cos 45° and 2 sin 45° 

respectively. 

Therefore a = .J2 i + .J2 j. 

The components of b in the direction of 

respectively. 

Therefore b = 3 i + 3.J3 j. 
2 2 

and j are 3 cos 60° and 3 sin 60° 

Therefore 2a + 3 b = 2( .J2 i +.J2 j)+ 3( ~ i + 3f j) = 7.33 i + 10.62 j. 

The magnitude of the vector is 12.91 and it makes an angle tan -1 10.62 = 55.4° with i. 
7.33 

These are the same results as obtained in Example 5.3. 

Exercises 5.2 

1 Find x and y in each of the following cases 

(a)whena (5 x)i+3j,b=9i+(4 y)janda=b 

(b) when a (3 -x)i + 4j, b 2i + (7 y)j and a 2b, 

(c)whena=(5-x y)i+(3 x)j,b=4i+(6 y)jand2a=-b. 

2 Given that a = 2i + 8j, b = -3i + 5j, e Si - 3j find (a) 2a + 3b, (b) 5b 2a, 

(c) 2a + 4b + c, (d) a - 3b + 2e. 

3 Find the position vectors of the following points P (1,4), Q (3, -2), R (-4,3), 

S -6). 
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-+ -+ -+ -+ -+ 
4 Find, for the points in the previous exercise, PQ, RS, PS, QR, PR. 

5 Find the magnitudes of the following vectors and the unit vectors along them. 

(a) Si + l2j, (b) 2i -7j, (c) ~3i+6j, (d) ~4i 6j. 

6 In the following, d denotes the magnitude of a vector and 8 denotes the angle it 

makes with the positive x axis (i.e. the unit vector i). Find the cartesian 

component fonn of each vector. 

(a)d=4,8=600(b)d 6,8=lSO°,(c)d 10,8 200°,(d)d=3,8 40° 

7 Find the magnitude and direction of the following vectors. 

(a) 3i + 7j, (b) 4i - 6j(c) 2i + Sj, (d) - 8i 4j. 

8 Cnit vectors i and ,j are defined to be East and North respectively. the 

following displacements in cartesian component fonn (a) SO km, bearing 060°, 

(b) 80 km, bearing 120°, (c) 100 km, bearing 22So, (d) 7S km, bearing 300°. 

5.4 Vectors in three dimensions 
So far you have only come across displacements which are all in the same plane (i.e. 

the same flat surface) and therefore cam10t be expressed in tenns of two perpendicular 

directions. Not all displacements can be expressed in this way, for example, the 

position of a moving object, such as an aircraft, will not stay for long in the same 

plane. It is therefore necessary to extend the idea of components to three dimensions. 

k 

I P WALL 
I ' WALL I , 

'4m , 
0 

" / " , /2 m 
_____ ...... '-1/ 

3 m Q FLOOR 

You can imagine how to do this by trying to see how to fix the position of a point in a 

room, with vertical walls and a horizontal floor. Any point on the floor is detennined 

by its distances from two adjacent walls. If unit vectors i and j are taken along two 
-+ 

adj acent edges, then the displacement OQ of the point Q which is at a distance of 2 m 

from one wall and 3 m from the adjacent wall is (2i + 3D m. In order to determine the 

displacement of the point P a distance of 4m directly above Q, a third unit vector k 

vertically upwards has to be introduced as shown in the diagram. The unit vectors i, j 

and k are therefore parallel to the edges of the floor and up the wall at the corner O. 
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~ 

The displacement QP is therefore 4 k m and applying the law of vector addition to 

the triangle OQP gives 
~ ~ ~ 

OP OQ -t-QP 
~ 

i.e. OP (2i + 3j + 4k) m. 

This is the representation of the displacement vector in cartesian component form and, 

in general, any vector has such a representation. 

It follows from Pythagoras' Theorem that 

OP" = OQ2 PQ2 2" -i-3 -t-4" 

so that the magnitude is the square root of the sum of the squares of the components. 

~ 

The displacement OP is given in the column vector notation by 

oP mm 
The unit vectors i, j and k are mutually perpendicular vectors (i.e. each one of them is 

perpendicular to the other two, this can be seen from the above diagram for a corner 

of a room. The three directions can also be visualised by putting out your thumb and 

two adjacent figures on the right hand so that each one is perpendicular to the other 

two as shown in the diagram. 

k 

j 

The first finger is in the direction of i, the second finger is in the direction of j and the 

thumb is in the direction of k. The particular directions shown in the diagram have 

the additional property that they are what is called right handed. This means that if 

you imagine a rotation of a screw in the sense from i to j then it will move in the 

direction of k. 
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Components of position vector 

z 

Y 
I 

~. 
I Xl x 

A 
x yj 

In the diagram three mutually perpendicular axes Ox, Oy and Oz are shown. These 

are like the three intersecting lines at the comer of a room. The perpendicular 

displacement of the point P from the plane containing Oy and Oz is denoted by x and 

this plane is called the plane x = o. Similarly the perpendicular displacements of the 

point P from the plane containing Ox and Oz and the plane containing Ox and Oy are 

denoted by y and z, respectively, with the planes being referred to as the planes y = 0 

and z = 0 respectively. These three numbers are the cartesian co-ordinates of P and 

determine it uniquely. In the above example of a point in a room x = 2, Y = 3 and z = 

4. The unit vectors i, j and k are defined to be along the axes Ox, Oy and Oz 
~ ~ ~ ~ 

respectively. The displacement OP is the sum of the displacements OA, AB and BP 

shown in the diagram. Also 

~ ~ ~ 

OA = x i, AB = y j and BP = z k. 

Therefore, r, the position vector of the point P, is given by 

r=xi+yj+zk. 

Since the unit vectors i, j and k are generally taken along the axes Ox, Oy and Oz the 

suffix notation introduced earlier is often used to denote the components in these 

directions i.e. a vector a is often written as 

a = ax i + ay j + az k, 

or, in column vector notation, as a = r::: 
a z 

The same basic rules for vectors hold in three dimensions as in two dimensions i.e. 

(i) Vectors are equal if, and only if, all their components are equal. 

(ii) If a = ax i + ay j + az k then - a = - ax i-ay j - az k. 
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(iii) The sum (difference) of one or more vectors is the vector whose components are 

the sums (differences) of the corresponding components. 

(iv) The components of the vector joining two points is the difference in the co­

ordinates of the points. 

(v) Multiplying a vector by a scalar means that each component is mu1tiplied by the 

scalar. 

(vi) The magnitude of a vector a ax i + ay j + az k is 

+a_k 
(vii) The unit vector in the direction of a is ~r=========::-

Problems involving three dimensional vectors in cartesian form can be handled 

exactly as those in two dimensions, the only difference being that there are now three 

components to consider! 

Example 5.12 

Given that the vectors a = (2 - x) i + 4 j + S k and b = 7 i + (5 - y) j + 4z k are equal, 

find x, y and z. 

Since the vectors are equal their components are also equal and therefore 

2 - x 7, 4 = 5 - y, S 4z. 

solving these gives x -S,y = 1, z 2. 

Example 5.13 

Find the position vectors of the points with cartesian co-ordinates (3, 1, 5) and 

2,3). 

The components of the position vectors are the co-ordinates and therefore the required 

vectors are 3i + j + Sk and Si + 2j + 3k. 

Example 5.14 

The vectors p and q are given by p 3i + Sj + 2k, q Si 3j + 7k. Find 

(a) 2p + q, (b) p + 3q, (c) 3p 2q. 

(a) 2p + q = 2(3i Sj + 2k) + Si 3j + 7k lli + 7j + Ilk. 

(b) p + 3q = (3i -t Sj + 2k) + 3(Si 3j + 7k) = lSi 4j + 23k. 

(c) 3p 2q 3(3i + Sj 2k) - 2(Si 3j + 7k) = i + 21j - Sk. 

99 



Vectors 

Example 5.15 

Find the magnitudes of the vectors (a) 2i j + 2k, (b) 4i 2j + 9k. 

The magnitude of a vector is the square root of the sum of the squares of the 

components. Therefore for (a) the magnitude is 3 and for (b) 

the magnitude is ~ 42 + (_2)2 + 92 10.04. 

Example 5.16 
--0> 

Find the vector PQ where the co-ordinates of P and Q are (4, 1,6) and (S, -9, 3) 

respectively. 

The position vectors p and q of P and Q are p 4i + j + 6k and q Si - 9j + 3k. 
--0> 

Also PQ q-p =Si-9j 3k-(4i +j +6k) i-lOj-3k. 

Example 5.17 

Find the unit vectors in the direction of the vectors (a) 2i + j 2k and (b) Si 3j + 7k. 

(a) The unit vector is found by dividing the vector by its magnitude. The magnitude 

IS = 3 and therefore the unit vector is 2i + j 2k 

(b) In this case the magnitude of the vector is 
Si -3j+7k 

vector is --~o---
/83 

Exercises 5.3 

1 Find x, y and z in each of the following cases 

3 

= /83 and 

Ca) whena=(7-x)i 4j+3k,b=9i'+(4 y)j+(2-z)kanda=b, 

(b) when a (4 + x) i + Ilj + Sk, b = 3 i + (8 j + (7 + 2z) k and a = 2b, 

(c) when a (9 x-y)i+(2 x)j+(2-2z)k,b 6i+(S-y)j+(8 5z) 

and 2a -b. 

2 Given that a= 3i Sj+3k, b=-3i Sj+2k,c = 4i······6j 3k,find 

(a) 3a + 3b, (b) 4b 3a, (c) 2a + Sb + c, (d) a - 2b + 3c. 

3 Find the position vectors of the following points P(2, 3, 6), Q(4, 8), 

R(-5, 4, -2), S (-2,6, -7). 
--0> --0> 

QR, PR. 
--0> --0> 

4 Find, for the points in the previous question, PQ, RS, 

5 Find the magnitudes of the following vectors and the unit vectors along them. 

(a)4i 2j 4k, (b)Si+2j+6k, (c)4H6j 3k. 
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s.s Scalar product of two dimensional vectors 
Multiplication of vectors is rather complicated and there are two different products of 

two vectors. One product is the scalar product which is covered in your course, the 

other is the vector product which is not covered. The idea of the scalar product of 

two vectors is a very impOliant one, particularly in Mechanics. Though the definition 

is the same for both two and three dimensional vectors, the algebra is slightly easier in 

two dimensions and it is therefore easier to look at this case first. 

The scalar product of two vectors a and b is a scalar (i.e. a number) which is written 

as a . b and defined to be ab cos 8, where 8 is the angle between a and b. It is very 

important to always include the dot and underline the vectors, otherwise you could 

read it as ab which is not the same. In a . a, i.e. the scalar product of a with itself, the 

angle 8 is zero and, since cos 0 = I, a . a = a 2. Therefore the magnitude of a vector 

is the square root of its scalar product with itself. Applying this to the unit vectors i 

and j gives 

Li =1, j.j =l. 

The angle between the unit vectors i and j is 90° and therefore, since cos 90° = 0, 

i.j =O=j.i. 

Properties of the scalar product 

(i) a. b = b . a, the definition is the same for both a . band b . a, so they are equal. 

(ii) a. (b + c) = a . b + a. c - the distributive law. 

A proof of the distributive law in two dimensions is given in section 5.7. 

The distributive law also implies that 

(a + ll) . (b + c) = a. b + a. c + d . b + d . c, 

i.e. the scalar product of a sum of vectors is the sum of the separate scalar products. 

This can be applied to the vectors a = ax i + ay j and b = bx i + by j so that 

a.b = (axi+ayj).(bxi+byj)= axbx i.i +ay by j.j+aybxj.i+axby i.j. 

The above results for the scalar products of the unit vectors simplifies this result to 

a . b = ax bx + ay by, 

i.e the scalar product is the sum of the products of the corresponding components. 

The expression for the scalar product in tenns of components gives a quick way of 

finding the angle between two vectors, or lines. 

Example 5.18 

Find the angle between the vectors 4i + 6j and 7i - 3j. 

The scalar product of the vectors is 4 x 7 - 6 x 3 = 10. 
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The magnitudes of the vectors are and , therefore the definition of 

the scalar product shows that the scalar product of the two vectors is also 

.,)42 + 62 
X .J72 + 32 

X cos El where El is the angle between the vectors. 

Therefore x x cos El 10andEl 79.S0. 

Using the method in the above example it is possible to get the following fonnula for 
the cosine of the angle between two vectors a = ax i + ay j and b = bx i + by j. 

cos El = 

It is not really worth trying to remember this fonnula as it is easier to carry out the 

calculations directly as in Example S.18. 

Distance between two points (i.e. I b - a I ) 
The scalar product can be used to find the distance between two points A and B, with 

-,)0 

position vectors a and b respectively. The vector AB is equal to b a and the distance 
-,)0 

between the points, i.e. the magnitude of AB, is denoted by 1 b - a I. Also 
) -,)0-,)0 

AB- = AB. AB = (b a). (b a). 

This can be expanded using the distributive law so that 

AB 2 = Ib - a 12 a 2 + b 2 2a . b. 

This is actually the cosine rule as you can see by using a . b = ab cos El. 

Test for perpendicular vectors 

The two vectors a and b will be perpendicular if cos El = 0, i.e. 

a . b = ax bx + ay by 0. 

Construction of perpendicular vectors 
The condition for two vectors to be perpendicular is satisfied if by = ax and bx = - ay. 

There are other possibilities but this gives the basic rule (only for two dimensional 

vectors) that a vector perpendicular to a given vector can be found by interchanging 

the components and changing the sign of one of them, e.g a vector perpendicular to 

Si + 11j is 1li Sj. 

Componen ts (or resolute) of a vector 

The component (or resolute) of a vector a in the direction of the unit vector It is, as 

stated earlier, defined to be a cos El where El is the angle between a and It. Since It is 

of unit magnitude, a cos El = a . n. This gives a simple useful method of finding the 

component of a vector in a given direction, i.e. the component of a in the direction of 

the unit vector 11 is a . 11. 
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Example 5.19 

Find the resolute, in the direction of the vector 3i + 4j, of the vector 7i + 6j. 

The first step is to find the unit vector in the required direction. The magnitude of 
3'+4 ' 

3i 4j is 5 and the unit vector is therefore I J. The required resolute is therefore 
5 

Resolved part of a vector 

The resolved part of a vector in a given direction is defined to be that part of the 
vector parallel to the given direction. For example, if a ax i + ay j then ax i is the 

resolved part of a in the direction i. The resolved part is therefore the resolute in a 

given direction multiplying the unit vector in that direction. 

The resolved part of 7i + 6j the direction of the vector 3i + 4j is, from Example 

5.19, 
3i +4' 

9 x J 
5 

27i+36j 

5 

The remainder of 7i + 6j (i.e. the resolved part perpendicular to 3i + 4j) is therefore 
7i +6j 27i+ 8i-6j 

5 5 
For a general unit vector It, the resolved part of a in the direction of the vector n is 

(a.ll)ll and therefore the pali of a perpendicular to It is a (a, n)n. 

1 Find the scalar products of the following pairs of vectors (a) 7i + 6j and 3i + 2j, 

(b) 2i - 6j and 5i - 6j, (c) -3i 4j and i - 2j, (d) -2i 5j and 4i - 3j. 

2 Find the al1gles between the following pairs of vectors (a) 2i + 5j and i + 6j, 

(b)3i 5j and 4i - 7j, (c) i + 5j and 2i - 5j, (d) -3i 4j and 2i + 9j. 

3 Obtain vectors perpendicular to (a) 4i + 7j, (b) 9i Ilj. 

4 Find the angle between the line joining the points (1, 4) and (3, 2) and the line 

joining the points (5,3) and (2, 8). 

5 Find the angle between a and b in the following cases (a) a 2, b = 4, a. b = 3, 

(b) Cl 4, b = 2, a. b = 4. 

