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PREFACE

This text is the first of three volumes which will cover between them most of the
mathematical methods required for a modular A level course in mathematics.
Specifically, the text is based on the P1 Syllabus of the Welsh Joint Education Committee
which is being introduced in September 2000.

It is assumed that the reader will have successfully completed a GCSE course in
mathematics and will have access to a calculator possessing mathematical functions.

The text concludes with six revision papers. It is believed that these tests should be
completed in approximately one hour by students who are ready to sit their A level
examinations.

Readers may wish to omit Sections 2.2, 2.5 as the material should have been covered in
GCSE. The material covered in Section 3.2 may be omitted without causing difficulty in
Chapter 3.
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Indices, Surds and Polynomials
Page
Chapter 5 Angles and Angular Measure
Chapter 1
5.1 Degrees and Radians 68
5.2 Length of Arc and Area of a Sector of a Circle 70
53 Trigonometric Ratios for Angles between 0° and 90° 72
5.4  Trigonometric Ratios for Special Angles 75 Indices, Surds and Polynomials
Chapter 6  Further Trigonometry
6.1 Trigonometric Ratios for General Angles 79 .
6.2  Areas of Triangles and Parallelograms &3 1.1 Indices _ _
6.3  Graphs of Trigonometric Functions 87 Let b represent any number. Consider the following examples.
6.4 A Trigonometric Identity 93 Example 1.1
b4 x b3 = (bx b xbxb)x(bxbxb) The factors can
Chapter 7  Differentiation = bxbxbxbxbxbxb b;: assocnateld
— pT = p4+3 fybr e“‘l‘zvf
) 01 brackets.
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:bXbXbXbXbXbXbXb leaving 5 bs
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=bxbxbxbxb =bd
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1
If — is b2 then
Chapter 9  Integration — The Indefinite Integral ey b2
B3+ b5 = b3S
9.1 The Indefinite Integral 136
9.2 Techniques and Rules 137 Example 1.4
(623 = (b?) x (b2) x (b?) b’ factor
Chapter 10 More Integration — The Definite Integral = b2x b2 x b2 3 times
= p212+2 = p6 = p3Ix2
}8; ?ﬁldglrg the ?jonstant of Integration 140 These exercises illustrate the following rules of indices when m and n are positive
. e Area under a Curve 141 integers m and -
Revision Papers 149 pm s pn = pmrtn Rules 1
pm.pn — pmn m, i:zltgosmve
gers
Answers 155 (pmyn = pmn 4
We can use these laws even when letters and numbers are both involved.
1




Indices, Surds and Polynomials

Example 1.5
(@)  3a2b? x 4a3b0 x 2a%h3 = 3 x 4 x 2 x q2t3H4 p2+6+3
24a9p11,
(b) (3b2a3)2 x 6b3a2 x 4b2a = 31x2 p2x2g3x2 x 6b342 x 4b2a
= 32 % 6 x 4 x bA3+2 46+2+1
= 216b%°.
We can use the second of Rules I to give a meaning to 9.

fl

I

Example 1.6
b6 Anything divided
Z_ = p6-6 = p0, by itself gives
b® one, except 0/0
b6

Thus b0 =1, whatever bis. Rule II

Rules I can be extended to cases where the indices are rational numbers, both positive
and negative.

Example 1.7
Let » = b.
Then . bxb* = b A rational number
Assuming the first of rules I applies, we have is a number of the
p2x = pl form p/q where p
=b and g are integers.
S0 2x=1andx=%.
i
Thus Vb = b2 | Rulelll
Similarly for any positive integer n,
1
Nb = b, Rule IIT'
More generally, for any positive or negative integer m and any positive integer n, since
b xbnx..xbn = pna w o= pn = pm
(n factors)
we may write Nb™ = b, (1)

m

We can find an alternative form for 6", because
m 1 11 1
(’{/E) = (bn)m = bn Xb”X,,‘Xb”

(m factors)

assuming
Rule I

applies

m

Thus br

|
- |
5 .

S——

~~

-

=

p—

Indices, Surds and Polynomials

(1) and (ii) can be combined to give

b% - ('{/E)m or Vb" Rule IV

Negative indices can easily be interpreted as appropriate reciprocals.

Example 1.8
Assuming b4 satisfies
b4 x bt = b4t = p0 = |,
. 1
we are able to interpret 5~ as Pk
Similarl p2o= L]
imilarly, = — = —.
R

. k
More generally for any rational numbers 7

Rule V

The rules may be summarised as follows.

Rules I bk x bl = bkt k and ! integers
bk = bl = pk-l or rational, both
bk = bkl positive and negative
with Rule II B0 =1
Rule I o - b e
Rule IV b% =4/p" n positive intege’r
-]
Rule V b_/% _ _1T
b1

Exercises 1.1

Write with positive indices :-
-1 (1Y 17
() a2 (i) x 2 (i) (b73)? (iv) (——j (v) (;} :
a
1
Simplify (i) a3+ a2 (i) b6+ b2 (i) x>+ (-x)* (iv) (16a*5%)2

) (@557 = 16xpT (vi) (64)7 (vii) (87  (vii) (gg] (%) (



1.2

Indices, Surds and Polynomials

Write down in their simplest forms :-
(1) the positive square root of 494266 (ii) the cube root of 64x%)0.

3
2

If x = 64> and y = 474 find, without using a calculator, the value of xy2.

It is often necessary to use the rules to simplify more complicated expressions.
Example 1.9

1 _1
Simplify (x+D2—20w2)2.

T
(x+2)2
(x+2)7 22(x+2)F  (x+2)? T doon
X+ =2(x+2) 2 x+2)?2 (x+2)'? =1 doesn't
Now T X T Gy
(x+2)2 (x+2)? change the value of
Ly 141 the expression but
Co(x+2)2 2 =2(x+2) 22 removes the
= ( 2)L+i negative index.
x+2)2 2
. (x+) -2(x+2)°
(x+2)
= x+2-2 x
x+2 x+2
Exercises 1.2
Simplify the following :-
1 _1 1 _2
" (x2+1)2 = x3 (22 +1)2 (i) 3a+1)3—aa+1)3
2 1
x“+1 (a+1)3
BT (b2 +2)7 —b2 (b2 +2) 7 2 -z
(111) l) B (3 + ) (IV) (x+yg__(2x_y) )
bz(b2+2)i xT =y =1
1 _3 2 4 5 _1
") x7x 4 i) (2x% +3)5 —2x2(2x% +3)75
3 4 )
x4 (2x2 +3)°
Surds

We introduce surds by means of some exercises.

Exercises 1.3
Find the following square roots, using the V key on your calculator where necessary.

(a) V4, (b) V36, (c) V12.25, (d) 3, (e) V13.

There is a difference between exercises (a), (b), (¢) and exercises (d), (e).

Indices, Surds and Polynomials

The first cases have exact answers :- 2, 6, 3.5; whilst cases (d), (¢) do not have exact
answers : 1.732050808 ... and 3.605551275 ...
The calculator has given the answers to (d), (e) to 10 figures but these answers are not

exact. Numbers such as /3 , J13 , which cannot be calculated exactly, are said to be
surds. Surds often occur in calculations and some facility in their manipulation is often
helpful.

Example 1.10

(a) Express V54 as the simplest possible surd.
V54 = J9x6 = I x~6 =36.

(b) Express as the square root of a single number:

(i) 445 (i) 343 (iii) 642
() 445 = V16 x/5 = V16x5 = /80.
(i) 343 = V9 x/3=9%x3 = 27.
(i) 62 = V36 x+/2 = V72 .

(¢) Expand and simplify (2\5 +/6 X\B ~Je )
(2\6+\/3X\B—\/g) 2><3—2\/§><\/€+\/8><\/——6

= 6-2J18 +/18 - 6 o fhon
~J18 = -342. B X3 =3

I

(d) Simplify the following by removing all surds from the denominator:
5-43
9+2+3°

5-v3  _ (5-3)(9-243)

9+243  (9+2+/3)(9-2+3)
45-10+/3 -9/3 +6
81-18+/3 +184/3 12
51-1943 17 1943

69 23 69

Again multiplication
by 1 doesn't affect the
value of the expression

More generally, we can remove Ja +b from any denominator by multiplying the
original expression by

Ja-p
Ja Vb

Removal of a surd from a denominator is known as rationalising.



1.3

Indices, Surds and Polynomials

Example 1.11

. . 3 5
Rationalise (1) _\/——5_7: (11)
N 35 + ) 3(\/§+\/—7j)
NI S N NN o) RN T T
_ 3x/§3+\/_=\/'— V2.
(ii) S ___[_ = 5_‘/_§_
V8 88 8

Exercises 1.4

1. Express in terms of the simplest possible surds :-

(i) V20 (i) V18 (i) V72 (iv) V180 (v) +/250.

2. Simplify

D V32-+3) (i) v2(5-2+2) (i) (V3 - v2)(W3 ++2)
(iv) V3 +2)3v3-2) () BV6 =2)2 (iv) (Vx —x)(+x +x).

3. Simplify the following by rationalising the denominator :-
L1 | vy 3 . 1 1
1) —= ) — (i) — (@{v) —— V) ——
N Y 7o
1
(vi) (vii)
75 g

(viii)

1
+ .
\/§+l \/5—1

Polynomial functions

Given expressions like (i) x2 + 2x — 3, (ii) Vx? 42, (111) ——1—3, we can find values
X+

of these expressions if we replace x by a number.

Example 1.12
Find the values in (i), (ii) and (iii) whenx = —1 :-
A D2+2-1)-3=1-2-3 = -4,

i) D242 =112 =43

or 1.7321 to 4 dec. places.
1 1 1
(-H+3 -1+3 2

Use brackets
when negative
numbers
are involved.

= 0.5;

Expressions such as these which take values in response to the allocation of values to x
are called functions. Later we shall meet many more examples of functions.
However, at present we confine our discussion to functions such as  x2 + 2x — 3.

We write f(x) = x2 4 2x — 3.

Then the result of example (i) above can be summarised as f(- 1) = — 4.

Again, f(2)=224+2(2)-3 =4+4-3 = 5.

1.4

1.5

Indices, Surds and Polynomials

The particular functions to be considered here contain terms that involve positive
powers of x and / or numbers. These functions are known as polynomials. The
highest positive power of x defines the degree of the polynomial.

Example 1.13
x3-3x2+4, x/ - 6x + 4, and x° are polynomials of degrees 3, 7, 5 respectively,

but vx+2, ——mm— x2+l—3

2x? +4x+5 X

ome workers consider
4=4x"to be a
polynomial, but we
require positive
powers here.

and 4 are not polynomials.

Addition and subtraction of polynomials

When polynomials containing the same letter are added (subtracted) the result is
obtained by adding (subtracting) corresponding terms. The answer is often a
polynomial but not always so (it could be a pure number).

Example 1.14
Add fx) = x*+ 33+ 2x2+ 9x — 7
and g(x) = x3 - 7x2 - 9x + 2.
fx) + g(x) = x4+ G+1)x3 + (=7+2)x2 + (9-9)x - 7 + 2
= x4+ 4x3 ~ 5x2 - 5,
a polynomial of degree 4.

Example 1.15
Subtract f(x) = x3+3x2-7x+9
from g(x) = x3+3x2 - 7x + 4.
gx)—f(x) = x3+3x2-7x +4
~ (3 +3x2-7x +9)
(1-1)x3+ 3-3)x2+ (-7+Nx + 4 -9
= — 5, which is not a polynomial.

Useful to use
brackets when
subtracting.

I

I

Multiplication of polynomials
Two polynomials can be multiplied together by multiplying every term in the first with
every term in the second.

Example 1.16
Multiply 3x2 — 2x + 5 and 2x3 — 6x2 + 4x - 9.
It is convenient to introduce brackets when multiplying polynomials.
(3x2 — 2x + 5)(2x3 — 6x2 + 4x - 9)

= 6x3 — 18x*+ 12x3 — 27x2 — 4x* 4 12x3
—8x2+ 18x+ 10x3 — 30x2 + 20x — 45
6x5 — 22x4 + 34x3 — 65x2 + 38x — 45.

Multiply terms
in second bracket
by () 3x° (ii) -2x
(iii) 5.




1.6

Indices, Surds and Polynomials

Example 1.17

Multiply 2x + 1, 3x + 2, x - 3.

(2x + DBx+ 2)(x = 3) = (6x2 + 4x + 3x + 2)(x - 3)

(6x2 + 7x + 2)(x — 3)

6x3 —18x2+ 7x2 - 21x+2x -6
= 6x3 —11x2 - 19x - 6.

Multiply the
first two first.

It

Exercises 1.5

Multiply out the following :-

1) x+Hx-4) (1) Cx+Dx+2) (@) (x+ D+ 2)(2x - 3)
(iv) (2 +4x+9)(x2-3x-2) (v) Bx—4y)(3x+5y)

(vi) (x+2)2 (vil) Bx—2)2 (viii) (x+3)3 (ix) (x—1)%(x +2).

Factors

Previously we combined a number of polynomials by multiplication to obtain a
resulting polynomial. The problem to be considered now is the converse : which
polynomials must be multiplied together to obtain a given polynomial? The answer, of
course, may not be unique.

Example 1.18

6x3—11x2-19x -6
can be written as (2x + 1)(3x2 - 7x — 6)
or (2x+ 1)(3x + 2)(x — 3) amongst others, for instance.
The decomposition of a polynomial into polynomials of lower degree is called
factorisation; and the component polynomials are called factors.
We restrict our consideration to factorising first degree (linear) and second degree
(quadratic) polynomials. Second degree (quadratic) polynomials are sometimes
called quadratic functions.

Example 1.19
Factorise 3x - 9.
In this case 3 is a common factor of the two terms and so

3x-9 = 3(x-3).

Example 1.20

Factorise 4x2— 16x.

Here both terms have a common factor 4x.
Then 4x2 — 16x = 4x(x —4).

Take all
common factors
into account.

In the last two examples, the factorisation was achieved by observing that the two
terms possessed common factors. When the quadratic expression contains 3 terms,
factorisation using common factors is not possible.

Indices, Surds and Polynomials

Example 1.21
Factorise x2 + 8x + 12.
In this case no factors exist which are common to all terms. If the factors are x+ a,
x + b, the product is
x+a)x+b) = x2+(a+b)x+ab.
The product is x2 + 8x + 12
if atb =8,
ab = 12.
We require two numbers a, b whose product (ab) is 12 and sum (a + b) is 8.
It is easy to see that the numbers are 2 and 6 so
2 +8x+12 = (x+2)(x+6).

Example 1.22

Factorise x2 — 8x — 48.

Hereab= —48anda+b = - 8.

We require two factors of — 48 which when added give — 8.
Since the product of the two numbers is negative we require
one positive and one negative factor of — 48.

These factors
must add up
to -8

Write out the factors of — 48.

1 -1 2 -2 3 -3 4 4
—48 48 -24 24 -16 6 -12 12
Add  —47 47 -2 22 _—13 13 _8 8

The factors 4 and — 12 will do the trick.
So x2—8x—48 = (x+ 4)(x—12).

The procedure can be streamlined.

Example 1.23

Factorise x2 — 19x + 48.

We require two factors of + 48 which add up to — 19. Both factors are negative.
As before, we write down factors of + 48.

-1 -2 -3

—48 —24 =16

Add - 49 - 26 - 19
Stop here

Then x2-19x+48 = (x - 3)(x — 16).
The procedure is more complicated when the coefficient of x2 in the quadratic is not
equal to 1.
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Example 1.24
Factorise 6x2 + 7x + 2.
Now if 6x2+7x+2 = (ax+ b)(cx + d)

a, b, c,dto
be found
then 6x2+7x+2 = acx?+ (ad+ be)x + bd.

To match the two expressions, we then require
ac = 6, bd = 2and ad+bc=1.
We note that 12 = 6 X 2.
coefficient ) constant

of x? term
Now ad, bc are factors of abed (12) and they add up to 7.
Initially, we attempt to find two factors of 12 which add up to 7, in other words to find
ad and bc. It is easy to see that the factors are + 3 and + 4.

Then 6x2+7x+2 = 6x2+3x+4x+2
3Ix(2x+ 1) +2(2x+ 1)

e common factor

(3x +2)(2x + 1)

Split the 7x
into 3x + 4x

Summarising, we see that the procedure is essentially as follows :-
Procedure

To factorise a quadratic in x :-
(1) Mpltiply coefficient of x2 (6) by constant term (2). The quadratic may
(i1) Fll"ld two factors 'of the result of (i) which add to the involve another
coefficient of the term inx (3 +4 = 7). letter, of course
(111) Split the term in x into two terms giving four terms in all.
(1v) Factorise the four terms initally in pairs, then group factors.

Example 1.25
Factorise 5y2 — 8y — 4.

The expression is a quadratic in y.

Now 5 x -4 = =20
coefficient |/ constant
( of y° j( term J

We require two factors of — 20 which add to — 8 . One factor is positive, the other
negative.
Factors of — 20 are

=20 20 —10
Add -19 19 - etc
.. Factors are 2 and — 10.
Then 5y2-8y—4 = 5)2+2y—10y—4 w
= WSy +2)-2(5y+2) w
=0-2)(5r+2).

10
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Example 1.26
Factorise 6x2 — 16x + 10.
Now 6 x10 = 60 and we require two factors of 60 which add to — 16. Both factors of
60 are therefore negative. Factors are :-
-1 -2 -3 -4 =5 -6
-60 =30 =20 =15 =12 -—10
Add -61 -32 -23 -19 -17 -16

There is no need to

list all possibilities

if you can spot
the answer

Then 6x2 —16x+ 10 = 6x2 —6x — 10x + 10
= 6x(x— 1) = 10(x - 1)
= (6x—-10)(x - 1) or 23x—5)(x—1).

The essence of the method used in examples 1.25 — 1.26 is that the middle term may be
split into two terms. It should be noted that the order of splitting is not important.
Thus, referring to example 1.25 for instance, we may write alternatively

52 -8y—4 = 52— 10y+2y-4
Sy -2)+2y-2) = Gy +2)(y -2)
which is the answer given previously with the factors reversed.

1

Exercises 1.6

1. Factorise (i) x2+5x+4 (i) x2~5x+4 (iii) x2-3x -4
(iv) x2+23x+90 (v) x2—23x+90 (vi) x2+13x-90 (vii)) 2+1-6
(viii) 2—-1-6 (ix) p2+2p-63 (x) x2-3x—28.

2. Factorise (i) 2x2+3x+1 (i) 32+ 7t+4 (iii) 4x2 - 15x—4

(iv) 4x2 —7x -2 (v) 4x2—15x—25 (vi) 6x2 —x—2 (vii) 3y2 -5y -2
(viii) 82 —30y+7 (ix) 10x2-9x-9 (x) 7x2 +17x—12.

11



2.1

Solution of Equations

Chapter 2

Solution of Equations

A good deal of mathematical activity is concerned with the solution of equations.