6 Given that a = 1, b = 6, a . b 5, find 1 a - bland 1 a + b I. 

7 Find (a) the component of a in the direction of the vector b, (b) the resolved part 

of a in the direction of the vector b, (c) the resolved part of a in a direction 

perpendicular to the vector b, for the cases (a) a = lli + 4j, b 3i - 4j, 

(b)a 12i-15j,b=12i+5j. 
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5.6 Scalar product in three dimensions 
The only difference between the scalar product 111 two dimensions and in three 

dimensions is that the vectors have three perpendicular components. The definition is 

exactly the same and the three unit vectors i, j, and k have now to satisfy 

i.i 1,j.j 1,k.k 1, 

i . j = 0 j . i, i. k = 0 k. i, j. k o =k.j. 
The distributive law is still satisfied and applying it to a = ax i + ay j + az k and 

b bx i + by j + bz k, and using the equations satisfied by i, j, and k gives 

a . b ax bx + ay by + az bz . 

The expression for the scalar product is slightly longer but is still the sum of the 

products of the corresponding components. 

Angle between a vector and the axes 

If El is the angle between the vector 3i + 4j + 12k and the unit vector j then, since the 

unit vector has unit magnitude, L(3i + 4j + 12k) = cos El so that 
3 

cos El = 13 and El 76.70. The cosine is therefore the ratio of the corresponding 

component to the magnitude of the vector and you would find a similar result if you 

tried to find the angles between the vector and the other two unit vectors. 

The general result is that the cosines of the angles between the vector 

a ax i + j + az k and the unit vectors i, j, and k are, respectively, 

The only idea in two dimensions which does not carry over into three dimensions is 

the construction of perpendicular vectors. The condition to be satisfied is 

ax bx + ay by + az bz 0, 

but it is not possible to give a simple solution for this. 

Example 5.20 

Find the angle between the vectors 2i 4j + 3k and 3i 2j + k. 

The scalar product of the vectors is 2 x 3 + 4 x (-2) + 3 xII. 
,------

. I ') ') 2 ~hn I 2 ? ') 
The magmtudes of the vectors are " 2-+4-+3 =\129 and" 3 +2-+1- fl4. 
Therefore, if El is the angle between the vectors, x fl4 cos El so that 

El = 87.2°. 
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(a) the component of 4i + 7j 2k in the direction of the vector 2i - j -j- 2k, 

(b) the resolved part of 4i 7j 2k in the direction of the vector 2i - j + 2k, 

(c) the resolved pali of 4i -j- 7j - 2k perpendicular to the vector 2i - j + 2k. 

(a) The magnitude of 2i - ,j + 2k is ~ 22 + 12 +- 22 = 3, the unit vector in the 
-2i + - 2k 

direction of the vector 2i - j + 2k IS therefore and the required 

2 -1 
component or resolute is 4 x 3 + 7 x 3 2 

2x-
3 

3 

-1. 

(b) The resolved part is the product of the unit vector and the component in its 
-2i+ -2k 

direction i.e. ---'----
3 

(c) The resolved part perpendicular to 2i j -1- 2k is fOlmd by subtracting the result of 

(b)fr 4· 7' 2k h' . 14i+20j-4k om I + J - , t IS gIVes . 
3 

You can check that the scalar product of this with 2i - j --r- 2k vanishes so that the 

vectors are perpendicular. 

5.7 Proof of distributive law for scalar product 
The vectors a, b, and c, are assumed to be coplanar and, in the diagram, 

C 

B .(L I 
L __ 

IN 
D 

b I ~ fL __ -,-r;-<-, _.l-..J~ ___ A 
o L M 

-7 -7 -7 -7 
OA a, OB b, BC = c, and therefore b -j- c Oc. Perpendiculars BL and CM are 

drawn from Band C to OA, the line BD is drawn through B parallel to a and CN is the 

perpendicular from C to BD. The angles between OA and OB and between BD and 

BC are denoted bye and~, respectively. 

a.b = ab cos e = a OL, a.c = ae cos ~ = a BN a LM, 

a. (b + c) a OC cos COM = a OM. 

Since OM = OL + LM this gives 

a.b -1- a.c a OL --r- a LM Cl OM a.(b -1- c). 
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The proof for three dimensional vectors requires some use of ideas from three 

dimensional geometry and will not be given. 

Exercises 5.5 

1 Find the scalar products of the following pairs of vectors 

(a) 2i + 4j -3k and i + 6j 4k, (b) 3i - j + 6k and i - 2j 3k, 

(c) 8i+5j 3k and i+j-k, (d) 3i-2j+5k and 2i+j-2k. 

2 Determine which of the following pairs of vectors are perpendicular to each other 

and find the angles between those pairs that are not perpendicUlar to each other, 

(a) 2i + 4j 2k and i + 6j + 13k, (b) 2i - 4j + 3k and i - 3j 2k, 

(c) 4i + 7j 3k and i + 2j - k, (d) 3i - 4j + 5k and i + 2j + k. 

3 Find the angle between the line joining the points (1, 4, 6) and (3, 2, I) and the line 

joining the points (5, 3, 5) and (2, 8,4). 

4 Giventhata 2 =6,b 2 =2,a.b =2,findI2a+3bl, 13a-2bl. 

5 Given that a Si 3j - 4k, and b i + 2j - 2k, find the scalar p such that pa + b is 

perpendicUlar to a. 

6 Given that a = Si + j 3 k, and b i + 3j - 5k, show that the vectors a + band 

a - b are perpendicUlar to each other. 

7 Find (a) the resolute of a in the direction of the vector b, (b) the resolved part of a 

in the direction of the vector b, (c) the resolved part of a in a direction 

perpendicular to the vector b, for the cases 

(a) a Si + 6j + 3 k, b 2i + j + 2k, 

(b) a 3i+7j-2k,b 3i+4j+I2k. 

5.8 Differentiation and integration of vectors 
The components of a vector, and therefore the vector, can vary with time. 

For example in the diagram the point P is describing a circle about the point O. 

--lI> 
Although the length OP stays the same, the direction of OP varies and therefore the 

--lI> 
vector OP varies with The derivative of a vector with respect to time 

effectively measures the rate of change of the vector with respect to time and is itself 

a vector. It is possible to define the derivative of a vector as a limit, roughly as in 

your PI course, but this is rather more .,,-,,","""'CH than is needed in Mechanics where it is 
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sufficient to give a simple definition of the derivative in component fonn, where the 

unit vectors are assumed not to vary with time. A vector can change with respect to 

any parameter and the basic definition is the same whatever the parameter. 

The idea of differentiating and integrating vectors is very important in kinematics and 

dynamics and the basic definitions given in this section will be used in sections 7.2 

and 7.3. 

Differentiation 

In this definition it is assumed that the unit vectors i, j and k do not depend on t. 

The derivative ~~ of a vector a with respect to t is the vector whose components are 

the derivatives with respect to t of the components of a, i,e, if a = ax i + ay j + az j 

then 

da = da x i + dav d az 
dt dt Tj+~k, 

If a vector is constant then all its components are constant, their derivatives are 

therefore zero and therefore the derivative of a constant vector is the zero vector. 

Integration 

In this definition it is assumed that the unit vectors i, j and k do not depend on t, 

The integral fa dt of a vector a is the vector whose components are the integrals of 

the components of a, i.e. if a ax i + ay j + az j then 

J a dt fa, dt i + fa) dt j + fa z dt k. 

When a vector is integrated, a constant vector of integration has to be introduced 

where, for scalars, a constant of integration is introduced. 

Rules for differentiation and integration 
(i) d(a+b) _da, db 

dt - dl T dt' 

d(ma) da dm 
(ii) dt nrdi + a dt' 

( .. ') d(ma} dm. h d' , f I l' I ' 
III For a constant dt = a dt' I.e. t e envatIve 0 a sca ar mu tIP ymg a constant 

vector is the product of the constant vector and tbe derivative of the scalar. 

(
. r) d(a.b) _ db b da 
1\ dt - - a. dt + . de 

(v) For a 
. d(a.a) 

b rule (IV) becomes ---~-~ 

d 
Also a. a = a2 and therefore 

dt 

dt 

da 
2a'd{' 

da 
2a'd{' 
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From this last result it follows that for any vector a of constant magnitude, and 

therefore any unit vector, a is perpendicular to ~~ since d (::) is then zero. 

dr 
dt 

This means that when, as in the diagram, a point P, with position vector r relative to 

0, describes a circle centre 0, ~; will be perpendicular to the radius i.e. along the 

tangent, though its sense may be opposite to that shown. 

(vi) J(a+b)dt = Jadt + Jbdt. 

(vii) If a is a constant vector then J madt a Jmdt , i.e. the integral of the product of 

a scalar and a constant vector is the integral of the scalar multiplied by the constant 

vector. 

You can check all of these by applying the definition of the derivative and integral to 

both sides of the equations. 

Example 5.22 

. da d 2a 
Fmd dt and for(a)a t 2 i+4costj, (b) a=e-ti+ t 3 j+4t 2 k. 

dt 2 

da dt 2 dcost 
(a) dt = Tt i+4~j = 2ti 4sintj, 

d da 
d 2 a dt = 2 dt.. dsint 

d 4 dt j = 2i 4 cos t j. 
dt 2 t dt 

da de- t 
(b) dt = Tt i + dt

3 
• 4 dt

2 
k J+ -

dt dt 

d dt de-t dt 2 dt 
-- = - - i + 3 - j + 8 - k e-t i + 6t j + 8k. 

dt dt dt dt 
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Example 5.23 

Given that a is a constant vector find the derivatives with respect to t of 

(a)t"a, (b)t"a+costa. 

(a) The components of a are not given and therefore rule (iii) above gives 

dt"a dt" 
a 2ta. 

dt dt 

(b) In this case rule (i) for differentiating a sum of vectors has to be used first and then 

followed by applying rule (iii) for differentiating the product of a scalar and a vector. 

This gives 

dt 

d(t 3 a) + d(cos t a) 
dt dt 

dt 3 dcos t 
-a+---a 
dt dt 

Example 5.24 

Find the integrals with respect to time of the vectors 

(a)2ti+4sintj, (b) 2e-2f i+j+3t 2 k. 

3t 2 a sinta. 

(a) The integral is found by integrating the components and including a constant 

vector of integration. This gives t 2 i - 4 cos t j + b, where b is a constant vector. 

(b) Integrating the components in this case gives e -2t i + t .i + t 3 k + b, where b is a 

constant vector 

Example 5.25 

Given that a is a constant vector, find the integral with respect to t of 

(a) a, (b) 3t 2 a. 

(a) Rule (vii) above gives the integral as I a + b, where b is a constant vector. 

(b) Rule (vi) above gives the integral as t 3 a + b, where b is a constant vector. 

Example 5.26 

G· h dr 2' . . Iven t at dt = t I + SIl1 t J + k, and that r = 2i + 3j + 4k, when t "" 0, find r. 

The first step is integrating ~ to find r for time t. This gives r = t" i-cos t j - k 

b, where b is a constant vector. Substituting the value of r given for t ° shows 

that 

2i + 3j + 4k = j - k + b. 

Solving this gives b 2i + 4j + Sk and so 

r = l i-cos t j - et k + 2i + 4j + Sk. 
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Exercises 5.6 

P
' da d2a 
md dt and -- for (a) a 

dt 2 

(c) a costi+sin2tj, (d) a t 2 i+tj+t 3 k, (e) a costi+t 4 j+sin3tk, 

(f) a e 21 i + cos t .i + In t k. 

2 Given that a and b are constant vectors find the derivative with respect to t of 
a 

(a) t' (b)acost+t b, (c) et a+2e-' b, 

3 Given that r = cos nt a nt b, where a and b are constant vectors and n is a 

d2r 
constant, find the relationship between rand -" ' 

de(. 

4 Integrate the following expressions with respect to t, (a) 4t i + 6t 5 j, 

(b) 2e?1 i +t 2 j, (c) 2cos2ti+sintj, (d) 3t 2 i+2tj+4t 3 k, 

(e) 2costi+St 4 j+4sintk, (f) 2e?! i+4cos4tj+2tk. 
2 ' 

5 Evaluate(a) f(12t 3i+ lSt4 j) dt , (b) f(6t 5i+4tj+8t3k)dt, 
-J -J 

6 Pindrwhen(a) ~ 7t i 3t 2 jandr=4i+6jfort 1, 

(b)~ =3t 2 i+2tj+4t 3 kandr=6i+7j+8kfort l. 

2 

7 P ' d . cId rh' m an expresSlOn lOT r w 1en -') = a, were a IS a constant vector. 

1 

dr 

D G 

~ ~ 
E F 

2m 

3m 
C 

o 
~ ~ B 

A 

The figure shows a cuboid in which OA == I rn, OC 3 m and OD = 2 m. Taking 

o as origin and the unit vectors i, j and k in the directions OA, OC and OD, 
-?> -?> 

respectively, express in terms of i, j and k the vectors (a) OF and (b) AG. 

considering an appropriate scalar product, find the acute angle between the 

diagonals OF and 
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2 The vectors a, band c are given by 

a = i + 2j + k, b = i + j + 2k, c j + k. 

A fourth vector is given by d = 3i + 6j + 5k. 

Find the values of et, ~ and y so that d = eta + pb + yc. 

3 The coordinates of three points P, Q and Rare (9,2, -4), (3, 1, -4) and (2, 7, 6) 
~ ~ 

respectively. Find the vectors PQ and QR and show that they are perpendicular to 

each other. 

4 Vectors p, q and I' are such that 1 p + q 1 1 p 3q i = ! 2p - q I· 

Find the ratio ~ and the angle between the vectors p and q. 
~ ~ ~ 

5 The vectors aA, OB and OC are given by 
~ 

OA - 2i+ 3j 7k, 
~ 

OB = i + 7j + 5k, 
~ 

OC 4i + 3j + k. 
~ ~ 

Show that AB = 3i + 4j + I2k and obtain a similar expression for AC. 
~ ~ ~ ~ 

Calculate 1 AB i and I AC 1 and the scalar product AB . AC and show that 
A 57 

cos BAC 65' 

6 The points A, B, C and D have position vectors i 2j + 5k, i + 3j, 1 Oi + j + 2k, 

-2i + 4j + 5k respectively. The points P and Q lie on AB and CD, respectively, 

and AP = feAB, CQ = flCD, where 'A and ~l are constants. Show that 
~ 

OP = i + (SIc 2)j + 5(1 A)k, 
~ 

and find a similar expression for OQ. 

Given that PQ is perpendicular to both AB and CD, obtain a pair of simultaneous 

equations for A and~. By solving these show that 
~ 

PQ = i + 2j + 2k. 

7 The vectors a, band c are defined by a i - 2j + k, b = 2i + j k, c = pa + qb, 

where p and q are constants. 

Given that c is perpendicular to a, find l2. 
q 

8 Find the resolved parts of the vector 2i - j + 3k along and perpendicular to the 

vector 3i + 2.; 2k. 

9 Given the vectors a 3i + 2j, b 2i + !nj, find the values of m so that 

(a) a and b are perpendicular to each other, 

(b) a and b are parallel, 

(c) the acute angle between a and b is ~. 
4 

10 The position vectors of A and B with respect to a fixed origin are i + 2j + k and 
~ 

Si - 2j + 3k. Find AB and the cosines of the angles between AB and the 

coordinate axes. 
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11 Find a unit vector perpendicular to both 4i + 4j - 7k and 2i + 2j + k. 