Equations and identities
From our knowledge of multiplication of brackets it is easy to see that
(x+3)(x+5) = x2+8x+15.
The result is true for all values of x.
To underline this, we write
(x+3)(x+5) = x2+8x+ 15,
the additional line in = indicating the given relationship is an identity.
Other identities are
3(x+5) 3x2 + 15
and x(x-3) = x?-3x

Definition
An identity is a relationship involving a letter which is valid whatever number is
substituted for the letter.
The relationship x2 + 8x + 15 = 2x + 7 is not an identity : it is only valid if
certain values are susbstituted for x. Thus if x = - 2, both sides are equal to 3 and
if x = — 4, both sides are equal to — 1. In other words, the relationship is valid
when x = -2 or — 4.
However, if x = 1, the left hand side has value 24 and the right hand side has value
9. Thus the relationship doesn't hold when x = 1 and so cannot be an identity.
(Remember an identity holds for all values of x).
Again the relationship

x+9 =2x+5
is only valid when x = 4, both sides then having value 13.
These last relationships are examples of equations.

Check that it is
not valid
whenx =1

Definition
An equation is a relationship involving letter(s) which is valid only when certain
values are assigned to the letter(s).

12

Solution of Equations

Exercises 2.1

Classify the following as identities or equations.
(i) (x+3)(x2+3x+4) = B3+6x2+13x+12
(i) 2x-7 =x+3

(iil) x2 = =3x-2

(iv) 3x(x +6) = 3x2+ 18x

(V) (x+y)?2 = x2+2xy +3?

(vi) 3x+2(4y + 5x) = 3(2x + 10y)

(viD) (x+1)2 = x2+3x+2

(viii) (x—D(x+1) = x2 - 1.

Our interest in this chapter relates to equations.
If a number x is such that

6x = 54
it is not difficult to see that the equation is valid when x = 9, and is not valid for
any other value of x. We say that the equation is satisfied by x = 9 or that the
solution of the equation is x =9. When we decide that x = 9 satisfies the equation
i.e. we have found the value of x, we say we have solved the equation.

Definition
Finding the value(s) to be assigned to the letter(s) so that a relationship is valid is
known as solving the equation.

We shall solve some different types of equations in this chapter. It is useful
before doing so to state some of the algebraic rules which may assist us.

Manipulation Rules for use with equations
In the following, a, b, ¢, d are real numbers.

(i) If ba = bc then a = ¢, i.e. both sides may be divided
by the same number; similarly for multiplication.

(i) Ifa+c =a+dthenc=d
1.e. the same number may be subtracted from both
sides.
A similar rule applies for addition.

(1i1) If @b = 0 then either a = 0 or & = 0 or both are zero.
However, if ab = 6,

it does not follow
thata =6 or b = 6.

(iv) a(b+c)=ab+ac and —d(a—b)=-da+db.

13



2.2

Solution of Equations

Linear equations
The simplest type of equation is the linear equation where letters occur singly and
to the first power. We illustrate the method of solution by two examples.

Example 2.1
Solve 2(x — 1) = 6(x — 5) —2(x - 3)
Remove brackets and note any changes of sign (Rule iv)
2x-2 = 6x-30-2x+6

50 2x -2 = 4x-24.
Collect all terms involving x to one side, all other terms to the other side.
Rule (ii) enables us to do this by adding — 2x and +24 to both sides :

—-2+4+24 = 4x - 2x.

22 = 2x.
22 .
x = — =11 rule(i).
2
Example 2.2

At a club dinner there were 10 more members than non-members. The members
paid £7.00, the non-members paid £5.00 and the total receipts were £310. How
many members and non-members were at the dinner?

Let the number of members be x so that the number of non-members is x — 10.
Then the members pay £7x and the non-members pay £5(x — 10), and the total
amount is £310.

Then 7x+ 5(x-10) = 310.

7x+5x-50 = 310 (Rule (iv))
12x - 50 = 310.
12x = 310+50 = 360 (Rule (i1), add 50 to both sides)
360
= — = 30. Rule (i
> (Rule (1))

.. Number of members is 30, number of non-members is 20.
(check 7 x 30 + 5 x 20 =310).

Exercises 2.2
Solve the following equations :-

(1) 42y -5) = 32y +8)

Rule (ii),
clear fractions
by multiplying
by3x4=12
throughout

o 2a-5 3a-1 3
(i1) — = =
3 4 2

sy X 1-x
(1) —+ a=x _ x—-22. Multiply
7 th;ougshm;tsby
x5=

The perimeter of a rectangular field is 500 m. If one of the adjacent sides is 20m
longer than the other, find the area of the field.

14

2.3

Solution of Equations

At present, I am three times as old as my son. Five years ago I was four times as
old as my son. How old is my son now?

A bookseller buys 120 copies of a certain paperback. He sells some at the
published price of £5.50 and the remainder in the sales season at £2.50 each. If
the total receipts for the paperbacks are £510, find the number of paper backs at
each price.

A man walks from one village to another at an average speed of 4 km an hour.
On the return journey he walks at an average speed of 5 km an hour. The time
taken for the double journey was 2 hours 15 mins. Find the distance between the
villages.

The weekly wage of two people working in a factory are £180 and £244
respectively. It was agreed to increase the two wages by the same amount so that
the higher wage was 4/3 of the lower wage. What was the increase given?

A bus carries 28 passengers, some with 80 p tickets and the remainder with 95 p
tickets. If the total receipts are £25.85, find the number of 95 p tickets.

Quadratic equations

An equation of the form

' ax2+bx+c =0, (a=0)

where a, b and ¢ are real numbers is called a quadratic equation.

Thus 2x2 + 3x+ 5=10 and 4x2 — 9x + 7 = 0 are quadratic equations but 2x + 9 =0
is not (the latter is a linear equation, of course).

Being equations, quadratic equations are only valid if particular numerical values
are assigned to x. In fact, quadratic equations hold for at most two values of x.
Before working through some examples, we note rule (iii) given earlier in a
different notation :-

If af = 0 then either o = 0 or § = 0 or both o and {3 equal zero.

Example 2.3
Solve 2x2 - 11x+12 = 0.
The left hand side factorises into
(2x-3)(x—4) = 0 (check).
Then from rule (iii), 2x—3 = 0 or x—4 = 0.

(Note that both brackets cannot be equal to zero
simultaneously).

Then 2x = 3 so x =

Il

3
2
or x—4 =03s0x =4
3
2

Solution is X

15
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Example 2.4
D c A consequence of Pythagoras' Theorem is that the square
on the diagonal of a rectangle is equal to the sum of the
13 17-x Squares on two adjacent sides. The diagonal of a particular
rectangle is 13 cm and the sum of the lengths of two
A B adjacent sides is 17 cm. Find the possible values of x, the
x length of AB in cm, as shown in the diagram.
Then by Pythagoras' Theorem,
X2+ (17 -x)2 = 132,
2+ (17 -x)(17-x) = 169
S0 x2+289 —34x+x2 = 169.
Grouping terms, we obtain by means of rule (1)
2x2 - 34x+120 =0
or x2—-17x+ 60 = 0.
After factorisation, this becomes

(x—5)x—-12) =0 (check).
. _ - =0 gi
. x=5 =0orx—12 =0 D A
SO x =5o0rx=12.

When the quadratic doesn't factorise, we first complete the square to solve the
equation.

Remember to

divide throughout
by a number.

Example 2.5
Solve the equation x2 +3x+1 = 0.
The expression doesn't factorise. However we note that

2 2
x2+3x+1 = x+E +1- 3
2 2
3 )2 5
= |x+=| -,

2 4
as can easily be verified by multiplying out the bracket. This particular method of
rewriting is called completing the square. Then the equation becomes

2
(x+§j 22 =0,
2 4

-

ENG RN

Remember any

so that X+ §_ = + é positive number
2 Yy’ has two square
roots, + and -,
x = - 3 i\/E .
2 4
x = ———31+\/E or —2—\/_5 in surd form,
2 4 2 4
or x = —0.382 or —2.618, correct to 3 decimal places.
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We explore completion of the square in more detail. Now

a a
( bY ¢ b
a| x+—| +—— .
2a a 4a’

2
Note that —b— in the bracket (x + -b—} is one half the coefficient of x in the bracket,

b c
ax2+bx+c = a(x2 + -+ —

a 2a
2

2 2
by . :
and — must be subtracted because [x + ———j introduces a term on expansion,

4a 2a
which must be cancelled out.

4a?

Example 2.6

Solve the quadratic equation
ax2+bx+c =0,

giving the answer in terms of a, b and c.
ax2+bx+c =0

You may divide
by the number a
since a # 0.

b c
or 2+ —x+— =0.
a a

Complete the square to obtain
2 2

[x + i) +E- b . 0.
2a a 4a’

( bjz > ¢ b*-4ac

X4+ —
2a

x+— =% =
2a 4q° 2a

x =-——*x

so the two solutions are

—bi\/b2 —4ac

x =

2a
Summary
The two solutions of

ax2+bx+c =0 (a#0)
. ~b£b? —4dac
are given by x = 5 :
a

This result is known as the quadratic formula and may be used directly to solve

quadratic equations.
The solutions of an equation are called the roots of the equation.

17
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Example 2.7

Solve the following quadratic equations by using the formula.
(i) 2+3x-2 =0

(i) x2+4.5x+5.0625 = 0

(iil) 2x2+3x+2 = 0.

i) x2+3x-2 =0 —b+ b -4dac
xX=
—3+4/32 —4(1)(-2) 2a

x =
2 azl, b:3, c=—2
_ 334948 33417
2 2
so the two roots are 'roots' means
34 \/ﬁ 3 \/ﬁ ) 'solutions’
x = 5 and 5 in surd form.

(i) x2 + 4.5x + 5.0625 = 0. —
4.5+4/4.5% — 4(1)(5.0625)
2

X =

~4.54:/0
2
The two roots are equal.
(i) 2x2 +3x+2 = 0.

~3+4/3% —4(2)(2
x = 2 (2)@) (a=2,b=3,c=2)
-3++-7
—
No answers exist in our usual (‘real') number system because we

= —-2.25 (twice).

SO x =

can't find +—7 in that number system. In fact, we can't find the Square any
square root of any — number in that system. To convince I‘:;l_ngﬁ’fﬁ;

yourself, try to find +/=7 on your calculator. result is +

Cases (1), (ii), (ii1) indicate there are at least three possibilities (in
fact, there are only three) when we attempt to solve quadratic

equations, namely
. . . —3x+
(1) two different real answers exist, —3——2—-£

(i1) one real answer exists, i.e. the two answers coincide (— 2.25).
344/

(111) real answers do not exist, —4—7

A look back shows that the various cases arise when
(i) the number under the square root is +,

(i1) the number under the square root is 0,

(111) the number under the square root is —.

18
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Nature of the roots of a quadratic equation

For the general quadratic equation
ax2+bx+c =0

~bt~b* —4ac

we have x = and

2a
either (i) real unequal roots (b2 — 4ac > 0)
or (i) equal roots (b2 — 4ac = 0)
or (iii) no real roots (b2 — 4ac < 0)

exist according as Vb? —4ac is greater than, equal to, or less than 0.

The quantity b> — 4ac is known as the discriminant of the quadratic function
given by f(x) =ax’ +bx+c.

Example 2.8
Show that if 4x2+ (k+ 3)x +5 = 0 has two unequal roots, then k2 + 6k — 71 is
positive.

Inthiscasea=4,b=k+3,c=5.
Then case (i) applies if (k + 3)2 — 4(4)(5) is positive
or (k + 3)2 — 80 is positive.

k2 + 6k+ 9 — 80 is positive

$O k2 + 6k — 71 is positive.

Example 2.9
Find the values of k if the equation x2 + kx + k + 3 = 0 has equal roots. Find the
values of x for those values of .
The condition for equal (coincident) roots is
—-4)k+3) =0 (a=1,b=kc=k+3)
or k2 —4k-12 = 0.
This is a quadratic equation for & which can be solved by factorising or by using the
formula. Then either
k2-4k-12 =0

gives (k+2)k—-6) =0
SO k =-=2,6.
—(=4) £ (-4)? = 4(1)(-12
N k:()J(:)Z()()
_ 4x464 418
2 2
and k= 4+8 or 4“—8.
2 2

L k = 6 or —2 as before.
We substitute the values of & in turn into the original quadratic equation.
When & = 6, the quadratic equation becomes

2+6x+9 =0
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which factorises into

x+3)2 =0
and x = —3 (twice) (or use the formula).
When k= - 2 the quadratic equation becomes
x2-2x+1 =0
$0 x-1D2 =0
and x =1 (twice) (or use the formula).

Exercises 2.3

Solve the following quadratic equations by first factorising :-
@ x2-6x-7=0 (i) x2-13x+12 =0

(iil) 2x2-17x+8 = 0 (iv) x2+9x+20 = 0

(V) 3x2-7x-20 = 0 (vi) 5x2+32x+12 = 0.

Use the quadratic formula to solve the following, giving your answers correct to two
decimal places :-
(i) x2-3x-2=0 () x2+5x+2 =0
(iii) 2x2-5x= 2 (iv) x2-12x+4 =0

(v) 17.64x2-21x+ 625 = 0 (vi) x2—4x+5 = 0.

Determine for which of the following equations there are (i) two unequal 'real' roots

(i1) equal roots (iii) no 'real' roots.

(@) 3x2+3x-4 =0 (b) 6x2+3x+4 =0

() 2x2-3x-1 =0 (d) 2.5x2+4x+1 =0

(€) 3.5x2+75x+4 =0  (f) 402x2 +4aPx+p2 = 0.

Find the value of « if the equation (2a — 1)x2 —2ax + 1 = 0 has equal roots. Solve
the equation for that single value of x.

Show that if there are no real roots of the quadratic equation
b+ 1)x2-3bx+b = 0
then b2 —4b is negative.

.. 1 :
The formula for the sum of the first # positive numbers is En(n +1). Find n, the

number of numbers, if the sum is 528.

The area of a rectangle is 4 and the sum of two adjacent sides is S. Show that $2 is
greater than or equal to 44. Hint: let the sides be x and § — x.

We complete our discussion of quadratic equations by considering another use of
completing the square.

20
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Maximum and minimum values of quadratic functions

Here we consider quadratic functions,
i.e. those defined by
f(x)=ax’ + bx+c, where a#0.

We saw earlier, when discussing completing
the square, that

2 5 We can divide
P b C b : 0
ax" +bx+c=a|x+— | +——— Oy a since a # U.
2a a 4a*
K bjz 4ac—b2} iscrimi
=al| x+—| +———
2a 447 of course.

Maximum or minimum values of quadratic functions are easily found by completing
the square.

Example 2.10

By completing the square in f(x)=2x? —3x+5, Make coefficient

find its minimum value. of X’ unity.
) , 3 5
Now f(x):2x -3x+5=2/x" ——x+—
2 Half the coefficient
r 2 of x in the squared
=2 x—-3— +§__9_ bracket.
4 2 16
=2 x— El + 31
4 16
2
=2 x— El + —3—1 .
4 8

It can never be <0
because 2 >0

2 2
We note that 2[)6—%] >0 and f(x):z[x_ij +2

and (x - z)2 > 0.
4

) 3Y . 3
has minimum value when 2[x - Z) =0, 1.e. when x= Z

: .. .31
The corresponding minimum value is R
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Example 2.11

By completing the square in f(x)=-3x> — 5x + 7, find its maximum value.

f(x):—3x2 -5x+7

B ( sz 109
==3x+—=| + .
6

Note that the coefficient of x’
in bracket must be
+ 1. Watch your signs!

12
5 2
Since — 3(x + —6—j <0, the maximum value of f(x) occurs when
2

—3(x+—5—j =0, 1.e. when x:—é.
6 6

The corresponding maximum value is %9—

The cases considered in examples 2.10 and 2.11 were
special cases of

5 ( b jz 4ac — b*
ax" +bx+c=al| x+— | +———|.
2a 4a
In example 2.10, a >0 and we obtained a minimum value.

In example 2.11, a <0 and we obtained a maximum value.

These examples illustrate a general result.

Note that we didn’t
use this formula but
worked out each case.

For the quadratic function
fx)=ax* +bx+c  (a#0)
(1) when a >0, f (x) has a minimum value,

(11) when a<0, f (x) has a maximum value.
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Exercises 2.4
Find for which values of x the following quadratic functions have maximum or
minimum values, giving the maximum and minimum values.

1) x* +4x+7 (i1) —x +4x+7
(i) —x*-3x+1 (iv)  4x>+6x-9
v) 2x% —x+7 (vi) —4x’+3x+1
(vi)) 9+x-x (viii) 2x-x’

ix) x*+4 (x) 9—x°.

2.5 “Simultaneous linear equations

The linear and quadratic equations considered earlier contained only one letter, the
problem being to find the number(s) to be assigned to the letter so that the equation
was satisfied. Often problems involving two or more letters arise, such problems
involving two or more equations. It is a fact that to make progress we require as many
equations as there are unknown letters e.g. two equations for two letters and so on. In
this section we consider two linear equations in two unknowns. Since the equations
must both be satisfied by the numerical values to be found, we refer to simultaneous
(linear) equations. The method is illustrated by a number of worked examples.

Example 2.12
Solve the equations
Ix+y =29, (1)

4x+3y = 47. (2)
We arrange to have the same coefficient in both
equations associated with the same letter, in this case
y. Thus multiply (1) by 3 and rewrite the equations to
obtain

9x+3y =87, (1)

4x + 3y 47. (2)

These are linear
equations because
x and y occur singly
and to the first power.

Coefficients of x could
have been made equal
by x (1) by 4, (2) by 3.
The common coefficient
of x is then 12.

‘When the coefficients
of a letter are the

same we subtract,

i

Subtract (2) from (1'), thus eliminating y.

5x =40
40 . :
SO x = < = 8. (Rule (1), section 2.1)

Substitute x = 8 into one of the above equations, say (1). Then (1) becomes
3x8+y =129
SO y =29-24= 5, (Rule (i1), section 2.1)
It is useful to check the values of x and y by substitution in the equation other than the
one used to find x. We used (1) so we check in (2).
Then with x =8, y =5, (2) becomes
4x8+3x5 =47 (checks).
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Example 2.13
Solve 3x+2y =8, (1)
2x-3y = -3.(2)

We could arrange to have the same coefficient of x in (1) and (2). However, here we
make the coefficients for y equal in magnitude but opposite in sign. Multiply (1) by 3,
(2) by 2 to obtain
O9x+6y =24, (1)
4x -6y = —6.(2")
Add (1') and (2') to eliminate y.

When the coefficients of
a letter are equal but
opposite in sign we add

Then 13x = 18. the equations.
_ 18
13°
Substitute for x in (1). Then
3 18 +2y =38
8 E Yy oo Resist the temptation
to express x and y as
2 :8—3x}—8—=& decimals unless
3 13 13 decimal values
25 are asked for.
y = 1—3"
Substitute in (2).
2><l§—3><gé ST (checks).
13 13 13 13

The method whereby coefficients of letters are made equal (but possibly of different
sign) is widely used in the solution of simultaneous linear equations. Another popular
method (which we shall also require for the next section) is substitution.

Example 2.14
a b

Solve ——— =1, 1
5 s (1)
a —% =8 (2)
; ; Find any letter in
We find a in terms of bb from equation (2). Then
a =8+ —.
3

Substitute this value of a into (1). Thus

ar2 oy
6 5
b to_s
6 5

Clear the fractions by multiplying throughout by 30 (any number divisible by 5 and 6
will do).
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o 5b—-6b = -90
SO -b =-90
and b = ——919 = 90.
Substitution of the value for b in (2) gives

90

a-— =8

3
or a = 8+30 = 38
Check in (1): ?——9592 19-18 = 1 (checks).