12 The position vectors of the four points A, B, C and Dare j + 2k, -i 4i + k and 

3i + j + 2k respectively. Show that the triangle ABC is right-angled and that the 

ABD is isosceles. 
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Cbapter 6 

Applications of vectors 

After working through this chapter you should 

III be able to find, in component form, the resultant of forces acting at a point, 

.. be able to find the work done by constant forces in two and three dimensions, 

11 be able to determine the velocity and acceleration of a particle in two and three 

dimensions, 

.. be able to solve intercept and shortest distance of approach problems, 

.. understand the concepts of impulse, momentum, power, kinetic energy for general 

motions and be able to calculate these quantities in particular cases, 

11 be able to calculate the work done in a given time by a force whose components 

are given in terms of time. 

6.1 Statics 
You have already met the use of vectors in Statics, though in a slightly disguised 

form. 

Resultant of forces acting at a point 

The resultant of several forces acting at a point is the vector sum of the individual 

forces i.e. the components of the resultant are the sum of the corresponding 

components of the individual forces. This' is exactly the definition you used in 

Chapter 2 of Ml. The main difference now is that use of the unit vectors i, j and k 

makes the problems easier to state and the calculations appear simpler. 

Example 6.1 

Find the resultant of 

(a) the forces (4i + 3D N, (S i - Sj) N, (2i + 7j) N, acting at a point, 

(b) the forces (2i + 4j + 6k) N, (9i - 3j + 4k) N, (7i + 2j + Ilk) N, acting at a point. 

(a) The resultant is just the vector sum i.e. 

(4i+3j Si-Sj 2i+7j)N=(1li Sj)N. 

(b) Again the resultant is just the vector sum i.e. 

(2i+4j+6k+9i 3j+4k+7i+2j-t-llk)N (18i+3j+21k)N. 
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Example 6.2 

Find the possible values of p such that the resultant of the three forces 

(2i + Sj + 3k) N, (Pi - 2j + 7k) N, (3i + 7j + Sk) N acting at a point has magnitude 

~389 N. 

The resultant is 

(2i + Sj + 3k + pi - 2j + 7k + 3i + 7j + Sk) N = «P + S)i + 10j + lSk) N. 

Therefore, squaring and adding the components gives, 

(P + S)2 + 102 + IS2 389. 

This gives p + S = 8 and therefore p = -13 or 3. 

Equilibrium of coplanar forces acting at a point 

A system of forces acting at a point is in equilibrium if the vector sum is zero i.e. the 

components of the resultant in three perpendicular directions are zero. The only 

equilibrium problems you will come across in your course will involve coplanar 

forces. In this case the components of the resultant in two different directions are zero 

and this is the condition you used in Chapter 2 of Ml. The use of the unit vectors i 

and j will not really help you with the type of equilibrium problems in section 2.2 of 

M1 but you are now able to solve equilibrium problems which are set using the unit 

vectors, such as the following. 

Example 6.3 

The system of forces (2i + Sj) N, (7i + Q j) N, (P i + 4j) N, (3i + 8j) N acting at a 

point are in equilibrium. Find P and Q. 

The first step is to find the resultant, this is 

(2i + Sj + 7i + Q j + P i + 4j + 3i + 8j) N «12 + P)i + (17 + Q)j) N. 

For equilibrium this has to vanish, so P = -12, Q -17. 

Example 6.4 

A system of forces consisting of the following three forces 

(4i+20j+ 13k)N, (Si-9j 3k)N, (4i+6j+ lSk)Nacts at a point. 

Find the additional force that has to be included in order that the four forces are in 

equilibri urn. 

For equilibrium the sum of the four forces has to be zero. The sum (i.e. the resultant) 

of the three given forces is (16i + 17j + 28k) K In order that the resultant of the four 

forces is zero, then the fourth force must be -( 16i + 17j + 28k) N. 
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Work done by a constant force 

You already know from section 2.1 that the work done by a constant force F when its 

point of application is moved a distance d is Fd cos 0, where e is the angle between F 

and the direction in which the force is moved. You can use the definition of the scalar 

product to give the work done as a scalar product. If the point of application of the 

force is displaced along the vector d, then Fd cos e = Pd and so 

Work done Pd. 

This can be used to find the work done by a force in both two and three dimensions. 

Example 6.5 

Find the work done by (a) the force (3i - 8j) N when the displacement of its point of 

application is (2i + 6j) m, (b) the force (7i + 6j - 3k) N when the displacement of its 

point of application is (4i + 8j - 3k) m. 

(a) The work done is (3 x 2 + (-8) x 6) J - 42 J. 

(b) The work done is ( 7 x 4 + 6 x 8 + (-3) x (-3 )) J = 85 J. 

Example 6.6 

The force (4i + 8 j - 5 k) N acts on a particle P, find the work done as P moves from 

the point (5,2,4) m to the point (3,4, 7) m. 

The first step is to find the displacement of P. It is initially at the point with position 

vector (Si + 2j + 4k) m and moves to the point with position vector (3i + 4j + 7k) lTI. 

The displacement is therefore 

«3i + 4j + 7k) - (Si + 2j + 4k)) m = (-2i + 2j + 3k) m. 

The work done is therefore 

(4x(-2)+8x2+(-S)x3).1 = -7.1. 

Exercises 6.1 

Forces P N, Q Nand R N act on a particle. Find, in terms of the unit vectors i, j 

and k, the resultant of these force for the following cases 

(a) P = i + 3j, Q = 4i 2j, R lli 16j. 

(b) P 7i - 3j, Q 3i + 6j, R Si - 3j. 

(c) P = 2i - 7j + 6k, Q = 3i + 14j - 2k, R 4i - j + 6k. 

(d)P i+4j-3k,Q =6i+6j 12k,R =3i+j+9k. 

2 The forces (4i + 8i) N and (Si + 4j) N act at a point. Show that their resultant is of 

magnitude 15 N and find the angle between the forces. 
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3 Show that the resultant of the forees (3i + 6j 3k) Nand (5i - 2j - 5k) N has 

magnitude 12 N and find the angles between the forces and between each foree 

and the resultant. 

4 The position vectors of two points A and Bare (3i + 4j + 12k)m and (2i -j + 2k)m . ....,. 
A of magnitude 65 N acts along OA and a force of magnitude 12 N aets ....,. 
along OB. Find the resultant of these forces. 

5 A of magnitude 15 N acting in the direction of the vector 3i + 4j is the 

resultant of two forces acting in the directions of the vectors i + 2j and 2i + j. 

Determine these forces. 

6 A particle is in equilibrium under the action of the three forces P N, Q Nand RN. 

Find R, in terms of the unit vectors i, j, for the following cases 

(a) P 

(b) P 

(e) P 

(d) P 

6i 2j, Q = 3i - 5j. 

i -5j, Q = lli + 4j. 

2i + 4j, Q = 7i - 8j. 

5j, Q = -2i + 1lj. 

7 The displacement of a particle acted on by a force F N is d m. Find the work done 

by the force in this displacement when 

(a) F 2i + 5j, d = 4i - 2j. 

(b)F 9i 6j,d=4i-5j. 

(c) F 3i 4j+2k,d=i+4j-k. 

(d) F 2i - 3j + 2k, d = 4i - 6j 5k. 

8 A particle moves under the action of a F N from the point with position 

veetor a m to the point with position veetor b m. Find the work done when 

(a) F 4i + 2j, a = 3i - 4j, b = 6i - 8j. 

(b) F 6i 2j, a = 5i - 6j, b = 12i - 4j. 

(c) F 6j+4k,a=4i+7j l2k,b 2i 4j+3k. 

(d)F 2i+j 5k,a=3i+4j-2k,b 2i+5j+9k. 

9 The force acting on a particle is such that 

(a) when the displacement of the particle is (3i + 4j) m the work done by the force 

is -5 J, 

(b) when the displacement of the particle is (7i 8j) m the work done by the force 

is 75 J. Find the force. 

6.2 Kinematics 
Vectors are particularly useful for describing motion in more than one dimension and 

use of vector notation gives a direct way of generalising the one dimensional 

kinematics that you met in Ml, Chapter 4. 
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Velocity, speed and acceleration 

The position of a particle is detennined by its position vector r relative to a fixed 

origin and for a moving particle, r will vary with time. The velocity v of a point with 

position vector r is defined by 

v 
dr 

dt' 
dy dz 

l.e. it is the vector whose cartesian components are dt' dt and Tt· For two 

dimensional motion (i.e. z constant) this reduces to the definition you met in section 

4.1. 

Similarly the acceleration a a point with position vector r is defined by 

dv d 2r 
a 

dt dt 2 
' 

d2 x 
and the cartesian components of acceleration are 

dt 2 

speed of a particle is the magnitude of its velocity 

+ - + 

d 2z 
dt 2 dt 2 ' 

speed = v (or I v) and 

speed 
dx \2 (dYJ2 dz 

dt dt dt) 

If the position vector is known, then the velocity and acceleration can be found by 

differentiation as described in section 5.S. Also the velocity can be found by 

integrating the acceleration. The integration will involve an arbitrary constant which 

can be found ifthe velocity is known for one value of t. Similarly the position vector 

can be found by integrating the velocity. The integration will again involve an 

arbitrary constant which can be found if the position vector is known for one value of 

t. This is just generalising to two and three dimensions the methods that you used in 

section 4.5 ofMl. 

Example 6.7 

Find the velocity, speed and acceleration of a particle given that at time t s 

(a) r (4t2 i + 6t3 j) m, (b) r (3 cos 2t i + 3 sin 2t j 2t k) m. 

(a) Differentiating r v (St i + 1St 2 j) ms -I and squaring and adding the 

components shows that the speed is ~64t2 + 324t 4 ms -I. 

Differentiating v gives a (S i + 36t j) ms-2. 

(b) Differentiating r v (-6 sin 2t i + 6 cos 2t j 2k) ms -I and squaring and 

adding the components shows that the speed is 

ms-I =-{46ms . 

Differentiating v gives a (-12 sin 2t i - 12 cos 2t j) 111S -2. 
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Example 6.8 

Find the velocity and position vector, given that 

(a) a (i2t i + 80t3 j) ms-2
, and that at t= 0, v= (3i + 7j) ms- J

, r (2i + llj) m, 

(b) a = (6i + 7e-t j + cos t k) ms-2 
J and that at t 0, v (i + 4j + 3k) ms-I, 

r (3i + j 2k) m. 

(a) Integrating the acceleration gives v = (6t2 i + 20r4 j + b) ms -( , where b is a 

constant vector. Substituting the values at t 0 gives 3i + 7j b so that 

v = «6t 2 + 3)i + (20t 4 + 7)j) ms-I. 

Integrating again gives 

r = «3t 3 + 3t)i + (4t 5 + 7t)j + c) m, where c is a constant vector. 

Substituting the values at t = 0 gives 2i + 11j c so that 

r «3t 3 +3t+2)i+(4t 5 +7t+ ll)j)m. 

(b) Integrating the acceleration gives v = (6t i - 7e-t j + sin t k + b) ms -I , where b is a 

constant vector. Substituting the values at t = 0 gives 

i+4j+3k -7j+b sothatb i+l1j+3kand 

v « 6t + l)i + (11 - 7e-0.i + (3 + sin t)k) ms -I . 

Integrating again gives 

r = «3t 2 + t)i + (Ill + 7e-0j + (3t cos t)k + c) m, 

where c is a constant vector. Substituting the values at t = 0 gives 

3i + j - 2 k 7j - k + c so that c 3i - 6j - k and 

r «3t 2 + t + 3)i + (lIt 6 + 7e-0j + (3t - I cos t)k) m. 

An alternative to introducing the constant vectors would have been to integrate each 

time from tOto t t. You should try to re-do the ex amp le by doing this. 

Interception and shortest distance problems 

There are many problems of a practical type involving determining the shortest 

distance apart of two moving bodies (e.g. aircraft) or whether they intercept each 

other. In order to do this the displacement of the bodies from each other and the least 

magnitude of this, or the condition for interception, can be found. The displacement 

can be obtained from the position vectors of the bodies. These may either be given or 

the velocity or acceleration given. The position vector can then be found by 

integration as above. The problems that can be most easily tackled are those when the 

bodies are moving with constant velocity. If a particle has a constant velocity V then 
dr 

V 
dt 

and integrating gives r Vt + b where b is a constant vector. If the particle has 

position vector a for t = 0 it follows that b a so that r = Vt + a. 
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Example 6.9 

At time t 0 two particles A and B have position vectors (Si + 3D m and (i + j) m 

respectively. The velocities of A and Bare (6i + 4j) ms-1 and (8i + Sj) ms- 1 

respectively. Show that the particles will collide. 

The first step is to find the position vectors rA m and rB m of the particles at time t s. 

These are, from the above result that r = Vt + a, 

rA = Si + 3j + t(6i + 4j), rB= i+ j + t(8i + Sj). 

Subtracting these gives 
~ 

AB 4i - 2j + t(2i + j). 

For interception, both components have to vanish and this occurs for t = 2. 

Example 6.10 

At time t = 0, two particles A and B have position vectors (3i + 6k) m and 

(2i + aj + 2k) m respectively. The velocities of A and Bare (3j + 7k) ms -I and 

(bi + 6j + Ilk) ms-I respectively. Find the values of a and b so that the particles 

collide. 

The position vectors rA m and rB m ofthe particles at time t s are given, 

usmg r Vt + a, by rA 3i + 6k + t(3j + 7k), rB = 2i + aj + 2k + t(bi 6j + Ilk). 

Subtracting these gives 
~ 

AB - i + aj 4k + t(bi + 3j + 4k), 

(bt - l)i + (a + 3t)j + 4(t l)k. 

For interception all components havc to vanish, the k component vanishes for t 1 

and the j and i components are then 3 + a and b 1. Collision therefore occurs for 

b I and a -3. 

Example 6.1] 

At time t 0 two particles A and B have position vectors (lli + 7j) m and (3i + Sj) m 

respectively. The velocities of A and Bare (2i + 3j) ms -I and (Si -l 7j) ms-I 

respectively. Determine when the particles will be nearcst to each othcr and find their 

shortest distance apart. 

The position vectors rA m and YB m of the particles at time t s are 

YA = lli + 7j + t(2i + 3D, rB 3i + Sj + t(Si -:- 7j). 

Subtracting these gives 
~ 

AB 8i - 2j t(3i + 4j), 

= (3t 8)i + (4t 2)j. 
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Therefore AB 2 , the square of their distance apart, is given by 

AB (3t-8)2 +(4t-2)2. 

The minimum value of this has now to be found. This can be done by use of calculus 

or by expanding out and completing the square. Use of calculus involves slightly less 

algebra and it is not necessary to expand out before differentiating. 

dAB 2 

dt 
6(3t 8) + 8(4t- 2) SOt 

Therefore t = 1.28 and the shortest distance apart is 5.2 m. 

64 = O. 

It is not necessary to check that you have a minimum value since AB 2 tends to 

infinity with both negative and positive t, therefore plotted against t it would be a 

parabola with its vertex downwards and therefore the stationary point is a minimum. 

Example 6.12 

The position vectors at time t = 0 of two particles A and B are (Si + 7j + 6k) m and 

(3i + 2j + 3k) m respectively. The velocities of A and Bare (i + 2j + 4k) ms -I and 

(3i + 4j + 7k) ms -I respectively. Find the value of t when the particles are nearest to 

each other and their shortest distance of approach. 

The position vectors rA m and rE m of the particles at time t s are given by 

rA 5i+7j+6k+t(i 2j+4k), 

rE 3i + 2j + 3k + t(3i + 4j + 7k). 

Subtracting these gives 
-'JIo 

AB 2i - 5j 3k + t(2i + 2j + 3k) 

(2f - 2)i + (21 5)j + (3t - 3)k. 

Therefore AB2, the square of their distance apart, is given by 

Differentiating gives 

dAB 2 

dt 

= (21- + (2l - 5)2 + (3t 3)2. 

4(2t - 2) + 4(2t 5) + 6(3t 3) 34t - 46 O. 

Therefore t 1.35 and the shortest distance of approach is 2.62 m. 