Example 2.15

In the equation y = mx + ¢ it is known that the equation is satisfied by two pairs of x
and y, namely x=3 y=10

and x=-5 y=2

Find the values of m and c.

When x =3, y=10.
10 = 3m+ec. (1)
Whenx=-5,y=2.
2 =-Sm+c. (2

The equations are easily solved by both methods considered earlier.

Equal coefficients method
The coefficients of ¢ in (1) and (2) are equal.

Subtract (2) from (1)
Then 8 =3m—(-5m)
SO 8 = 8m.
s m = 1.
Substitute this value for m in (1)
10 =3x1+ec.
c =17.
Check in (2)
-5S5m+c =-5x1+7 =2 (checks).
Substitution
From (1) ¢ = 10-3m.
Substitute into (2).
2 =~-5m+10-3m.
-8 = —8m
-8
SO m = — =1
-8

and we find ¢ by substitution as before.
Whilst the equal coefficient method may appear to be the better method in Example
2.15, it is helpful to possess facility in both methods.
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Exercises 2.5
Solve the following simultaneous linear equations :-

1) 3x-2y =7 (i) 5x+3y = 4
4x +3y = 15 Ix+5y =-4

(i) a-b =35 (iv) 4(1-x) = Tx+8y
4a—-b = 2a+13 6x+y+18 = 0.

Two numbers a and b are such that the sum of 3a and 25 is 26, while the sum of a and
2bis 14. What are the numbers?

The perimeter of a rectangular lawn is 64 m. It is reduced in size so that the length is %
and the breadth is % of the original dimensions. The perimeter is then 50 m. What
were the original length and breadth?

Find m and cify=mx + cand y =4 when x =3, and y =9 when x = 5.

A polynomial function is given by ax? + bx + 2, where a and b are unknown. Given
that the values of the function are 16 and 4 when x = 2 and 3 respectively, find the
values of @ and b.

Two polynomials are given by (i) ax2+ bx + 4 and (ii) 2ax? — bx + 1. Given that (i) and
(i1) are equal when x = 2, 3, find the values of @ and 5.

Ifs = wr+ %az‘z, where u and a are constants and s = 60 and 32 when ¢ =1 and 4

respectively, find u and a.

If v=u+ at, where u and a are constants and v = 13, 29 when ¢ = 3, 8 respectively, find
u and a.

The solution of simultaneous equations: one linear, one quadratic
Terms in the unknowns x and y of the form x2, xy, y2 are said to be of second degree.
The degree of a term is shown either by its index, (for one letter) or, if it contains two
letters, by the sum of the indices.

In this section we consider one linear equation which involves terms of degree one, and
a quadratic equation which involves terms of degree 2 and possibly terms of degree
one.

Example 2.16
Solve the equations
2x+3y =1, (1)
3x2 + 492 + 6xy 5. (2)

The procedure is to use the first equation (the linear one) to eliminate one of the
variables.
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-3y

Thus from first, x= 5

Substitute in (2).
1-3yY ,  (1-3y
J—=| +4y° +6| —— = 5.
( 2 ] g ( 2 )
2
3(L%+9—yj+4yz +3(1=-3y)y

Clear the fractions by multiplying throughout by 4.
31-6y+92)+4 x42 +4x3(1 =3y)y = 4x5.
Remove brackets.
318y +27y2 + 16y2 + 12y — 36y2 = 20.
So 2—6y~17 =0

6tV36+4x7x17

5.

Il

T 14
_ 654512 641642
14 14
_ 3,82
777
Wheny=-3—+§£,
7 7
11 3 82
X = ——=x3 —+—
2 2 77
_1o9 1242 1 122
2 14 7 7 7
Wheny=§~—8—\—/§-,
7 7
v =2 1o a2 1

The solutions are the pairs of numbers

1 1242 3 82
==, y=I4+0

There is no need to
express the answer

7 7 7 7 in decimal foll;md if

are t t
- __1_ + 1_2“\/2 — i _ 8\/5 }éloouso, aﬁl?xoisgheyos
7 7 ’ Y 7 7 may wish to do so.

Example 2.17
Find the values of & such that
2y—x =2 (1)
and x2+3y2+kc—10y+29 = 0 (2)
are satisfied by only one pair of values of x and y for each value of k. Find the pairs of
values of x and y for those values of k.
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From (1), x = 2y-2.
Substitute in (2).
(2y =22 +3y2+k(2y-2)-10y+29 = 0.
" 4y2 -8y +4+3y2+2ky—2k—10y+29 = 0.
502+ (2k—-18)y+33 -2k = 0.
There is only one value of y if
(2k—18)2 = 4 x 5(33 - 2k)
or (k—9)2 = 5(33 - 2k).
: k2 —18k+81 = 165- 10k
S0 k2 -8k-84 = 0.
(k+t6)k-14) =0
and k=-6or k = 14
When k = — 6, the equation (2') for y becomes
592+ (2x — 6 —18)y +33 - 2(- 6) = 0.
59230y +45 =0
or y2—6y+9 =0,
»-32% =0
and y =3 (twice).
From (1), x =2y—-2=2x3-2=4.
When k = 14, the equation (2') for y becomes
592+ (2x14-18)y+33-2(14) =0

or 592+ 10y+5 = 0.

(2)

S y2+2y+1 =0

SO @+1?2 =0

and y = =1 (twice).

From (1), x =2p-2=2x(-1)-2 = - 4.

Thus k= -6, pairis (4, 3)
k= 14, pair is (-4, —1).

Exercises 2.6

Solve the following simultaneous equations :-

i x+ty=2 (i1) a—>b
x2—xy = 60 3a2 — ab - b?
(iii) 2x+y = 30 (iv) 2a-b =
xy = 52 5a2 +3ab =

(v) 2x2-5x—4xy = 60, 3x+y = 9
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2 2
: X7y
vi) x -2y = &8, —+— =5
(vi) y TR
R | . .
(vil) —+— = — %, x—3y = 2 (Hint : multiply the first by xy).
Xy

Find the values of k if the following sets of simultaneous equations are satisfied by
single pairs of x and y :-

() x+ky =3, x2+32+xy~-9 =0

(i) x+y =5, 2+y2+2x+k =0

(i) 2x+y = 4, x2+y2 +dkx +4 = 0.

Determine whether the following sets of simultaneous equations possess 'real’ solutions:-
() 3x+y =4, 2+3y2+xp+5=0

(i) x =3y+2, 2+xy+9 =0

(iii) 2x+3y+7 = 0, x2 - 6x+y2—8y—24 = 0.
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3.1

Sequences and Series

Chapter 3

Sequences and Series

The derivation of mathematical results often involves the summation of series. In
this chapter we consider the summation of two particular series. Before
considering summation, we first consider sequences.

Sequences

We consider the following successions of numbers :-

(1) 3,9,27,81

(i) 1,3,5,7, ...

(i) 13,13, 14,14, ..

av) 1,-1,1,-1,...

(v) —10,11,-12,13,...

The succession in (i) differs from the others in that it terminates. In contrast, the
dots in (ii) - (v) indicate that those successions never end. Much of our discussion
in this chapter relates to infinite successions, i.e. those that are never ending,.

All the successions have a common feature: the number at any stage is determined

by some definite rule. Thus the fifth value in (ii) is 9, the 6th value in (i1l) is 14,
and the 9th value in (iv) is 1.

Exercise 3.1
What is the sixth value in (v)?

Definition

A sequence is a succession of numbers whose members are determined by some
definite Tule. A non-terminating sequence is called an infinite sequence,
otherwise it is called a finite sequence.

It is convenient to summarise sequence rules by formulae whenever possible.

Such rules enable us to write down the n'th (general) term in a sequence.

Denoting the general sequence as
a1, 42, A3, oo Uy, oo
we see that for (i) a; =3, a,=32%,and a,=3" (n<4)
(i) ay=1,ap=3,and a,=2n-1
1
n+1
(iv) a;=1,a,=-1,and a,=(-1)"*!
(v) a;=-10,a, =11, and a, = (-1)"(n+9)

(1) ay = 1%, ap = 1%, and a,=1+
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(2)

(b)

(©)

Sequences and Series

These sequences demonstrate different types of behaviour as we consider more
and more terms.

Example 3.1

In (11), @, = 2n—1.

If n increases indefinitely then a,, increases indefinitely.
We write as n — o, a,, = ©, where '— «' is short hand for 'increases indefinitely'.

Q1000 = 1999,

10000 =19999

Example 3.2
1
In (1), a, =1+ ——.
n+1

becomes smaller and

If n increases indefinitely then
n+1

smaller so that a,, gets closer and closer to 1.
We write as n — 0, a,, = 1.

Example 3.3
In (iv), a, = (-1)"*1.
As n increases indefinitely the terms become alternatively — 1 and 1.

Example 3.4

In (v), a,, = (=1)*(n +9).

As n — oo, the terms change sign alternatively but, in contrast to Ex 3.3, increase
in magnitude.

These various patterns can be drawn together into definitions.

Definition
A sequence ay, ap, az, . . . ., 4, . . . is said to be divergent if a, — c (or — ) as
n—> .

A sequence is said to be convergent if a, — / (some unique fixed number) as
n — co. The number / is said to be the limit of the sequence. In example 3.2, /= 1.

A sequence which is neither convergent or divergent is said to be oscillatory.
Example 3.3 concerns an oscillatory sequence whose values (—1,1) recur at fixed
intervals. Such a sequence is a periodic oscillatory series.

Example 3.4 gives a sequence whose signs alternate and does not converge (no
unique limit) and does not diverge to one of + o or — 0. Such a sequence is a
non-periodic oscillatory series.