Resultant velocity 

There are some circumstances where the motion of a particle is the result of two or 

more independent causes. One example is rain falling down. In this case the motion 

of the rain drop can be viewed as the sLlperposition of a falling motion and a motion 

due to the wind. There will be a velocity from each cause and the actual, i.e. resultant, 

velocity will be the vector sum of the individual velocities. Another example is an 

aircraft which sets off on a particular course with a given velocity. If there is a wind, 

the actual velocity of the aircraft is the resultant of the velocity on its set course and 
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the wind velocity. It will therefore drift well off course and a pilot nonnally adjusts 

the set course to take the effect of the wind into account. 

Example 6.13 

A river, 40 m wide, flows from west to east with speed 4 ms . A motor boat seeking 

to cross the river from the southern bank moves with speed 6 rns -I in still water. The 

boat is steered perpendicular to the banks so that its actual velocity is the resultant of 

the velocity of the river and a velocity of 6 ms- 1 directly across the river. Find how 

far down river the boat lands. 

N 

i 
_____ 4ms-1 

The situation is shown in the diagram, where i denotes the unit vector from west to 

east and j denotes the unit vector from south to north. The velocity of 6 ms -I directly 

across is 6j ms -I. The velocity of the boat is therefore the resultant of 6j ms l and 

4i ms -I and is (4i + 6j) ms -I. At time t s after leaving the starting point, the 

displacement of the boat from the starting point is (4i + 6j)t m. The boat will have 

reached the opposite bank when the j component of the displacement is 40 m and 

therefore the time taken to cross is 40 s = 6.67 s. 
6 

The distance down river of the landing place is the i component of the displacement 

and is therefore 4 x 6.67 m 26.7 m. 

Example 6.14 

An aircraft sets off to fly directly east with speed 400 kmh- I so as to reach a 

destination 1600 km away in 4 hours. There is a wind of 75 kmh -I blowing fi'om the 

south east. 

(a) If the pilot does not adjust the course, detennine the distance of the aircraft from 

its destination after 4 hours flying. 

(b) Detennine the course that the pilot would have to set so as to fly directly to the 

initial destination and the flight time. 
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j 

75 kmh- l 

~'------+---_i 
400 kmh-l 

(a) In this question there are no unit vectors given and the first step is to choose 

appropriate ones. The diagram shows unit vectors i and j to the east and north 

respectively. The velocity ofthe aircraft on its set course to the east is 400 i km hi . 

The wind velocity is 75( -cos 45°j + sin 45°j) kmh~1 . The resultant velocity of the 

aircraft is therefore ((400 - 75 cos 45°)i + 75 sin 45°j) kmh -I. In four hours its 

displacement from its original position will therefore be 4 x ((400 - 75 cos 45°)i + 75 

sin 45°j) km. The displacement of the destination from the starting point is 1600i km 

and therefore the displacement of the aircraft from its destination is 

{4 x ((400 - 75 cos 45°)i + 75 sin 45°j) 1600i} km = 300(- cos 45°i + sin 45°j) 

km. The magnitude of this is approximately 424 km. 

(b) 
j 

75 kmh-1 

~ 450 400 km h-
1 

'Z.~--+-__ i 
In this case the set course of the aircraft is unknown and it is assumed, as in the 

diagram, to be at an angle e north of east. Since there is a component of the wind to 

the north it would appear that the aircraft will be blown further off course. However 

e does not have to be positive and in fact turns out to be negative. A negative sign 

could therefore be avoided by using common sense and assuming that the set course 

would be to the south of east! The velocity of the aircraft on its set course is therefore 

400(cos e i + sin e D kmh -I. 

The resultant velocity is therefore 

((400 cos e 75 cos 45°) i + (400sin e + 75 cos 45°) j) kmhl 

The resultant velocity has to be to the east and therefore 

400 sin e + 75 cos 45° = 0, 

giving e -7.6°, with the negative sign anticipated. Substituting for e gives the 

resultant velocity as 343 kmh -I to the east and the flight time is therefore 4.66 hours. 
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Exercises 6.2 

1 The position vector at time t s of a moving particle is r ID. Find the acceleration of 

the particle for the cases (a) r 7t 3 i+4t 2 j,(b) r= 4 i+2e 2f j, 

(c)r ti 8t 2 j+14t 3 k(d)r e 41
j 8etj+14costk. 

2 The velocity of a particle at time t s is (6t 2 i + lOt j) ms l and it is at the point 0 

when [ = O. Find its displacement from 0 when t = 3. 

3 The acceleration of a particle at time t s is (5[4 i - 8t3 j) ms -2 and its velocity is 

(6i - 5j) ms -I when t = 1. Find the velocity of the particle when t 2. 

4 At t = 0 a particle P is at rest at the point with position vector (3i + 4j - 3k) m 

relative to a fixed point O. The acceleration of the particle is (2l i +12t 2 j -16t 3 k) 

ms -2. Find the distance of the paliicle from 0 when t 1. 

S The acceleration of a particle at time t s is (2i + 4t j - 6t k) ms and its velocity 

is (3i + 5j + 2k) ms -I when t = 1. Find the speed of the particle when t = 2. 

6 At time t s a particle is moving with velocity (2i + 6j - 4t 3 k) ms -I and at time 

t 0 it is at the point with position vector (i - 3j + 2k) m. Find the distance 

between the positions of thc particle at t = 1 and t = 2. 

7 At noon the position vectors, relative to a fixed point, of two boats A and Bare 

(900i + 600j) m and (600i + 810j) m respectively, where i and j are unit vectors to 

the north and east respectively. The veloCity of boat A is (12i + 16j) ms -I whilst 
-i> 

that of boat B is (l5i + 10j) ms . Find (a) the vector AB at time t s after noon, 

(b) the time when the two boats are nearest to each other and their shortest 

distance apart. 

8 A destroyer sights a ship at a point with position vector 600(3i + j) m relative to it 

and moving with velocity 5j ms -I. The destroyer alters course so that it moves 

with speed v ms l in the direction of the vector 4i + 3j. Find v so that the 

destroyer intercepts the ship and the time to interception. 

9 The velocities of two particles A and Bare (4i + 3j + 2k) ms-I and (2i - j + 4k) 

ms -I respectively. At a particular instant the position vector of B relative to A is 

(8i + 16j 8k) m. Show that the particles will collide. 

10 The velocities of two aircraft A and Bare (210i - 50j) kmh -I and 

(l50i + 250j + 60k) kmh -I respectively. At a particular instant the position 

vectors of A and B relative to a control tower are (1 Oi + 20j + 5k) km and 

(-20i -lOj + 3k) km. 
-i> 

Find the vector AB at time t hours later and the time taken until the aircrafts are 

closest together. 

11 An aircraft flies due south at 280kmh -I in a crosswind blowing west at 25kmh -I . 

Find the resultant velocity of the aircraft. 

12 A boat is sailing at a speed of 2 ms -I due west in a current flowing north east at a 

rate of 1 111S -I. Find the resultant velocity of the boat. 
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13 A man, who can swim at a speed of 2 ms -1 in still water, wants to swim straight 

across to the other side of a river which is 20 m across. The river is flowing with 

speed 1.25 ms-I. Find the angle to the bank at which he should swim and the 

time he takes to cross. 

6.3 Dynamics 
Vector notation gives a compact way of stating Newton's second law (i.e. force = 

mass x acceleration). The equation of motion, under the action of a force F, of a 

particle of mass 111 is 

where r denotes the position vector of the particle. If, for a moving particle, r can be 

found by observation, then the acceleration can be found by differentiation and this 

would enable the force producing the motion to be determined from the equation of 

motion. Alternatively if the force is given, then the equation of motion could be used 

to find r. If F is given in terms of t then r can be found by integration as in section 

5.8. A particularly simple case of this is when the force (and therefore the 

acceleration) is constant. 

Motion under constant force 

If F is constant, then the above equation can be integrated directly using rule (vii) of 

section 5.8 and this gives 
dr 

111dt Ft + c, 

where c is a constant vector. If the velocity (i.e.~~ ) IS equal to v at t = 0 then 

substituting gives c = 111V. Integrating again gives 
1 ? 

mr = "2Ft-+111Vt+b, 

where b is a constant vector. If the particle is at the point with position vector 

Rat t = 0 then substituting r = Rand t = 0 gives b = mR. Therefore r is given by 
F 2 

r = -t + vt + R. 2111 

This result can be applied to the motion of a particle under gravity where F = - mgj, 

where j is the unit vector vertically upwards. If a particle is projected with speed Vat 

an angle a to the horizontal, then v = V cos a i + V sin a j, where i is a horizontal unit 

vector. Therefore for a particle projected from the origin (so that R = 0) 
1 

r = -"2gt2j + V(cosai +sinaj)t. 
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Since r = x i + y j, these are the equations that were previously obtained in section 

5.2 The equations of motion can be integrated in a similar fashion whenever the force 

is dependent only on t. 

At time t s the position vector of a moving particle of mass 0.3 kg is 

(7t 2 i + 3! 4 j + 2t 3 k) m. Find the force acting on the particle. 

To find the force, it is necessary to find the acceleration. Differentiating the position 

vector once gives the velocity as (l4t i + 121 3 j + 6t 2 k) ms -I, and differentiating the 

velocity gives the acceleration as (l4i + 36t 2 j + 12l k) ms-2
• Multiplying this by 0.3 

gives the force as (4.2i + 10.8!2 j + 3.6t k) N. 

Example 6.16 

A particle of mass 0.25 kg moves under the action of a force which at time t s is given 

by (3ti + 2j + lOt 3 k) N. At t = 0 the particle is at the point with position vector 

(2i + 5j 7k) m and moving with velocity (i 4j + 3k) ms -I. Find the position 

vector in tenns of t. 

The equation of motion is 

0.25 d
2

r 3ti+2j+ IOt 3 k, 
dt" 

where the position vector is denoted by r m, therefore 

d 2r 
= 12t i + 8j + 40t k. 

Integrating this gives 
dr 

dt 
6t 1 i + 8t j + lOt k + c, 

h . S . . dr 
were C IS a constant vector. ubshtutmg 

dt 
i - 4j + 3k for t 0 shows that 

C = i 4j + 3k. 

Integrating for a second time gives 

r 2t 3 i + 4t 2 j + 2t 5 k + (i - 4j + 3k)t + b, 

where b is a constant vector. Substituting t 0 into the expression for r and using the 

given position vector at 0 shows that b = 2i + 5j - 7k. 

Example 6.17 

The force acting on a particle at time [ s is (36[2 120t 4 j 24k) N. The particle is 

at rest at 0 at time t = 0 and when tIthe particle is at a distance of 26 m from O. 

Find the mass of the pat1icle. 
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If the mass of the particle is denoted by m kg, and its position vector by r m, then 

Newton's law gives 

d 
lit 

dt 2 

Integrating this equation gives 
dr 

m-
d! 

36t 2 i + 120t 4 j + 24k. 

12t 3 i + 24t S j + 24t k + b, 

where b is a constant vector. Since the velocity is zero at t 0 it follows that b O. 

Integrating again gives 

mr 3t 4 i+4t 6 j+12t 2 k+c, 

where c is a constant vector. Since r 0 at t = 0 it follows that c = O. 

Therefore for t =1 
1 

r 111 (3i + 4j + I2k). 

Therefore 

r -
m 

13 
m 

26, 

and therefore the mass of the particle is 0.5 

Vector notation also enables the ideas of impulse, momentum, power and energy to be 

generalised to two and three dimensional motion. 

Momentum and impulse 

The momentum of a particle of mass m is defined as the product of the mass and 

velocity i,e. 

Momentum = m v 

Momentum is therefore a vector. 

dr 
111-. 

d! 

Impulse is also defined in essentially the same way as in one dimension as the integral 

of a force. The impulse of a force F acting for time T is defined by 
T 

Impulse fFd/. 

Impulse is therefore also a vector. 

If the force is constant, then the integral becomes FT the impulse of a constant 

force is the product of the torce and the time for which it acts. 
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Example 6.18 

Find the impulse of (a) the force [(2t i + St 4 DJ N acting for 0::;; t::;; 1, 

(b) the force (4i - 3t 2 j + 6t k) N acting for 0::;; t::;; 2. 

I 

(a) Impulse = I(2ti+St 4 j)dt Ns= [(t 2 i+t 5 j)J;=& Ns (i+j)Ns. 

2 

(b) Impulse = I (4i - 3t 2 j + 6t k) dt Ns (8i - 8j + I2k) Ns. 
o 

Impulse momentum principle 

Integrating 

from t = 0 to t = T gives 

( dr'1 
:m-: 
\. dt 

( dr) Im-. \ dt (~O 

T 

IFdt. 
o 

The left hand side is the change in momentum from tOto t = T and the right hand 

side is the impulse. Therefore the above definitions ensure that the impulse 

momentum principle still holds for two and three dimensional motion. 

Example 6.19 

A particle of mass 0.3 kg, moving with velocity (2i + 8j) ms ,is struck a sharp blow 

which changes its velocity to (4i + Sj) ms-I. Find the impulse applied during the 

blow. 

The impulse is equal to the change of momentum and is 

0.3(4i + 5j 2i 8j) Ns = (0.6i 0.9j) Ns. 

Example 6.20 

An impulse (6i + Sj 16k) Ns is applied to a particle of mass 0.2S kg moving with 

velocity (2i - 4j + 7k) ms -I. Find the velocity of the particle after the impulse has 

been applied. 

If the required velocity is denoted by v ms- 1 then the impulse momentum principle 

gIves 

0.2S( v - 2i + 4j - 7k) 

and therefore v 

6i + Sj - 16k 

26i + 16j - 57k. 
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Kinetic energy 

Kinetic energy is defined, exactly as in one dimension, as one half the product the 

mass and the square of the speed. Therefore the kinetic energy of a particle of mass m 

moving with velocity v is given by 

Kinetic Energy 1 " 2" mv" ( 

Example 6.21 

Find the kinetic energy of a particle of mass 0.2 kg moving with velocity 

(2i -l- 4j 7k) ms -1 . 

The kinetic energy is 
1 ??" 2" x 0.2 x (2 - + 4 - + 7" ) J 6.9 J. 

Example 6.22 

Find the kinetic energy of a particle of mass OA kg moving at time t s with velocity 

(4ti 5t2 j 7t3 k)ms- J
• 

The speed squared is the sum of the squares of the components and so kinetic energy 

IS 

Example 6.23 

Find the kinetic energy of a particle of mass O.S kg whose position vector at time t s is 

(6t i + 4t2 j 7 cos tk) 111. 

The first step is to differentiate the position vector to find the velocity, this gives the 

velocity to be (6i + St j + 7 sin t k) ms -J. The kinetic energy is therefore 

1 xO.S(36-l-64t 2 -l-49sin 2 t)J (14A+25.6t 2 +19.6sin 2 t)J. 
2 

Power 

The generalisation of the definition of power is that the power developed by a force F 

when its point of application is moving with velocity v is given by 

Power F. v. 

Power defined this way is still the rate of doing work. Defining work done in more 

than one dimension needs more pure mathematics than will be covered in your course 

and therefore you cannot verify that the definition does give power as the rate of 

working. 
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Since power is the rate of doing work, then integrating the power between two values 

of t will give the total work done in that time interval. 

Example 6.24 

At time t s the position vector of a moving particle is (4t i + 0.6t 2 j 0.25(t 3 -1 )k) 

m. Find the power developed for t = 4 by the force (lOi 20j 20k) N acting on the 

particle. 

The velocity of the particle and therefore of the point of application of the force is 

(4i + 1.2t j 0.75t 2 k) ms-I. The power is the scalar product of the velocity and the 

force and is therefore (l0 x 4 - 20 x 1.21 + 15t2) W. This, for 1 = 4, is equal to 

184 W. 

Example 6.25 

Find the power developed by the force in Example 5.22. 

The first step is calculating the force and this, in turn, means finding the acceleration. 

Differentiating the velocity gives the acceleration to be (4i + 10 j - 21t 1 k) ms -2 and 

therefore the force is 

0.4 x (4i + lOt j - 21t2 k) N (1.6i + 4t j 8.4t2 k) N. 

Therefore the power is 

(1.6x4t+4tx5t +(-8.4t 2 )x(-7t 3 ))W= (6.4t +20t 3 +58.8t 5 )W. 

Work- energy principle 

Newton's second law, for a particle of mass 111 moving with velocity v under the action 

of a force F, is 
dv 

mdt = F. 

Taking the scalar product of both sides of this equation with v gives 
dv 

mv. dt = F. v. 

The rule for differentiating the scalar product shows that 
( I 'I I 

dl-v.v I 
\2 ) dv 

v' dt 
--.--~ .. -~ 

dt 

Using this identity in the previous equation gives 

F. v. 
dt 
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This equation translated into words is 

Rate of change of kinetic energy = power. 

You can see that differentiating the kinetic energy in Example 5.22 gives the power 

found in Example 5.25. Since power is the rate of doing work, W, the equation can 

also be written as 
d(K.E.) dW 

dt dt· 

Integrating this equation between any two values of t gives 

Change in K.E. = Change in W = Work done. 

This is one form of the work-energy principle. 

Calculation of work done 

Since the mathematics necessary for calculating work done directly is not in the 

course an indirect method has to be used. There are two equivalent methods. 

One method is to find the power and integrate it. The other is to use the form of the 

work-energy principle above and find the change in kinetic energy. The first method 

can always be applied, the second can only be applied to find the work done by the 

total force acting on the particle. 

Example 6.26 

The velocity at time t s of the point of application of the force (7i + 6tj - 8t" k) N is 

(2ti + 4j - lOt" k) ms -I. Find the work done by the force in the time interval 

o :s; I :s; l. 

The power developed by the force is 

(2tx7 +4x6t +(-10t 2 )x(-8t 2 ))W= (381 +80t 4 )W. 

The work done in the time interval is therefore 
1 

f(38t + 80t 4 )dt ] = 35 1. 

Example 6.27 

A particle of mass 0.6 kg is moving with a velocity at time t s of 

(5t" i + 6t j - 7k) ms-I. Find the work done in the interval 0 :s; t :s; 1 by the force 

acting on the particle. 

Since the work done by the total force acting on the particle has to be found then this 

can be done by using the change of kinetic energy. 
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The kinetic energy is 0.3(2St4 + 36t2 + 49) J. The change in this from t = 0 to t == 1 is 

18.3 J. 

If the work done is found using power, the acceleration and then the force have to be 

found first. Differentiating the velocity shows that the acceleration is (lOti + 6j) 

ms-2
, giving the force as (6ti + 3.6j) N. The power is therefore (30t 3 + 21.6t) J. 

Integrating this from tOto t 1 gives 18.3 J. 

Conservation of energy 

The idea of potential energy for forces in two and three dimensions is a complicated 

one and beyond the mathematics you have covered. It is still possible however to 

define the potential energy due to gravity and that associated with a straight spring. 

If the total energy is defined to be kinetic energy + potential energy due to gravity and 

the force in a spring it is possible to show that 

Change in total energy = Work done by all other forces. 

Exercises 6.3 

1 At time t s the force acting on a paliicle of mass rn kg is F N and at time t = T the 

particle is moving with velocity v ms -I at the point with position vector R m. 

Find the position vector of the particle at time t s for 

(a) In = 0.4, F e-t i + 6 t J j, T= 0, v = 3i + Sj, R 2i + j, 

(b) In 0.2, F= 6t i+ 12 t j, T 1, v = Si 6j, R = i - 7j, 

Cc) In = O.S, F i + 4t j + 8e LI k, T= 0, v = 3i - 2j + 4 k, R = Si - 4j + 3k, 

(d) In 1,F 3i-6tj +20t 3 k,T 1,v 3i-2j+4k,R = i+6j-2k. 

2 Find the magnitude of the impulse that has to be applied to 

(a) a particle of mass 0.2 kg to change its velocity from (Si + 6j) ms -I to 

(9i + 7j) ms-I, 

(b) a particle of mass 0.3 kg to change its velocity from (3i + 4j) ms -\ to 
~I 

(Si + 2j) ms , 

(c) a particle of mass 0.4 kg to change its velocity from (2i + 4j + 3k) ms -\ to 

(Si + 6j + 8k) ms -I, 

(d) a particle of mass O.S kg to change its velocity from (i + 8j + 4k) ms -I to 

(3i + Sj - 3k) ms . 

3 Find the velocity immediately after the impulse is applied of 

(a) a particle of mass O.S kg moving with a velocity of(3i + Bj) m5- 1 immediately 

before an impulse (3i + 8j) Ns is applied to it, 

(b) a particle of mass 0.2S kg moving with a velocity of (2i + Sj + 3k) ms-I 

immediately before an impulse (i Sj + 2k) Ns is applied to it. 
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4 A cricket ball of mass 0.15 kg, moving horizontally with speed 15 ms -I, is struck 

by a batsman so that it moves perpendicular to its original direction with speed 

25 ms -I. Find the magnitude and direction of the impulse applied by the batsman. 

5 The velocity of a particle of mass m kg at time t s is v ms -I. Find the kinetic 

energy of the particle for (a) m= 0.2, v =2t 2 i+7t 4 j, 

(b) m=OA,v =6ti+8t 3 j, (c) m=0.8, v=5costi+3sintj+6tk, 

(d) m=l, v=3ti+4e-1 j+3tk. 

6 The velocity of a particle of mass m kg at time t s is v ms -I. Find the power 

developed by the force acting on the particle for (a) m = OA, v = t 2 i + 3t 4 j, 

(b) m=0.6,v=4ti+6t 4 j, (c) m=0.6, v=3cos2ti-5sin3tj+6tk, 

(d) m=2, v=4ti+6e-21 j+3tk. 

7 Find (a) the work done by the force in question 5 (a) in the interval 0::::; t::::; 1, 

(b) the work done by the force in question 5 (c) in the interval 0 ::::; t::::; n. 

Miscellaneous Exercises 6 

1 A particle P of mass m kg moves in a plane such that its position vector r m at 

time t s is given by 

r = (t 2 -t)i+tsinntj. 

Find 

(a) the momentum of P when t = 0, 

(b) the kinetic energy of P when t = 1, 

(c) the force acting on P when t = 1, 

(d) the rate of working of the force acting on P when t = 1. 

2 An ice skater A moves on a flat ice-rink with constant velocity (10i + 5j) ms -I, 

passing through the point (9i + 8j) m at time t = O. A second ice skater B 

travelling with constant velocity (Pi + 6j) ms -I is at the point (3i - j) m at time 

t = O. 

(a) If the ice skaters collide find the value of p. 

(b) If p = 11 show that the ice skaters are closest together when t = 7.5 s. 

3 A body of mass 2 kg moves so that its position vector at time t s is given by 

r = (asinnt+bt 2 )i+(csinnt+dt 2 )j, 

where a, b, c and d are constants and distances are measured in metres. Find 

(a) the momentum at time t s, 

(b) the kinetic energy at time t s (do not simplify), 

(c) the force acting on the body at time t s. 
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1 
At t = 0 the speed of the body is 4n ms -I. At t = 2" the body passes through the 

point (i + j) m and is travelling in the positive i direction. Find a, b, c and d. 

What is the power generated by the force acting on the body at t t? 
4 A constant force of (Si + 3j) N is applied to a ring which is on a smooth rod. 

The rod is fixed in a horizontal plane and joins the origin to the point P of 

position vector (3i + j) m. Find the work done in moving the ring from the origin 

to P. 

Given that the ring is of mass 4 kg and that it was initially at rest at the origin, 

find its speed at P. 

5 A particle of mass 3 kg moves in a plane, its position vector at time t s being r m 

where 

r (2 cos t + sin t ) i +( sin t 2 cos t) j . 

Find the values of t 

(a) when the speed of the particle is a minimum, 

(b) when the force acting on the particle is perpendicular to the velocity vector, 

(c) when the power generated by the force is greatest. 

6 The velocity v ms of a particle of mass 0.4 kg at time t s is given by 

v = 3 sin 2t j + Se 41 j. 

Find the force F acting on the particle at time t s. By taking the scalar product of 

F with an appropriate vector, find the rate of working of this force at time t s. 

7 Relative to a fixed origin 0, the position vector r m of a particle P at time t s is 

given by r = sin 4t j + cos 4t j + t 2 k. 

(a) Find, in terms of t, the velocity and acceleration of P at time t. 

(b) Given also that P is of mass 0.2 kg find, in telIDS of t, the rate at which the 

force acting on P is working at time t s. 

8 Two points A and B with position vectors (Si -+ 3j + 14k) m and (lli + 6j + 8k) m 

respectively lie on a smooth straight wire. A bead free to move on the wire is 

acted on by a force (7i + 4j + 3k) N. 

Find 

(a) a unit vector along the wire, 

(b) the magnitude of the component of the force parallel to the wire, 

( c) the work done by the force in moving the bead from A to B. 

9 The velocity of a ball of mass 0.7 kg just before it hits a horizontal floor is (4i-3j) 

ms -1 where i is a horizontal unit vector and j is a unit vector vertically upwards. 

Immediately after it leaves the floor the velocity of the ball is (Si + 6j) ms -1. 

The time the ball is in contact with the floor may be neglected. 

(a) Find the impulse of the floor on the ball in the fon11 (ai -+ bj). 

(b) Find the change in kinetic energy due to the impact. 
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10 Three forces (4i + 2j + 6k) N, (2i 4j + 9k) N, (8i + Sj - 3k) N act at a point P. 

Find 

(a) the resultant R of the forces in the form ai + bj + ck, 

(b) the magnitude of R, 

(c) the scalar product of R with the vector i + 3 j + 4k, 

(d) the cosine of the angle between R and the vector i + 3j + 4k, 

(e) the total work done by the acting on P as it moves from the point with 

position vector (2i + 4j + 7k) m to the point with position vector 

(Si + 3j + Ilk) m. 

11 The velocity v ms -1 of a particle P at time t s is given by v = t i + sin t j. 

(a) Find the acceleration of P at time t s. 

(b) Given that the pm1icle has position vector (4i + 3D m when t = 0, find the 

position vector of P at time t s. 

12 At time t s the position vector r m, of a moving particle P, is given by 

r = (2t - l)i + 4 cos 3t j + 4 3t k. 

Find 

(a) the velocity v ms- I of P at time t seconds, 

(b) the time when v and r are perpendicular. 

13 At time t hours the position vectors, in units of 100 km, relative to a fixed origin, 

of two aircraft A and B are, respectively, 

2i+4j+7k+t(4i+3j +4k) m1d 13i+3j +7k+t(2i+2j+k). 

(a) Explain why you can say that both aircrafts are movmg with constant 

velocities. 

(b) Find the speed of aircraft B, stating its units. 

(c) Find, in terms of t, an expression for AB2 at time t hours and hence detennine 

the time at which the aircraft are closest together. 

14 Two particles P and Q move with constant velocities (Si + kj) ms -I and (4i + 3j) 

ms -I respectively, where k is a constant. At time t ° the position vectors, in 

metres, of P and Q are 4i + 2j and 7i + 14j respectively. Find the position vector 

of Q relative to P at time t s. 

(a) Find the value of k such that P and Q collide and the value of t when this 

collision would occur. 

(b) In the particular case when k 4 show that 

PQl = 2t 2 30t + IS3 

and find the value of t when P and Q are closest together and their distance 

apart at this time. 

Find also the length of time for which the distance between P and Q is less 

than or equal to 9 m. 
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15 A particle of mass 0.2 kg moves on a smooth horizontal plane. Its position vector 

r, in metres, at time t s is given by 

r 4t 3 i + 4t 4 j. 

Find 

(a) the kinetic energy when t = 0.5, 

(b) the cosine of the angle between the velocity when t = 0.5 and 

the vector 4i - 3j. 

16 When an impulse is applied to a particle of mass 0.3 kg moving with constant 

velocity (lli 7j) ms -Ion a smooth horizontal table, its velocity is changed to 

(lOi + 14j) ms-I. Find 

(a) the impulse, 

(b) the change in the kinetic energy ofthe particle. 

17 Relative to a fixed origin, the position vector, r, of a particle P is given by 

r = 3 sin t i + 5 cos t j, 

where r is measured in metres and t denotes the time in seconds. 

(a) Find the velocity of P at time t s and show that its speed is v ms-I where 

v 2 17-8cos2t. 

Hence find the maximum and minimum values of v. 

(b) Find the cosine of the angle between the velocity and acceleration of P when 
TI 

t= 4' 

(c) Given that the particle is of mass 0.3 kg, find the rate of working at time t s 

of the force acting onP and the maximum rate of working of this force. 

18 The position vector in metres at time t seconds, relative to a fixed origin 0, of a 

particle P moving in a horizontal plane is given by 

2 ( " ') r - cos TIt I + S111 TIt J . 
TI 

Given that P is of mass 0.2 kg, find the horizontal force acting on it at time t 

seconds. 

When t = 0 a second particle Q moving with constant velocity (-6i + 8j) ms -I is 

at the point with position vector b, metres. Find the position vector of Q at any 

time in terms of b, i, j and t. Determine b given that the particles collide when 
1 
2' 

19 At noon a ship A passes through the origin 0 and is moving with constant speed 

u kmh -I in the direction of the vector 3i + 4j. At the same time a second ship B, 

moving with constant speed 10 kmh -I in the direction of i, is at the point with 

position vector 1 0(- i + j) km. 

(a) Find the position vectors of the ships at time t hours after noon. 
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(b) Find u such that the ships are on a collision course and the time at which 

collision would take place. 

(c) that u = 10 

(i) show that at time t hours after noon AB 80t 2 240t + 200, 

(ii) find the time at which the two ships are closest together, 

(iii) find the time when AB is perpendicular to the direction of the velocity of 

ship A. 

20 At noon the position vectors, relative to a fixed origin, of two aircraft A and B are 

(30i 20j 10k) km and (-lOi + 15k) km respectively. Aircraft A is moving 

with constant velocity (- 40i + pj) kmh -I and aircraft B is moving with constant 

velocity (120i + 200j + qk) kmh -I where p and q are constants. 

(a) Write down the position vectors of the two aircraft at time t hours after noon. 

(b) Show that the vector representing the line AB is given by 

40 + 160t)i + (- 20 + (200 - p)t)j + (5 qt)k) km. 

(c) Find the values of p and q such that the aircraft collide. 
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Chapter 7 

First Order Differential Equations 

After working through this chapter you should be able 

III to recognise the different types of differential equations, 

III to solve first order differential equations with variables separable 

It to model simple "real life" problems as differential equations and solve the 

resulting equations. 

7.1 Basic definitions and notations 

Simple examples of differential equations are 

dx 
(a) -

dt 

dy 
t, (b) -

dx 
xy, (c) ~ x (d) d

2

x ye , J 

dr 

dt dr d2x dx 
(d) = FY, (f) - cose, (g) -7 +5-+ 6x 

dx de dr dt 

x 

dv 
t, (h) + v 

dt 

A differential equation is a relation between the derivatives of one variable (e.g. x) 

with respect to another variable (e.g. t) and given functions of the two variables. 