N.B. Some authors regard all sequences which do not converge to be divergent.
Oscillatory sequences as defined here would then be termed divergent.
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Summary
Type e.g.
Convergent : sequence tends to fixed unique limit. a,=1+1/n
. e.g.
Divergent : sequence tends to + oo or — co. a,=2n-1
ora,=2-3n

Oscillatory periodic : neither convergent or divergent and .
some terms recur. a,= i-i)

Oscillatory non-periodic : neither convergent or e.g.
divergent and terms do not recur. a, = (-1)(n+9)

Exercises 3.2
In the following questions, the limits of the sequences should be stated where
appropriate.
Write down the 5Sth, 8th and sth terms of the following sequences
1,2,3,4,...
Is this sequence convergent, divergent or oscillatory?
Write down the 6th and nth terms of the sequence
Lttg
Is this sequence convergent, divergent or oscillatory?
Write down the nth term of the sequence
4,16, 64,256, . ..
Is this sequence convergent?
Is the sequence L L1 1

27 4°8° 167"

Classify the following sequence
-1,0,1,-1,0,1, ...

as divergent, convergent or oscillatory.

Is the oscillatory sequence

1, %,%, 1, %,%, ... periodic?

A sequence is defined in terms of two positive numbers @ and d as
a,atd,a+2d,a+3d, ...

Is the sequence convergent, divergent or oscillatory?

Is the conclusion in Q7 changed if one or other (or both) of @ and d is negative?

The nth term of a sequence is
ay = (- 1)+ L.

State whether the sequence is convergent, divergent or oscillatory.

Write down the nth term of the sequence

oscillatory?

x,x2,x3, ...
State whether the sequence is convergent, divergent or oscillatory when
() x= 1 (i) x=—1 (i) x=2 (iv) x=-2 (v) x=0.
Write down the nth term of the sequence

L1L,1,1,...

Is the sequence convergent?
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As mentioned earlier, the criterion for convergence of a sequence is the existence
of a unique, finite limit. In the next section we consider further the concept of
limit.

Limits and their manipulation
For relatively simple sequences the limits are easily found.

Example 3.5
Write down the unique limits as n — oo, where they exist, of the sequences :-

@ a = — 0) by =341 (9 ¢ = 1+
n

. 1 . . 1 :
(a) The limit of —5 18 easily seen to be 0 because — can be made as small (i.e.
n n

as close to 0) as we please by taking » sufficiently large. Thus

1
lim T 0. Limit is usually
n—on abbreviated as lim

(b) 3n + 1 increases indefinitely as n — oo
ie. 3n+1—>0 as n— oo,
.. no unique limit exists.

(-D"

(¢) The limit of 1 + ——— 1is 1 because the

n
(-D"
n

oo is not a value but
denotes the process of
increasing indefinitely

becomes smaller and smaller as n — oo.

. . -1)"
re. lim 1 +(———2- = 1.
n—o n
To evaluate the limits of more complicated sequence we use (without proof) some

standard results and rules.

term

Standard results for limits

lim—l—v——‘O if a > 0.
n—w0 pn
The limiti1s 1 if a = 0 but doesn't exist if g < 0.

lim (any constant C) = C.
H—>0

lim (- 1) doesn't exist.
n—>0

Rules for manipulation of limits

If lim g, = 1, lim b, = m and o and f are
n—0 n—w

any constants, then

lim (a,+b,)=1+m.

n—0

lim (a,-b,) = [—-m.

H—>0

Rigorous proofs of
these seemingly obvious
results are not trivial.
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(vi)
(vii)

(viii)

(ix)
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lim (aa,) = ol
n—>0

lim (aa, + Bb,) = ol + Pm.
n—®

lim a,b, = Im.

n—»0
lim o = L as long as m # 0.
n—o0 bn m
Example 3.6
Find lim n+6 :
n—owo 2n+8
- 1+ (divide top and J
N li = i
o nl—r>rolo 2n+38 /11—1;130 2+ % bottom by »
tim (1 + )
= 2= (Rule ix)
lim 2+ %)
n—x0 n
= % (Rules iv, ii and 1 twice).
Example 3.7 -~
14 Always divide top and
P bottom by the largest
lim _3nt4 ) L lim : i 3 power of n, n2 in this case.
n—owo \4n’ +5n+3 n—0 4"",1“*'_2
n
lim (i + -f*—j
H—>0 n 112
= (Rule ix)
lim [4 NE %j
11— n
= % =0 (Rules iv and i for top and bottom)
Example 3.8
.6 : . .6 .
lim — + 3(= 1)" doesn't exist, because whilst lim — = 0, lim (- 1)" doesn't
n—w N n—w N H—®
exist.

Exercises 3.3
Find the limits in the following cases, where they exist:-

L1 on—1 o on—1 . ont -1
@ (i) Z (iii) (iv) =
n+l n+l n°+1 n°+1
n +3n% +5 ) n* 1307 46
V) i)
n +4n- +3n+6 n +2n° +4n+9
§ 1\ —1 n_ 2 1 - -1 n_ 2 -1
(vi1) ( 21) " (viii) L_)zn—+ (1x) (——lnz—
n°+1 n° -1 (-D"n” +1
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Determine whether the sequences with the given general terms converge:-

2 3 2

@) 23n+2 (b) n2+3n+2 ©) n2+3n +2

n +3n-4 n°+3n-4 n°-+3n—4
@) nt+n+1 © (n+2)(n+3) (f) (n+D)(n+2)

2 2
@ (n 2+10)(n +9) (h) (n+l)(n+2)(n+3).

(n? +1)(n+2) (n-1(n-2)(n-3)
Series

When the terms of a sequence are added or subtracted, the resulting expression 1s
called a series.
For the sequence

L1
2°3 n
we can construct a series such as
1 1 1 1
l+=—+—+...+—+..,0r |————— ———,
n 2 3 n
or l——1—+l—l+...+(—l)”‘1l+...
2 3 4 n

The % notation
When the general term of a series is known, the series can be represented more

. . 1 ) 1 1
concisely. Thusif a, = —, the series 1+ —+—+... ) g
r 2 3 It is convenient

to use the letter
r instead of n.

- 1

can be represented as —.

P Z} 5

The X is an elongated S which denotes sum and the r = 1, o is interpreted as
allowing r to take values 1,2, 3, . ..

20
1 1 1
If the series terminates e.g. 1 + —+ —+...+~— it may be represented as —, the
g 2 3 20 Y P Z

r=1

interpretation being that » takes the values 1, 2, 3, . . ., 20.
The above representation of a series is known as the sigma form.

2 is pronounced

. sigma.
Exercises 3.4 &

Write down 1+ —12— + ——li—+. .. insigma form.
23

. 1,1 . . (=1
Write down 1 — > + 37 insigma form. The rthterm is ——

1

: 1 o .
Write down 1 + 5 + Z+ in sigma form. The(rthterm is 2,—1_r

Write down2 +4 +8 + ...+ 128 in sigma form.
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Writedown 1 +3+ 5+ 7+ ...+ 39 in sigma form.

Write down 1%+2§+ 3211-+... in sigma form.

Partial sums of series

For an infinite series such as

1 1 1
S = —+—+—
1.2 2.3 34
we can construct in turn sums of the first term, the first two terms, the first three

terms and so on.

Then  § = = = L.
1.2 2
1 2
S2 = L+__1_. — _1_.+_ = —,
1.2 23 2 6 3
1 1 1 2 1 3
S = —+—+— = —+— = —.
1.2 23 34 3 12 4

It turns out that the sum of the first » terms is given by

n
S = —. You are not expected
n+l to derive this.

In effect, we have a sequence formed by the partial sums of the original series:-
1 2 3 n

2737 47 e

where, in sigma notation, the nth partial sum is

n

Sn = Zr(rJrl)'

r=1

Definition
The partial sums of a series is the sequence of sums formed in turn from the first,

first two, first three terms and so on.

Example 3.9

Given § = 1+2+3+4+...

we see that the first four partial sums are
S1:1,S2:3,S3=6,S4:10.

In fact the nth partial sum is

S = n(n+1) We shall prove this later.
n .

2
The sequence of the partial sums is therefore
1,36, ... 1t
2 3 2 2 b

Thus from the above, it is clear that, given a series, in principle at least, a
sequence of partial sums may be obtained.
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In sections 3.1, 3.2 we saw that the sequences can display various types of long
term behaviour : convergence, divergence, oscillatory behaviour.
Here we apply such considerations to sequences of partial sums.

Example 3.10

] 1
Given S = —+L+—l—+...
1.2 2.3 34

]

= r(r+1)’

or S =

the sequence of associated partial sums was seen to be
1 23 n

2: 3: 4,-~-,n+1,....

Now the nth partial sum S, = —nI has limit given by
n—+

lim
n—oon+1 n—)ool—{—,—

Thus 1n this case the sequence of partial sums converges.

Example 3.11
The partial sums for

S = 1+2+3+... form thesequence 1, 3, 6, ...,n—(n—zilz,...

As n— o, §, — o so that the sequence of partial sums is divergent.

Examples 3.10 and 3.11 indicate different types of long term behaviour of
sequences of partial sums formed from series.

Definition

A series is convergent (divergent, oscillatory) if the sequence of partial sums
formed is convergent (divergent, oscillatory).

From the definition, we see that the series in 3.10 and 3.11 are convergent and
divergent respectively.

Exercises 3.5
The nth partial sum of the series _

S =1+3+5+7+...2n+1+...
is given by S, = n2. Is the series convergent?
The nth partial sum of the series

1 1 1 . 1
S = l4=4+—+—+". +...
4_ 8 2)‘1—1

. 1 .
is given by §,= 2 - -2-”—_—1- Is the series convergent?
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Given S =3+9+27+...+3"+. ..
and the nth partial sum S, = —%(3” —1), state whether the series converges or

diverges.
4y

Qr-)Q2r+1)(2r+3)

The nth partial sum of the series whose r th term is

. 1 4dn+3
is given by S, = —- .
2 2(2n+1)(2n+3)

In this question x denotes some fixed real number. It is known that the nth partial

Is the series convergent?

ee]

sum for the series § = Z !
= (I+x)[1+(r+1)x]
. . n
18 b S, = )
sven oy & (1+x)[1+(n+1)x]

Show that the series is convergent, whatever the value of x,

aslongasx#0or —1.