The variable being differentiated is called the 'dependent variable' and the other 

variable is called the 'independent variable'. In (a), (d) and (g) above, the 

dependent variable is x and the independent variable t. In (b), (c) and (e) above, the 

dependent variable is y and the independent variable x. In (f) above, the dependent 

variable is r and the independent variablee whilst in (h) the dependent variable is v 

and the independent variable t. Any pairs of letters can be used for the dependent and 

independent variables and you need to be very careful in answering questions to use 

the same variables as given in the question. In most of the worked examples the 

dependent variable will be x and the independent variable t but other combinations 

will be used in the exercises. 
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Order of a differential equation 

The order of a differential equation is the order of the highest derivative occurring in 

it. The equations in examples (a), (b), (c), (e), (t) and (h) are all first order whereas 

those in examples (d) and (g) are second order. 

Basic facts 

In order to obtain a unique (Le. the only one) solution you need to specify more than 

just the equation. For the example in (a) i.e. 
dx 
dt t, 

integrating the left hand side with respect to t gives x and integrating the right hand 

side with respect to t gives kt2 together with an arbitrary constant, A say. Therefore 

1 ? -r +A 
2 ' 

x 

this means that for each value of A there will be a different function satisfying the 

differential equation and therefore there will be an infinite number of different 

solutions of the differential equation. However if x is given for one value of t, then A 

can be found and then a unique solution found for x. For example if x = 3 for t = 2 
1 

thenA 1 and x =;jf2 + 1. 

It is true in general that :-

(a) a unique solution of a first order differential equation can be found if the value of 

the dependent variable is known for one value of the independent variable. This 

means that in example (c) above, a unique solution can be found for y if its value is 

given (e.g. y 2) for a given value ofx (e.g. x = 3). 

(b) a unique solution of a second order differential equation can be found if the value 

of the dependent variable and the first derivative is known for one value of the 

independent variable. This means that in example (d) above, a unique solution can be 
dx 

found for x if its value is given (e.g. x = 3), and the value of dt (e.g. dt = 4) for a 

given value of t (e.g. to). 

General solntion 

The general solution of a first (second) order equation is one such that from it you can 

obtain the unique solution with the value of the dependent variable (and, for second 

order equations, its first derivative) given for one value of the independent variable. In 

practice this means that the general solution of a first order equation will, as in 

example (a) above, involve an arbitrary constant. The general solution of a second 

order equation will involve two arbitrary constants. 
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The general method of solving differential equations is to find the general solution 

and then fit the constants to satisfy any given conditions. 

7.2 First order equations, variables separable 
You will cover these equations in P3 but in case you have not come to that part of the 

course yet the basic ideas will be summarised here. Equations of this type often occur 

in Mechanics, particularly in problems involving resisted motion. The technique will 

be first illustrated with some simple examples. 

Example 7.1 

Find the general solution of 
dx 
dt 

and the unique solution such that x 1 for t = 3. 

The left hand side can be integrated with respect to t to give x but this will not work 

on the right hand side since x is an unknown function of t and there is no way of 

integrating it. The equation can however be rearranged so that all the "x" dependence 

is on the same side of the equation as the derivative and all the" t" dependence is on 

the other side. This gives 
dx 
dt 1, 

this equation can now be integrated with respect to t i.e. 

J~~ = fdt. 

The left hand side of this can be integrated with respect to x and the right hand side 

integrated with respect to t giving 

x t + c, 

where c is an arbitrary constant. This is the general solution of the equation. 

Substituting x 1 and t = 3 gives c = - 4 so that 
1 

-- = t 4 
x 

is the unique solution with the value 1 for t = 3. 

The equation can be rearranged to give 

x 
4-t 

If this is substituted back into the original differential equation then you can check 

that it is satisfied as is the condition for t = 3. Differential equations are one of the 

few topics where it is possible to check fairly easily that you have got the correct 

answer and it is always worth carrying out the check. 
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In problems like this, where x is gIven for a value of t, it is possible to avoid 

introducing an arbitrary constant by integrating between limits. In this case the limits 

for x would be between] and x and that for t between 3 and t. So that 
x dx ' f2 = f dt. 
IX 

This becomes on evaluating the integrals 
1 

1-- = t 
x 

which is equivalent to the result obtained above. 

Example 7.2 

Find the solution ofthe differential equation 
dx 
dt = 2et- x 

with x 0 for t = In 2. 

Again the right hand side cannot be integrated directly with respect to t since x is 

unknown. It is however again possible to rearrange the equation so that all the "x" 

dependence is on the same side of the equation as the derivative and all the "t" 

dependence is on the other side. Carrying out this rearrangement 
dx 

eY - = 2e! 
dt ' 

integrating with respect to t gives 

fexdx = 2 fe/dt. 

Evaluating the integral shows that 

( , \ 

-1=2e -21 
J ' 

l.e. 

taking logarithms of both sides gives 

x = In (2e' 3) 
You can again verify that this solution satisfies the differential equation and the 

condition when t = In2. 

Example 7.3 

Find the solution v of the differential equation 
dv 
--v=4 
dt 

with v 4 when t = O. 

This equation can be rcarranged so that the "v" dependence is 011 the same side of the 

equation as the derivative and any "t" dependence is on the other. This means that the 
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v has first to be moved to the right hand side of the equation and then both sides 

divided by v + 4, i.e. _1_ dv = 4 
v+4 dt 

Both sides can now be integrated with respect to t so that 

J~=4Jdt, v+4 

In order to satisfy the condition at t = 0 the left hand side has to be integrated from 4 

to v and the right hand side from 0 to t giving 

l.e. 

I' d I 

J_v 4Jdt, 
4v+4 0 

In v + 4 = 4t. 
8 

Taking the exponential of both sides gives 

v = 8e 41 
- 4. 

General method 

The method used above of rearranging the equation is known as the method of 

separation of variables and works for equations of the type 

~ = f(x) get) or, equivalently, ~ = f(x) g(y) 

where f and g are given functions. Sometimes the equation has to be rearranged, as in 

Example 7.3, to get it into the correct form. 

The steps in the solution are 

(i) rearrange so that terms involving the dependent variable are on the same side of 

the equation as the derivative and the ten11S depending on the independent variable are 

on the other side e.g. 
Idx 

f(x) dt get), 

(ii) integrate both sides of the equation with respect to the independent variable e.g. 

f-1
- dX = Jg (t) dt f(x) , 

if conditions are given for one set of values ofthe variables use these in the limits of 

integration, 

(iii) invert to obtain the dependent variable in terms of the independent variable. You 

may not always be able to do this and may only be able to obtain a general relation 

between the variables. 
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Exercises 7.1 

Find the general solutions ofthe following differential equations. 
dx x 1 - --
dt c 

2 
dx 

x 3 

dt 
dv 
dt -3 

dr 
4 = rtan El 

dEI 

Find the solutions of the following differential equations satisfying the conditions 

stated. 
dx 

5 dt = x, x = 4 for t O. 

d:t 1 
6 dt = --, x 5 for t 1. 

x 
dx 

7 t 3 X 2 ,x 1 for t = 1. dt 

8 dy = eX + y = 0 for x O. 
dx 

9 
dv 

+ 3v = 4 v 1 for t = O. 
dt ' 
dv 

10 - + 3v 4, v = 5 for t = O. 
dt 

11 (xy + 2y) y2 -1, y ..JiO for x l. 
dx 

7.3 Modelling involving differential equations 

In your course, and in examinations, you may be required to find the differential 

equations to model a problem in an area in which you have no previous knowledge 

(e.g. population growth, radioactive decay). This is not as difficult as it sounds since 

the problems will always be stated in a form where sufficient information will be 

given to translate it into one of solving a differential equation, without knowing any 

additional background detail. We start off by looking at problems not involving 

Mechanics since you already know the basic mechanical principles and have already 

some practice of modelling mechanical problems as simple differential equations. 

You will also meet modelling of mechanical problems as differential equations in M3 

and, very briefly, at the end of this section. 
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Modelling other than in Mechanics 

One of the first things to detennine when setting up a model is what is the unknown 

(i.e. the dependent variable). In examination questions, this is usually made clear. It 

is also necessary to pick the independent variable, this is usually obvious and is very 

often the time. For example, you may be told that the number in a population varies 

with time a particular way. This tells you immediately that the number in the 

population should be the dependent variable and the independent variable should be 

the time. You need to look for certain key words which will help you to "translate" 

the problem into one involving a differential equation. The most common phrase 

which tells you what to do is "rate of change" and similar phrases given below. Many 

problems reduce to the solution of a first order differential equation and we start off 

by looking at typical problems of this type. 

Problems involving rates of change and leading to first order equations 

Most problems which can be modelled as differential equations involve some 

infonnation about the rate of change of a variable x (say) normally with time t, ie. 

infonnation about dx . Other phrases which imply rate of change are rate of growth or 
dt 

of decay. Very often the infonnation is given in a way which also suggests the 

appropriate choice of both dependent and independent variables. For example, you 

may be told that the amount of money in a bank account grows with time in a 

particular way. This tells you that the dependent variable should be the amount in the 

account and the independent variable should be the time. 

The simplest type of situation that may occur is that the rate of change of a quantity, 

for example, the number in a popUlation, is given explicitly either as a constant c or as 

a function f(t) of time. The given data suggests, in this case, taking the dependent 

variable to be the number in the popUlation at time t. If this is denoted by x then the 

rate of change of x is dx and the information can be rewritten as 
dt 

dx dx 
= c or 

dt dt 
f(t) , 

and the initial problem has now been transfonned into one of solving a fairly simple 

differential equation. 
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In most cases all that will be known about the rate of change of x is that it will depend 

in some way on x. For example, it may be known to be proportional to x" , where 11 is 

a known constant (often an integer). The phrase proportional (or directly proportional) 

to a variable means equal to some constant times the variable and very often 

modelling questions require introducing a constant of proportionality. The above 

information therefore translates into the differential equation 

dx = kx" 
dt ' 

where k is a constant. 

If the rate of change had been stated to be inversely proportional to x" , then this 

would mean that it was equal to k so that 11 would be replaced by -/1 in the 

differential equation. 

In many cases, the constant k may not be given explicitly but values of x will be given 

for two values of t and these values can be used to find k, and you may be asked to 

predict the value ofx at some subsequent time. 

Example 7.4 

The rate of growth of the population of the United States at the begiIming ofthe last 

century is assumed to be directly propOltional to the number in the population. The 

population figures, in millions, for 1810 and 1820 are 7.2 and 9. Estimate the 

population in 1840. 

In this case, the unknown is the number in the population, this will be denoted by x. 

The independent variable is the time t in years and to simplify the algebra t = 0 IS 

taken to bc 1810. 

dx 
The assumption is that kx 

dt 

where k is a constant. 

Separating the variables and integrating 

felt': J k dt 
x 

lnx kt c. 

Since x =7.2 fort O,itfollowsthat c=ln7.2 

and x 7.2e kl 
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The population for t 10 is given as 9 and this gives an equation to detennine t 

namely 

9 = 7.2e k10
, 

solving this gives k = 0.022, so that the population in 1840 is predicted to be 13.93 

million. One important thing to notice about the solution is that it predicts infinite 

growth, this is unrealistic and not consistent with observation. This means that a more 

satisfactory model has to be found which does not predict infinite growth. 

A model which does this is one based on the differential equation 

dx 

dt 
kx(n x), 

an equation ofthis type is solved in Example 7.7 (see also question 1, Miscellaneous 

Exercises 7). 

Example 7.5 

The volume of a raindrop decreases, due to evaporation, at a rate of k times its surface 

area. Given that its volume is Vo at time t = 0 find its volume at any subsequent 

time t. 

In this question, the dependent variable is the volume Vofthe sphere and the first step 

is to express the surface area in tenns of the volume. If the radius is r, then the 

volume is 4rr 1'3 and the surface area is 4rr 1'2. Substituting for r in tenns of V gives 
3 

2 I 

the surface areas as e V 3 where c = e V 3 (4rr) 3. Therefore 

dV 

df 

the minus arises since the volume decreases. The variables may be separated giving 

dV 
-ke dt, -

2 

I 

integrating gives 3V3 -ket + A, 

where A is a constant. The condition V V 0 at t 0 shows that A = 3 V 0 3 and 

therefore V= [v~ _ ket 
o 3 
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Example 7.6 

Newton's law of cooling states that when the temperature of a body is above the 

temperature of its surroundings, then it decreases at a rate directly proportional to the 

difference between its temperature and the surrounding temperature. 

A body at a temperature of 1900e is immersed in liquid which is maintained at a 

constant temperature of 50oe. In one minute, the temperature of the body decreases 

to 120oe, find how long it takes for the temperature to drop to 85°C. 

If TO denotes the temperature of the body, then Newton's law gives 

dT 

dt 
-k(T -50), 

where T is the time measured in minutes and introducing the minus sign means that 

the constant k is positive. 

Separating the variables and integrating gives 

f dT f 
(T-50) -k dt 

and therefore 

In (T - 50) = -kt + C 

Substituting T = 190 when t = 0 gives C = 1n 140. Substituting T = 120 when 

t = 1 gives k In 2, so that 

( 
140 '\ 

t 1n 2 = 111 --) 
T 50 

The time taken to reach a temperature of 85°e satisfies the equation 

t 1n2 = ln4 = 2ln2 

giving 2. 

Example 7.7 

In a simple model of an epidemic it is assumed that the population may be divided 

into those that are infected and those susceptible. (This assumes no deaths or 

recovery). It is further assumed that the rate of spread of the disease is k times the 

product of the number susceptible and the number infected. At time t = 0, one person 

is infected and there are n+ 1 people in the population. Find the number infected at 

time t later. 
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If the number infected is denoted by x, then the number susceptible is n+ 1 x and 

therefore, since the number infected is increasing, 

dx 
= kx(n + 1 x) 

dt 

This equation is of the type in which the variables can be separated and 

using partial fractions show that the equations can be rewritten as 

1 r(dx dx 

n+l J~~+ n+l-

Integrating the equation gives 

In __ x -~ k(n + 1) t + c, 
n+l x 

where c is a constant. The condition x 1 at t = 0 gives c = -In(n) and therefore 

k(n+l) t=ln~--. 
n+1 x 

Taking the exponential of both sides of this equation and rearranging the resulting 

(n + 1 )ek(I1+I)1 

-'1 + ek(I;~t ' equation gives x 

as t becomes infinite this tends to n+ 1 showing that eventually the whole popUlation 

becomes infected. 

Example 7.8 

In a particular chemical process in order to produce one unit of a chemical X, 2 units 

of a chemical A are used and 3 units of a chemical B are used. Initially, there are 10 

units of A and 8 units of B present. The rate of production of X is directly 

proportional to the product of the amounts of A and B remaining. Find the fonn of the 

differential equation satisfied by x, the quantity of X produced by time t. 

To produce x units, 2x units of A and 3x units of B will have been used. Therefore the 

amounts remaining of these substances are 10 2x units and 8 3x units respectively. 

Therefore the required differential equation is 

dx 
dt = k(lO - 2x Xs - 3x), 

where k is a constant. 
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Nett rate of change 

In many practical circumstances there may be several sources for the rate of change of 

a quantity and these changes have to be assembled together to arrive at a total (or nett) 

rate of change. A simple example is that of population growth where both births and 

deaths affect the growth rate and normally the birth and death rates are known. If the 

birth and death rates are both assumed to be directly proportional to the number x in 

the population, then the contribution of births to the growth rate is ofthe fonn px and 

the contribution of the deaths is of the form -qx (taking both p and q to be positive so 

that the minus indicates a decrease). The nett rate is therefore (p q)x and therefore 

dx 

df 
(p-q)x. 

There are many problems of the above type where input (e.g. birth) and output (.e.g 

death) rates are given or there are two causes of a growth rate, for example in a 

population there could be birth and death rates and also terms arising from emigration 

and immigration. In these circumstances, the nett rate of change has to be found from 

the equation. 

Example 7.9 

Nett rate 
of change 

rate of 
input 

rate of 
output 

1 
The growth rate ofa colony of bacteria, in units per day, is of the number of 

4 

bacteria present at any time. The bacteria are extracted from the colony at the constant 

rate of R units per day. At time t 0, the number in the colony is N, find the number 

present at time t days later. 

If x denotes the number of bacteria at time t days, then the "input" per day is ~ x and 
4 

the output per day is R. Therefore 
dx 

dt 

1 
-x-R. 
4 

Separating the variables and integrating gives 

4 

and so 

At t 0 x = N and therefore 

dx 

4R 

x- 4R 

J dt 

I 

ae 4
• 

a - N - 4R, so that 

x (N 4R)e 4 + 4R. 
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First Order Differential Equations 

Exercises 7.2 

1 The growth rate of a colony of bacteria is directly proportional to the number in the 

population. The number of bacteria grew from 100 to 400 in 24 hours. Find the 

number of bacteria after 12 hours. 

2 In a model of the response of the ear to a stimulus, it is assumed that the rate of 

change of response with respect to the stimulus is inversely proportional to the 

stimulus. Find the general form of the response in terms of the stimulus. 

3 The amount of radium in a piece oflead decreases at a rate directly proportional to 

the amount present. In 1500 years the amount ofradium decreases to one half its 

original value. Find the fraction remaining after 2500 years. 

4 The death and birth rates in an ant colony are both directly proportional to the 

number in the colony. The death rate is such that, if there were no births, the 

population would reduce to one half its value in 1 week. However in actual fact, 

the population doubles in 2 weeks. Find the bilth rate. 

S The population of a city is assumed to increase at a rate directly proportional to 

the number in the popUlation and the growth rate is such that an initial population 

of 40,000 increases to 80,000 in 50 years. Immigration, which is assumed to 

occur at a uniform rate, accounts for a uniform rate of increase of 400 people per 

year. Find the population after 10 years. 

6 In a model used by insurance companies it is assumed that money deposited 

grows at a constant rate per year equal to 0.06 times the amount in an account at 

any given instant. Determine the amount in an account 3 years after £500 has 

been deposited. 

7 A body at a temperature of 100°C is placed in a medium kept at a constant 

temperature of 20°C. After 10 minutes, the temperature of the body is 60°C, find 

its temperature after 40 minutes. 

8 One unit of a new substance X is formed by combining one unit of A with one unit 

of B. Initially, there are 10 units of A and 8 units of B. The rate of formation of X 

is directly proportional to the product of the amounts of A and B remaining. One 

unit of X is formed in 5 minutes. Determine the number of units fonned in 10 

minutes. 

9 In a model of population growth of protozoa, it is assumed that the population 

grows at a rate at any time equal to twice the number in the popUlation at that 

time. As well as the growth factor, competition between the protozoa will 

produce a decrease in the rate of growth equal 0.01 times the square of the number 

present. Fonnulate the differential equation satisfied by the number in the 

population and find the number in the population at time t given that there are 5 at 

time t = O. 
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First Order Differential Equations 

MisceHaneous Exercises 7 

1 The number in a popUlation at time t is denoted by x. In a particular model, the 

variable x satisfies the differential equation 

(~+_l ) d\" _ k 
x n -x dt 

where k is a constant. At time t = 0, the population has 1 n individuals. Assuming 
4 

that x never reaches the value n, show that at time t 
3x kl --=e. 

n x 

Given that the population has ~n individuals at time T, find the number in the 
2 

population at time 2T. 

2 In a particular model of a bank account, the amount in the account at time t years is 

denoted by £X, where both x and t are assumed to vary continuously. It is assumed 

that, at any time, there is a continuous inflow of money (due to interest) at a rate 

per year equal to El times the amount in the account at that time; El is known as the 

force of interest and may vary with t. There is also a continuous flow of money out 

of the account at a constant rate of fr per year. Explain why x satisfies the 

differential equation 
d\" 
- =Elx- r. 
dt 

(a) Find the general solutions of this equation for El O.land r = 100, and find the 

particular solutions such that 

(i) x 900 when t = 0 

(ii) x 1100 when t = O. 

Sketch the graph of x against t in both cases. 

(b) In a particular model when r = 0, the forces of interest is a + bt, where a and b 

are constants and, at time t = 0, x = 10000. Find x at any subsequent time t and 

given that x = 16000 at time t 2, find El when t 1. 

3 Find the particular solution of the differential equation 

dy = (y"+lXx4+1) 
d\" 

such that y I for x = 5. 

4 Translate into words the law of cooling expressed by the differential equation 
dT 

dx 
A(T - A) 

where t is the time, Tthe temperature of a hot body, A is the temperature of its 

surroundings and A is a positive constant. 
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First Order Differential Equations 

Exercises 7.2 

1 The growth rate of a colony of bacteria is dire(",lY proportional to the number in the 

population, The number of bacteria grew F.om 100 to 400 in 24 hours. Find the 

number of bacteria after 12 hours. 

2 In a model of the response of the e(!'. to a stimulus, it is assumed that the rate of 

change of response with respect to the stimulus is inversely proportional to the 

stimulus. Find the general form ofthe response in terms of the stimulus. 

3 The amount of radium in a piece of lead decreases at a rate directly proportional to 

the amount present. In 1500 years the amount of radium decreases to one half its 

original value. Find the fraction remaining after 2500 years. 

4 The death and birth rates in an ant colony are both directly proportional to the 

number in the colony. The death rate is such that, ifthere were no births, the 

population would reduce to one half its value in 1 week. However in actual fact, 

the popUlation doubles in 2 weeks. Find the birth rate. 

S The popUlation of a city is assumed to increase at a rate directly proportional to 

the number in the popUlation and the growth rate is such that an initial population 

of 40,000 increases to 80,000 in 50 years. Immigration, which is assumed to 

occur at a uniform rate, accounts for a unifonn rate of increase of 400 people per 

year. Find the popUlation after 10 years. 

6 In a model used by insurance companies it is assumed that money deposited 

grows at a constant rate per year equal to 0.06 times the amount in an account at 

any given instant. Determine the amount in an account 3 years after £500 has 

been deposited. 

7 A body at a temperature of 100°C is placed in a medium kept at a constant 

temperature of20°C. After 10 minutes, the temperature of the body is 60°C, find 

its temperature after 40 minutes. 

8 One unit of a new substance X is formed by combining one unit of A with one unit 

of B. Initially, there are 10 units of A and 8 units of B. The rate offonnation of X 

is directly proportional to the product of the amounts of A and B remaining. One 

unit of X is fonned in 5 minutes. Determine the number of units formed in 10 

minutes. 

9 In a model of population growth of protozoa, it is assumed that the population 

grows at a rate at any time equal to twice the number in the population at that 

time. As well as the growth factor, competition between the protozoa will 

produce a decrease the rate of growth equal 0.01 times the square ofthe number 

present. Fonnulate the differential equation satisfied by the number in the 

population and find the number in the population at time t given that there are 5 at 

time t O. 
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First Order Differential Equations 

Miscellaneous Exercises 7 

1 The number in a population at time t is denoted by x. In a particular model, the 

variable x satisfies the differential equation 

(1 l)dx +-- k 
\x n - x dt 

where k is a constant. At time t 0, the population has ! n individuals. Assuming 
4 

that x never reaches the value n, show that at time t 
3x 

= e kl
. 

n x 

Given that the population has ! n individuals at time T, find the number in the 
2 

population at time 2T. 

2 In a particular model of a bank account, the amount in the account at time t years is 

denoted by £X, where both x and t are assumed to vary continuously. It is assumed 

that, at any time, there is a continuous inflow of money (due to interest) at a rate 

per year equal to El times the amount the account at that time; El is known as the 

force of interest and may vary with t. There is also a continuous flow of money out 

of the account at a constant rate of £r per year. Explain why x satisfies the 

differential equation 
dx 

= Elx - r. 
dt 

(a) Find the general solutions of this equation for El = 0.1 and r = 100, and find the 

particular solutions such that 

(i) x 900 when t 0 

(ii) x 1100 when t O. 

Sketch the graph of x against t in both cases. 

(b) In a particular model when r = 0, the forces of interest is Cl + bt, where a and b 

are constants and, at time t 0, x = 10000. Find x at any subsequent time t and 

given that x = 16000 at time t 2, find El when t 1. 

3 Find the particular solution of the differential equation 
dy 

dx 

such that y = 1 for x 5. 

4 Translate into words the law of cooling expressed by the differential equation 
dT 

dx 
'A(T - A) 

where t is the time, T the temperature of a hot body, A is the temperature of its 

surroundings and le is a positive constant. 
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First Order Differential Equations 

If A is constant, show that 

To T (To AXl- e- A1
) 

where To is the value of the temperature of the body at time t O. If the body, 

starting at time t 0, cools from 80 QC to 60 QC in 15 minutes, and from 60 QC to 

50 QC in a further 15 minutes, find le. 

5 It is known from experiments that water escapes from a flat-bottomed tank 

through an orifice in its base at a rate of approximately 2.66A.Jh m 3s -] , where A 

is the orifice area in square metres and h is the height in metres of the water 

surface above the orifice. 

A tank 1 m deep has a rectangular cross-section of2m by 3m. The tank is initially 

filled with water. At time t = 0, the water starts to escape through a circular 

orifice in the base ofthe tank, the orifice being of radius O.OIm. Taking 7t to be 

3.14 and calculating correct to two significant figures, show that at time t s 

dh -0.000 14.Jh 
dt 

How long does the tank take to empty? 

6 The spread of a non-fatal disease through a large population of M people can be 

studied theoretically as follows. The rate at which people who are currently 

healthy are being infected is 0.01 times the product of the number that are healthy 

and the proportion P of the total population that are infected. The rate of recovery 

of infected people is 0.009 times the number of people that are infected. Noting 

that the number of people that are infected at time t is MP, show that the process 

can be approximated by the differential equation 

dP :::; O.OOl(l-lOP)P, 
dt 

explaining any necessary assumptions. 

Find P in terms of t, given that P = 0.01 when t = O. Estimate the population 

infected when t is very large. 

7 An economic theory suggests that the relationship between the national debt £D 

and the national income £1 can be represented by the following differential 

equations: 
dD 

dt 
aI, 

dl 
dt 

bl, 

where a and b are positive constants. If I 0 and Do are the initial values of 1 and D, 

respectively, show that 

D ala (e bl -1)+ Do' 
b 
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Exercises 1.1 

1. 84t 2 + 12t 

2. 9t 2 + 8t 

3. 2t 4 +3t 3 +t 2 +2t 

4. t 5 + t 4 -3t+l 

5. I + 5t+ e 

6. 2,9 

7. 5t 3 + t + 2 

Exercises 1.2 

1. 4 ms-I 

2. 

3. 

4. 

9ms-1 

40.24 ms -I , 2A8m 

(i) 6.24 ms-I 

Miscellaneous Exercises 1 

1. (a) 2m 

2. 32 2 4 -I - -ms 
27' , 3 

3. 41n 
4 

3 

5. 2 < t < 5, 8A 

6. 4, q 
8 

p , r 
3 

7. 
128 

-OAtN -m 
3 ' 

8. 

9. 2' 
10. 13.3 kW 

Exercises 2.1 

1. 1.6 J 

2. 1.86 m 

3. 245 J 

4. 11.76J 

5. 3.02 J 

6. 26.1 N 

Answers 

ANSWERS 

(ii) 6.12t 1.5t 2 (iii) 14.04 

(b) 14 ms-2 

4 
4, b 

4 . 

9 ' 
a - - dIstance = 4 m 

3 ' 

9m, 11 m 

T R(P-R)T 
16M ' 2M 

152 



7. (i) 804.4 J 

9. 69 kJ 

10. 9.125 N 

Exercises 2.2 

1. 

2. 

(i) 6 J 

(i) 22 J 

Exercises 2.3 

1. 1 J 

2. 8J 

3. 39.1 J 

4. 9J 

5. 33 J 

6. 0.15 J, 

7. 0.25J 

Exercises 2.4 

1. (i) 6.4 J 

2. 67.5 kJ 

2.25J 

3. 18.7 ms-I 

4. (i) 2 kN 

5. 68400 J 

6. (i) 1132 J 

7. 9.9 ms-I 

8. 73.2 J, 2.05 ms-I 

9. 2.36 J, 8.74ms-1 

10. (i) 2.48 J 

11. 13.2 m 

12. 9.22 ms-I 

13. u> 6.32 

Exercises 2.5 

1. 4.41 J, 20.8 kJ, 98 J 

2. -20.58 kJ 

3. 14 ms-I 

4. 1.98 m 

5. 1.60 m 

6. ~3gh 12 

Answers 

(ii) 1326 J (a) 177.5 N (b) 251 N 

(ii)-14J 

(ii) 5.5 J 

(ii) 193.6 kJ 

(iii) 1 J 

(iii) 440 J 

(ii) 80000x where x m is distance entered 

(ii) 1.5 ms-I 

(ii) 0.28 
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Answers 

7. 0.75 ms-I 

8. 10 ms-1 

I 

9. .85 (ga)z 
10. 2.73 m 

11. 3m 

12. 1.73 m 

13. 3m 

14. 1.805 m 

Exercises 2.6 

1. 24 exp (6t) 

2. (i) 30 kJ (ii) 11.04 kJ 

3. 50.8 ms- I 

4. (i) 72.3 kW (ii) 96.4 kW 

5. 4.71 kW 

Exercises 2.7 

1. 9kW 

2. 9kW 

3. SOON 

4. 8 ms- 1 

5. 0.2 111S-1 

6. 12.5 kW, 9.3111Si 

7. 48kN, 480 kW, 20 ms-I 

8. 20.5 ms-I, 0.24 

9. 32.1 111S -I , 0.96 111S-2 

10. 50 kW, 0.02 ms -2, 0.036 

11. 18.24 kW, 0.1 

12. 0.75 111s-2 

13. 20 111S-1 

Miscellaneous Exercises 2 

l. (a) 1.28 111 (b) 8.01 111S- 1 

2. (b) 5.1 111 (c) 1.18 J 

3. 540N, 27N 

4. (a) 59150 J (b) 172323, 93.3 N 

5. 64 kJ, 29.4 1, 126.6 k1 

6. 15 J 
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Answers 

7. , 
6 6 

8. 8 ms-1 

9. 313.6 N, 0.245 m 

10. (i) 3.16 ms-1 (ii) 2.9 ms-1 

11. ~3.19 ms , 3.078 ms-1 

12. 2a 

14. 4.5/ 

15. ~2gx 

16. 
il8ga 

V-5-

17. (i) 7a below 0 (ii) ~(ag)~ 
9 3 

18. 40500J, 7840J, 48.34kW 

19. P, 14000, 0.6 ms-2 

20 

20. 100 (700 + R), 300 

21 1000R M' AI . -- gsmCl ma newtons 
V 

22. (i) 20 ms-1 

23. 38 kW 

(ii) 0.75 ms 

(i) 0.475 ms-2 

24. 20 kW, 19.44 ms-1
, 800 N, 0.39 ms-2 

25. 500 N, 36.9 kW 

26. 35 kW, 0.73°, ~0.59 

27. 300N (i) 0.2 ms-2 

Exercises 3.1 

1. (i) 36 N (ii) c = 1800 

2. k 2.74 X 10 5 

3. 21 Ns 

Exercises 3.2 

1. 4.75 ms , 13.7 Ns 

2. 2.09 ms-1
, 0.42 Ns 

3. 0.32m 

4. 1.01 s, 1.86 ms , 
5. 2.86 s 

6. 0.36m 
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Answers 

Exercises 3.3 

1. 

2. 

3. 

4. 