In this question a denotes some fixed real number. Given that for the series
® r—1

a . .
S = , the nth partial sum is given by
Z(1+af—‘)(1+a’)

r=1

s, = 1 l_ a
1-a|2 1+4"

show that the series converges for any value of @ other than 1.
3 4 5

+ + +...
1.2.4 235 -34.6
write down the rth term and the nth partial sum §,, in sigma form.
. 29 1 3 4
Given  §, = —- - -
30 n+3 2(n+2)(n+3) 3(n+1)(n+2)(n+3)

find Iim §,. Is the series convergent?
n—©

For the series S =

Given that the nth partial sum S, of a series is given by §,, = l—l—’ find the nth
n+

term of the series a, = S, - §,,_1. Find lim a,,.
n—>0

Given that the nth partial sum of a series is n2 + 2n find a,,, the nth term of the

series in terms of n. Is lim @, = 0? Does the series and a,, converge?
1—>0

Given the nth partial sum S, = 1 - (%) of a series, find a,, the nth term of the

series. Find lim a,. Does the series and a,, converge?
H—0

In the next sections we consider two particular series, namely the arithmetic and
geometric series.
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Arithmetic progression (A.P.)
We consider the following sequences :-
(1) 1,2,3,4,...

(ii) 2,5,8,11, ...

@ii) 3,-1,-5, =9,...

They all have a common feature: the difference between successive terms is
constant. Thus, in (1) the terms increase by 1, in (ii) they increase by 3, and in
(ii1), terms decrease by 4.

Definition

An arithmetic progression (A.P.) is a sequence in which any term is formed from
that immediately preceding it, by adding or subtracting a constant number. That
constant number is called the common difference.

In general, if an A.P. has first term @ and common difference d the terms are then

a,a+d a+2d,a+3d,a+4d, ... —
a, d may be positive
or negative.
Example 3.12

and the nthterm = a + (n — 1)d.

The 5th term of an A.P. is 8 and the 13th term is 19. Find the common difference,
the first term and the nth term.

If the first term is @ and common difference is d, the 5th term is a + 4d, so

at+4d = 8 (1)
and the 13th term is 19, so . '
av12d =19 @ (e otain
Subtract (1) from (2). s0 no multiplication of
8d = 11 the equations is
11' necessary.
d = —.
8
Substitute for d in (1).
a+4x LL 8
8
and a = 8- 1 i
2 2
: 5 11
Check 1n (2): =+ 12 x < = —j— + ~3~2§ = 19 (checks)
. 5 11
and the nthtermis —+mn-1)— = 2+£’1
2 8 g8 8

Example 3.13

The nth term of an A.P. is 8 — 3n. Find the first term and the common difference.
The nth term is 8 — 3n. Putting n = 1 we find the first term is 8 — 3 = 5.

The second term is 8 — (3 x 2) = 2.

The common difference 1s therefore — 3.
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The sum of n terms of an A.P.
Given the sequence of terms of an arithmetic progression, we can find the sum of

the first # terms, i.e. the nth partial sum S,
If the nth term is /, the sum of the series
may be written as

S, =at(@a+d)t(@+2d)y+...(I-2d)+({-d)+1L
Reversing the order,

S, =1l+(I-d)+({-2d)+...(a+2d)+(a+d)*a
Add .. 2§, =(a+tD+@+tD)+(@+th+... -

t@t+h+@+h+(a+)

and 28, = n(a+]).

n

&1=§m+0. (A)

sol=a+(n-1)d

The sum may therefore be considered as
(the number of terms) x (average of first and last terms).
Since ! = a+(n-1)d wemay also write

S, = %[a+a+(n—1)d]

or Sy = Sl2a+ (=1l (B)
Either of (A) and (B) may be used in calculations.
Example 3.14

(i) An A.P. of 15 terms whose first term is 1 and whose last term is 9.
We know thata=1,/=9,n=15.

S, = 1—25(1+9) = 75.

n

16
(ii) 2(3 +27)

r=1

(iii) In an A.P. the sum of the first twenty terms is 60 and the 8th term is 3 times the
4th term. Find the first term and the sum of the first 54 terms.

5+47+9+...+35

= 1—26-(5 +35) = 320.

Now S, = %[2a+(n-— 1)d], n=20and S, = 60.
%Q[2a+ 19d] = 60
or 2a+19d = 6. (1)

Also since the 8th term is 3 times the 4th term,
a+7d = 3(a+3d)

SO atd = 0. (2)
Multiply (2) by 2 and subtract from (1)
17d =6
6 6
d =—, anda=-d=—-—.
SO 7 and a 7
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Then Sey = —|2x——+53x—
y [ ° }

i

27><51><£ = 486.
17

Exercises 3.6
Find the 7th term of the arithmetic progression

4,7,10,. ..
Find the next three terms of the A.P.

at+3b,at+tb,a-5b,...
The fourth term of an A.P. is 12 and the sixth term is 17. Find the tenth term.
Which term of the progression

3.5,54,73,... 182447
Find the sum of the first 50 odd integers.
The sum of the first n terms of an arithmetic series is S, = n? — 5x1. Find the
fourth term and the nth term.
The sum of the first # terms of a series is given by S, = 4n2 — 3n. Find S, - S,_;.
Deduce that the terms of the series are in arithmetic progression.
How many terms of the A.P.

8,11,14, . ..
must be taken so that the sum of the series 1s 435?
A contractor agrees to sink a well 100 metres deep at a cost of £30 for the first
metre, £50 for the second metre and £20 for each additional metre. Find the cost
of the last metre and the total cost.
A well-off parent saves £50 on his daughter's first birthday, £55 on the second
birthday, £60 on the third birthday and so on, increasing the amount by £5 each
birthday. How much will be saved up when the girl reaches her eighteenth
birthday?
Istheseries S = a+(a+d)+(a+2d)+... convergent?
The first term of an arithmetic series is —12, and the last term is 40. If the sum of
the series is 196, find the number of terms and the common difference.

The twenty-first term of an arithmetic series is 51 | and the sum of the first
2

twenty-one terms is 94 L . Find the first term, the common difference and the sum
2

of the first 30 terms.

The second term of an arithmetic series is 5 and sixth term is —7. Find the first
term, the common difference and the sum of the first twenty terms.

The sum of the first twenty terms of an arithmetic series is 510, the sum of the
first forty terms being 2220. Find the sum of the first fifty terms of the series.
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Geometric progression (G.P.)
We consider the following sequences :

(i 1,2,4,8,...
.. I 11
1 17_7_,_5"'
) 2 48

(iii) 2, 6,18, - 54, . ..
(iv) x,x2,x3, x4, ...

These sequences have a common feature: the ratio between successive terms is a
constant. Thus in (i) this ratio is 2; in (i1) the ratio 1s 5; in (111) the ratio is — 3;

and in (1v) the ratio is x.

Definition
A geometric progression (G.P.) is a sequence of terms for which the ratio of any
term to that which immediately precedes it is constant for the whole sequence.
This ratio is called the common ratio of the progression. In general, for a
geometric progression with first term a and common ratio 7, the terms are

a, ar, ar?, ar3, . . .,
where a and » can be any real numbers.
The nth term is ar"~1.

Example 3.15

The first term of a geometric progression is a and the third term is equal to the
sum of the first and second terms. Find the possible values of the common ratio 7.
The terms are a, ar, ar?, ar3, . . .

Now ar = a+ar
SO ar? = a(l +r).

so r2-r-1=0.
Solve by the quadratic formula

(DD —4()(-D)
2
1++/5

>

-5 1+\/§‘

. . 1
In surd form, the common ratio has possible values R

Example 3.16
The sixth term of a G.P. is 24 and the 3rd term is 3. Find the common ratio and

the first term.
The 6thterm = ard = 24.
3rdterm = ar? = 3.

il
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6th term ar’

Then = = =8
3rd term ar2
A o= 2.
Then since the 3rd term is 3,
a2? =3
3
SO a = =,
4

Exercises 3.7

Write down the next two terms of the following sequences:-
(a) 2,6,18, ... (b) 25,5,1,...

(c) 12,-18,27,... (d) 0.2,0.02,0.002, ...

Find the sixth term of the sequence 2, 4, 8, . . .

Find the sixth term of the sequence 6, — 4, —2-, .

Find the fifth term of the sequence 1.2, 1.44, 1.728, . . .

The first term of a geometric progression (G.P.) is 1.1 and the common ratio is
1.2. Find the sixth term.

A young person is appointed to a post at a salary of £5000 with the promise that
the salary will increase each year by 10 per cent of that for the previous year.
What is the salary after six years?

The overhead costs of a business are £2.5 (millions) per year. The directors
decide that they shall be reduced by 3 per cent of those for the preceding year.
What will be the overhead costs during the fifth year, the first reduction taking
place in the first year?

The fifth term of a geometric progression is 256 and the second term is 4. Find
the first term and the common ratio.

The third term of a geometric progression is 2, and the fifth is 18. Find two
possible values of the common ratio, and the second term in each case.

The three numbers n-2, n, n+3 are the first three terms of a geometric progression.
Find n, and the term after n+3.

Find, in its simplified form, the common ratio of the geometric progression

V2-1),6-2v2) ...

Find the third term of the progression.

Sum of # terms of a G.P.
Given a geometric progression we can sum the terms of the sequence.