(a)2ms-l, IONs (b) JIj ms-I, Ns 
2 2 

(d) J3 ms -I, 5J3 Ns 

28 
42 Ns, fi Ns 

12 ms -I, 378 J, l.4 kg 

17 I 
s, l.8 ms -, 3.645 J 

60 

() {71 - {7N 
c fi 111S , )~2 s 

Miscellaneous Exercises 3 

1. (i) 3 ms-I (ii) 3600 Ns (iii) 1333! kN, 533 1 N 
3 3 

2. 2.6mg, 
2d ~fid 

10' 5 5 5 

3. (i) !muJ3, 1 !muJ3, -u 
2 2 ' 4 4 
m (b) mg 4. (a) -
2 4 

(c) 

5. (i) 1.4 111S- 1 (ii) 1l.76 J (iii) 0.49 s 

1. (i) 6.36, 6.36 (ii) -7.5, 13 (iii) 6.58, -2.39 (iv) -4.1, -11.28 

(v) 1.74, -9.85 

2. (i) 6.32 ms -I at 71.6° to Ox (ii) 8.54 ms -I at 111 0 to Ox 

(iii) 12.6 ms -I at 71.60 below Ox (iv) 9.85 ms -I at 2040 to Ox 

(v) 19.21 ms at 51.30 below Ox 

3. (i) 5,2 + 8t (ii)3, 4 - 6t (iii) 16t, lOt + 12t 2 (iv) -e- I ,-e -I -2e -21 

4. 18.68 ms -I at 74,SO to Ox 8.54 ms -I at 69.40 below Ox 

Exercises 4.2 

4t, 

6t, 

51 - 4.91, t = 1.02, 4.08 m 

I1t-4.9t 2
, 6.17m 

1. 

2. 

3. 4/, 12t 4.9t 2 , 4.57 ms -I at 28.8° above horizontal, 

66.5 ms -I at 86.6° below horizontal 

21.65t, 12.5t - 4.9t 2 
, t = 2,55, 55.2111 

24t, 18t-4.9t, r=1.84, 16.5m 

4. 

5. 

6. 37,59t, 13.681 4.9t 2
, 37.8 ms-I at 5,90 above horizontal 

74,8 ms-I at 59.9° below horizontal 

7. 61.8111 

8. 2.06111 
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Answers 

9. 96.8m 

10. 5 ms-I, 12.3 ms-I 

11. 19.6 ms-I 

12. Yes, 35.8 ms-I 

Miscellaneous Exercises 4 

1. 20t, 15t 4.9t 2
, 1.53 s, 61.2 m 

2. (a) (i) 4.9 s, 34.3 m (b) 83.3 m 

3. (a) (i) 24t, 32t 4.9t 2 (ii) -0.3 (b) 60.7 m (c) 19.6 m 

4. Asin8.3,tanp (1 2p)tana, x B =r(l-p), a=4hp(1-p) 

5. -2 

6. 3 

7. ,2 
8 

8. 
2a gT 

T' 2 

9. 9.7 ms-1 

10. 4g, g 

11. 27.3 ms -I at 28.2° below horizontal 

12. 3nut, 
1 2 

5nut - - gt , 16a 4ut, na + 3ut 
1 , 
gr, 

2 
4 

13. 

14. 

15. 

16. 

17. 

18. 

(b) %, 
(a) tan a 

(a) 5 s 

0.5, 3 

24v 2 

g 

(b)(i) 2 

Exercises 5.1 

2 

(c) 10.4£1 

2V 2cos 2a 

(b) 122.5 m 

wJ28 

(ii) 4 m 

1. (a) ~ a (b) ±6, 

(t) 1 (6 Cl) 
2 
1 

(b) £1+ 6 2. (a) -a, 
3 

3. (a) -a, (b) -b 

4. 16a - 8b (b) 4a+386 

(b) 0.2 m 

(c) 17.5m 

(iii) 8 m (iv) 4 m 

(c) 6 a, (d) 6, (e) a 6 

1 2 2 1 
(c)b+-a (d) -3a, (e) -6 +-a 

3 3 3 

(c) a 6 (d) 19 6 _ 2a 
20 

(c) -16a + 18b 

5. (a) 6.9 at an angle of 11.44° to Cl (b) 24.65 at an angle of 12.8° to Cl 
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2. 

3. 

4. 

5. 

(a)x=-4,y=1, 

(a) -Si and 31j 

Answers 

(b)x=-1,y=5, 

(b)-19i+9j 

i + 4j, 3i-2j, -4i + 3j, -2i - 6j 

2i -6j, 2i 9j, - 3i - 10j, 

(a) l3 5i + 1 (b) 153 2i + 
, 13 ' , 

(c) -J45, (d) 152 , 

(c)x 5,y =2 

(c) -3i + 33j (d) 2li + 13j 

-7i +5j, -5i j 

6. (a)2i+2F3j, (b)-3F3i+3j, (c)-9.4i 3.42j, (d)2.3i-1.93j 

7. (a) J58 at an angle of66.8° to i in the first quadrant 

(b) .J52 at an angle of 56.3° to i in the fourth quadrant 

(c) m at an angle of68.2° to i in the second quadrant 

(d) .J8O at an angle of 26.6° to i in the third quadrant 

8. (a) 25( F3 i+ j) km, (b) 40( 5 i - j) km, (c) -55.J2 (i + j) km 

(d) 37.5 (-5 i + j) km 

Exercises 5.3 

1. 

2. 

3. 

4. 

5. 

(a)x=-2,y O,z -1, (b) x=2,y z=2.25,(c) x= 
4 

y 15,z=-
3 

(a) 30j + 15k, (b)2li+5j k 

(d) 2li ..... 23j lOk 

2i+3j+6k, 4i 3j+8k, -5i+4j 2k, 

2i - 6j +2k, 3i + 2j Sk, -4i + 3j l3k, 

(a) 6, 2i- +2k, (b) -.j65, _5i_+-;::::=+_6_k 
3 

(c) -5i + 29j + 13k 

-2i + 6j 7k 

-7i + j 8k 

(c) .J6t, _4 i_+---:::=:--3_k 

Exercises 5.4 

1. (a) 33, (b) 46, (c) -11, (d) 7 

2. (a) 12.3°, (b) 1.22° (c) 169S (d) 155.7° 

3. (a)7i - 4j (b) lli + 9j 

4. 166° 

5. (a) 68° (b) 120° 

6. 5.2, 6.86 

7. (a)~ 17(3i 4j), 56(4i+3j), (b) 69 69 (12i + 5') 240 (5i - 12') 
5 ' 25 25 13 ' 169 J , 169 J 
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Answers 

Exercises 5.5 

1. (a) 38, Cb) ~13, (c) 16, (d) ~6 

2. (a) perpendicular, (b) 66.6°, (c) 4.72°, (d) perpendicular 

3. 108.9° 

4. J66, Fa 
5. 

7. 

7 
p= 50 

( ) 22 22 (2' . 2k) i + 17k a --, I+J+ ,----~--
399 

(
b)l 3i+ +12k 36i+ +38k 

, 13 13 

Exercises 5.6 

1. (a)2i+20t 3 j,60t 2 j (b)e'i+3t2.j,e 1 i+6tj 

(c) -sin ti + 2cos 2tj, cos t i 4 sin 2tj (d) 2ti + j + 3t 2 k, 2i + 6tk 

(e) ti + 4t 3 j + 3 eos 3tk, -cos ti + 12t 2 j - 9 sin 3t k 

Cf) 2e 2' i- sin tj + ~ k, 4e 21 i - eos tj ~ ~ k 
t t 

2. (b) -a sin t + 2lb, (c)e' a -2e-1b 

3. 

I' 
4. (b) . 1 . b 1+ -J+ 

3 ' 
(c) sin 2ti cos tj + b, 

(e) 2 sin ti + t 5 j ~ 4 cos tk + b, 

(f) e 21 i + sin4tj + t 2 k + b. 

5. (a) 45i + 99j, (b) 63i + 6j + 30k 

6. (a)r=t 7 i+t 3 j+3i+5j, (b)r t 3 i+t 2 j+t 4 k+5i+6j+7k 

7. r ~ [2 a + th + c, h and c being constant vectors 
2 

Miscellaneous Exercises 5 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

(a)(i+3j+2k)m, (b) i+3j+2k, 

Cl 2, 13 y = 1 

-6i j, 

.fi 1t 

'4 

-i +6j +10k 

6i + 8k, 13, 10, 114 

(10 2 f1)i + (1 + 3 f1)j + (2 + 3 f1 )k 

p=l 
q 6 
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A= 3 
5 ' 

2 
f1= -

3 
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8. I (-6i 4j + 4k), ~(40i - 13j + 47k) 
17 17 

9. (a) (b) ; , (c) 10, -0.4 

10. 6, 
2 2 

3 ' 
-

3 ' 3 

11. 
(i -j) 
.J2 

Exercises 6.1 

1. (a)(16i ISj) N, (b) ISi N, (c)(9i + 6j + 10k) N, (d)(10i + l1j - 6k) N 

2. 

3. 

4. 

S. 

6. 

7. 

8. 

9. 

24.8° 

70.So, 3S.3° 

23i + 16j + 68k 

(Si + 10j) N, (4i + 2j) N 

(a) 9i+ 7j) N, (b)(-IOi + j) N, 

(a) 2 J, (b) 66 J, (c) -IS J, 

(a) 4 J, 

S(i j) N 

(b) 38 J, (c) 124 J, 

(c) 9i + 4j) N, (d) (3i - 6j) N 

(d) 16 J 

(d) S6 J 

1. (a) (42ti + 8j) ms-2, (b) (4e-t i + 8e2t j) (c) (-16j + 84t k) ms-2, 

(d) (16e4t i 8et j - 14 cos t k) ms-2 

2. (S4i + 4Sj) m 

3. (37i 3Sj) ms-I. 

4. 7.11 m 

S. 17.03 

6. 

7. 

8. 

16.28 m 

(a) (3t 300)i + (210 - 6t)j, 

IS, ISO 

(b)t 48, 174.4m 

10. 30(1+2t)i+30(10t-l)j+(60t 2)k, t 4.S2min 

11. 281.1 krnh- I at 84.9° S ofW 

12. 1.47 ms-I at 28.7° N ofW 

13. 51.3°, 12.8 s 

(a) (2.Se-t + S.St - O.S)i + (0.7StS + St + l)j, 

(b) (St3 10t+6)i+(Sr4 -26t 14)j, 

(c) (t2 + 3t + S)i + (~t3 -2t -4)i + (4e2t 4t + l)k, 
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(d)(%t 2 -±}+(-t3 +t+6)i+(t5 t 2)k 

2. (a) 0.82 Ns, (b) 0.85 Ns, (c) 2.47 Ns, (d) 3.93 Ns 

3. (a) (9i + 24j) ms-I, (b) (6i + 25j + Ilk) ms- I 

4. 4.37 Ns at 59° to direction after impact 

5. (a) t4 (0.4 + 4.9(4) J, (b) t2 (7.2 + 12.8 t4) J, 

(c) (10 cos2 t + 3.6 sin2 t + 14.4 (2) J , (d) (9t2 + 8e-2t) J 

6. Ca) (0.8t3 + 14.4t7) W, (b) (9.6t + 86.4t7) W, 

(c) (-10.8 cos 2t sin 2t + 45 sin 3t cos 3t + 2 L6t) W, (d) (50t - 144e-41) W 

7. (a) 5.3 J, (b) 14.4n2 J 

Miscellaneous Exercises 6 

l. (a) mi Ns, (b)tm(l +n2)1, (c)2m(i nj)N, (d)2m(1 +n2)W 

2 
2. (a) 10"3 

3. (a) [2(na cos nt + 2bt)i + (-ne sin nl + 2dt)j] Ns, 

(b) [(na cos nt + 2bt)2 + (-ne sin nt + 2dt)2] J, 

(c) [2( -n2a sin nl + 2b)i + (-n2e cos nt + 2d)j] N 
4 

a=-4,b 20,e - ,d=4,power=160(n2+10)W 

4. 

5. 

18 J, 3 ms-1 

n 3n 
(a) t = 2' 2 

n 

n 3n 
(b) t = 0, -, -.... (c) t 

2 2 

(2.4 cos 2t i + 8e41 j) N, (7.2 sin 21 cos 2t + 40e81) W 6. 

7. (a) (4 cos 4t i 4 sin 4t j + 2t k)ms-1, (-16 sin 4t i - 16 cos 4t j + 2k)ms-2, 

(b) 0.8f W 

8. 

9. 

10. 

11. 

12. 

(a) 2i+ -2k, 
3 

(a) (0.7i + 6.3j) Ns, 

(a) (14i + 3j + 12k) N, 

(a) (i + cos t j) ms-2, 

(b) 4 N, (c) 36 J 

(b) 12.6 J 

(b) "';349 N, (c) 71, (d) 0.75, 

(b) [t~ i-eostj+4i+4 j ) m 

(a) (2i - 12 sin 3t j + 12 cos 3t k) ms-1, 
1 

(b) t 2 

13. (b)300kmh-1, (c)(1l-2t)2+(1 +t)2+9t2
, t 1.5 

(e) 87 J 

14. [(3 - t)i + (12 + 3t kt) j] m, (a) k 7, t 3, (b) 1; ,~ m, 3::;: t ::;: 12 

15. (a) 1.3 J, (b) 0.33 

16. (a) (- O.3i + 2.Ij) Ns, (b) 18.9 J 

17. (a)(3costi-5sintDms-l, 5, 3, (b) 1
8
7' (c)4.8sintcostW, 2.4W 
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18. OAn (cos nt i + sin nt j) N, [b + t(- 6i + 8i)] rn, 3i + (;-4} 

19. Ca) ~(3i+4j)tkm, [1O(-i+j)+10ti]krn, 

50 
(b) u=7' 1.45p.rn. (c)(ii) 1.30p.rn. (iii) 12.30p.rn. 

20. (a) [(30 - 40t) i + (20 + pt)j +lOk] km, 

[(-10 + 120t)i + 200t j + (15 + qt)k] km, 

(b) p = 120, q -20 

1. x=kt 
I 

2. x= [2(k-t)J"2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

v = (k-3t) 3 

k 
r=-­

cose 

x=4et 

x = (27 - 2t) 2 

4 
x=--

5 - ,4 
Y = In (2 - eX) 

4 1 -31 v=---e 
3 3 

4 11 -3t v=---e 
3 3 

y = ~1 +(x+ 2Y 

Exercises 7.2 

1. 200 

2. r=klns+c 

3. 0.31 

4. 1.04 x number in popUlation 

5. 50238 

6. £598.61 

7. 25" 

8. 1.8 units 

9. 
dx 2 200 
-=2x-0.Olx , x= 

1 + 3ge-21 dt 
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Miscellaneous Exercises 7 

1. 
3n 

4 

2. (a) x 1000+ae° lt
, (i)x= 1000 100 , (ii) x = 1000 + 1 OOe 011 

nt+':"'bI2 

(b) x 1 OOOOe 2 0.235 

3. y = tan ( + x2: 630) 
5 4 

4. 
1 
-ln2 
15 

5. 238 minutes 

6. 
1 

0.1 
P = 10+ 
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Acceleration dependent on time 

Connected particles 

Conservation of 

Differential Equation 

Elastic 

Energy 

conservation 

gravitational/potential 

kinetic 

Impulse-momentum 

Principle 

Impulsive Tensions 

strings 

pulleys 

Potential 

gravitational 

elastic 

Power 

Proj ectiles 

Resolutes 

Resolve Parts 

Resultant 

48 

21,66 

137 

20 

21,66 

20 

14, 128 

44,127 

46 

50 

20 

20 

20 

30, 128 

65 

90 

103 

85 

Index 

INDEX 

Scalar 82 

Vectors 82 

Addition 85,92 

Differentiation 107 

Integration 107 

Magnitude 83, 93 

Modulus 83 

Perpendicular 102 

Position 84 

Scalar Product 101, 104 

Unit 85, 93 

Velocity 59 

Work Done 8, 130 

constant force 8, 115 

force dependent 

on position 11 

tension elastic string 13 

Work Principle 14,32, 129 
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