Suppose S, = a+ar+ar2+ ... +ar"l, (1) -
Multiply (1) by » .. rS, = ar+arl+. .. +ar1+ar. (2)

Subtract (2) from (1): S, (1-r)= a—ar® = a(l — "),

a(l-r"
Sn = —IT
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Example 3.17 1
The seventh term of a G.P. having positive common ratio 1s 36, the third term is 9. 1- (5)
Find the common ratio, and the sum of the first eight terms.
1
If the first term is @ and the common ratio is  then the nth term is ar~1. 1- 9
Thus we have  arf = 36, (n=7) LY Ly
ar? = 9. (n=3) - 21_(_) :2_[_) )
Then division gives 4= 4 2 2
SO r2 =22 There is no real 3 !
1
or ro=A2 , ignoring r = — V2. value of r such Then as n — o, (5] - 0
Substitution for #in ar? = 9 that r2= -2,
gives 20 = and Sn - 2.

| ) 1 1 . .
0 a = 2 Thus the series S =1+—+—+... isconvergent. Partial sums tend
2 , 2 4 to a limit.
n In contrast, the series

Sum of eight terms = S =1+2+4+...

12" -1

= = < = On_

S, 51 2n — 1,

In this case, as n — o, S, — 0.

This second series diverges.

It appears therefore that series whose terms are in geometric progression may
converge or diverge.

has partial sum

135 135 \/_
- ‘(———‘) = —W2+1). R
2J§ -1 2 ( ) Check rationalizing

Example 3.18 From section 3.6 we saw that for S = a +ar+ar?+ ..., the partial sum S, is
* n
The sum of the first # terms of a series is 57 —1. Show that the terms of this series given by S, = ad-r7)
are in geometric progression and find the first term and the common ratio. l-r
If S, =atay+t...+a, | (1) When|r|<1,1e.—1<r<l1, ¥ > 0 asn — o, so that (v |means the
then a, = S;— 8,1 s 5 4 numerical value
= sn_1-(5m1-1) " 1-r of r, ignoring the
= sn_5n-1 = sn=1(5_ 1) sign.
= 4 sn-1, (i1 When |r|>1,1e. ¥>1 or r<-1,

Thus the nth term a,, = 4 .5"~1 which describes a G.P. S, — foo for r>0 oralternates (» < 0). a may be positive
Then a =4,r=5. Thus S,, does not lend to a limit as #» — o for | r| > 1, in or negative.

other words the series does not converge for that range of r.

3.7 The sum to infinity of a geometric series (iii) When r = 1,
If we consider the nth partial sum, i.e. the sum of the first # terms, of the series N

n =atatat...+ta (ntimes)
L1 e sothat §, = na and §,, > *w asn—> oo,
S = 1+—+-+...+(——J +...,
2 4 2 (iv) Whenr=-1,

r-1
i o1 terms of a G.P. S, =a-ata ...
we obtain Sy ;(2] witha=1, r=112 and S, =0 (evenn)
= a (odd n).
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Summary
The geometric series S = a +ar+ar?+... converges for|r|<1.
It diverges or oscillates for other values of 7.

For a convergent geometric series, we say that lim S, is the sum to infinity.

n—0

Thus, sum to infinity = 1—a—-

Example 3.19
Write down the sum to infinity of the series
1 1 1

S = —+—+—+...
4 16 64
Inthiscase a= l, ro= l
4 4
1 1
o 4 s 1
Then sum to infinity = —T =3 =5
-1 23
4 B

Example 3.20
Find the limit of the sequence
0.1,0.11,0.111, 0.111, . ..

The nth term of the sequence 1s
0.111...1

This decimal is in effect the geometric series

1 1 1 1 0.1 +0.01
+ 0.001 +...

—+ + +...+
10 10% 10° 10"
As n — oo, the number of terms increases infinitely and the sum to infinity is

1

1
0 - _ a=1,r=_1

-5 9 10 10

1
Thus the limit of 0.1, 0.11, 0.111, ... 1s 5

Exercises 3.8

Find the sum of the first n terms of the series
1) S=2+6+18+...

(1) 25+ 5+ 1+. ..

(i) 12 - 18+ 27+...

(iv) 0.2+ 0.02+ 0.002+ . ..

Write down the sum to infinity for the various series in (1) - (1v), where 1t exists.
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Sequences and Series

Write down the sum to infinity of
. 11
1) 1+—+—+...
) 375
1 1 1
) - —+———+...
W) 2 4 8
(ii1) 0.06 + 0.0006 + 0.000006 + . . .

10
Find Y (1.1)".
r=1

Find the sum of # terms of the series
O T+x+x2+...
()1 -x+x2+...

(i) a+1+L+. .
:
2 3 4
(iv) b+b—+b—+é——+...
I

The sum of the first 3 terms of a geometric series is 15 and the first term is 10.
Given that the series is convergent, find the sum to infinity.

The sum to infinity of a geometric series is 15, the first term being 5. Find the
sum to infinity of the series whose terms are the squares of those of the original
series.

Find the exact value of the following recurring decimals :-

(1) 0.444 ... (1) 0.424242 . ..

(ii1) 0.4232323 ... (iv) 0.1676676676 . . .

A rubber ball is dropped from a height of 3 metres. At each rebound it rises to a

height which is % of the height from which it has just fallen. Show that the total

distance moved by the ball tends to 15 metres.

The yearly output of a small coal mine is found to be decreasing by 10 per cent of
its previous output. If the production in the first year is valued at £100000 what
will be the value of the total output, at current prices.

The sum of the first two terms of a geometric series is 12 and the third term is 1.
Find (a) the two possible values of the common ratios,

(b) the sum to infinity of the series with the positive common ratio.

The sum of the first two terms of a geometric series is 3; the sum to infinity is 4.
Find the possible values of the common ratio.
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4.1

Cartesian Coordinate Geometry

Chapter 4

Cartesian Coordinate Geometry

Coordinate geometry is concerned with the application of algebraic methods to
the solution of certain geometrical problems involving straight lines, curves and
surfaces. In this chapter and the next we concentrate on two-dimensional
geometry, i.e. that relating to plane figures.

Coordinates in a plane

It is assumed here that the reader is familiar with plotting points in order to draw
simple graphs. In particular, some knowledge of rectangular Cartesian coordinates
is assumed.

The position of a point P in a plane is specified by its perpendicular distances
from the fixed perpendicular lines Ox, 0y. The point P in the diagram has its
x-coordinate equal to a, its y-coordinate equal to b.

Y 4 +ve direction

A
Q
v

+ve direction

It should be noted in passing that the x-coordinate of a point is its perpendicular
distance from Oy (and similarly for its y-coordinate). Also the distances are
directed so that a positive (negative) coordinate is the positive (negative) direction
of the axis.

The coordinates are given as an ordered pair with the x-coordinate (often called
the abscissa) first and the y-coordinate (often called the ordinate) second. The
point P is referred to as (a, b).
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4.2

Cartesian Coordinate Geometry

Example 4.1
The points 4(1,2), B(-2, 1), C(2, =3), D(-2, -3) are represented as shown.
Y
3_..
1 412
B(-2,1) 2 p 402
e 14
-i-é-fz-ilo I3 54 =
24
D(-2,-3
V5l e

The distance between two points in a plane
Given the rectangular Cartesian coordinates of two points, we are able to find the
distance between them.

Example 4.2
Find the distance between the points 4(2, 3) and B(4,5).
B(4,5)
y ‘r A
|
ey
I | 5
I I
2 "3
> !
vy x
g!l=——r

If we represent the points as shown and draw AM parallel to Ox as shown, then
triangle ABM is right angled.
By Pythagoras' theorem,
AB? = AM? + MB?
= (4-2)2+(5-3)?
=22+22 =38
s0 AB = /8.

In general, if A(x},y1) and B(x,, y,) are two general points as shown, we then have

Sometimes we shall
use the symbol
A to denote triangle.

y ‘r B(x,.y,)
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Cartesian Coordinate Geometry

by Pythagoras' theorem,

AB? = AM2 + MRB?
= (xp—x)?+ (p —y1)?
or AB = \/(xz—xl)2+(yz—y1)2-

In words, we find 4B? by squaring the difference of the x's, squaring the
difference of the y's and adding. This procedure is valid even if some or all of the
x's and / or y's are negative.

Example 4.3
Find 4B for A(-2, —1) and B(6, —7).
Y4
0 ; I »X
et 1
A2 D - - - - - - - - - o
( )\ M
e
i
I
1
1
v
B(6,-7)

Now AM =2+6 = 6—-(=2) = x5 —xq,
MB =7-1=-1-(-7) =y -y
AM? = (x) —x1)2,
and  MB? = (yy=y)* = (- y1)?
sothat AB2 = AM? + MB? = (xy — x)? + (yy — 1)
When due account is taken of the signs of coordinates, the previous formula
always applies.

It

I

Rule
The square of the distance between two points is found by squaring the difference
of the x's, squaring the difference of the y's and adding those squares.

Exercises 4.1
Find the length of the lines joining the following pairs of points :-

(@ (1,2),(2,4) (b) (1,2),(-1,3) (o) (2,1),(0,2)
(d) (0,0),(=3,-4) (¢ (=2,-3),(=4,-3).

Given the points A(1, 3), B(12, 10), C(6, 0), show that the triangle ABC is right
angled (use Pythagoras' Theorem).

Find the length of the lines from the origin 0 to the points (i) (4, 5) (i1) (-3, 4)
(ii1) (-3,-5).

50

4.3

Cartesian Coordinate Geometry

Show that the triangle A4BC is isosceles where the points 4, B, C are (-1, =2),
(10, 5) and (9, —8), respectively.

The point 4 is (3, 2) and the point P is (x, y) where x and y are unknown. Given
that AP = 5, show that
x2+y?—-6x—4y-12 = 0.

A and B are the points (1, 2) and (3, 7) respectively. P is the point (x, y) where x
and y are unknown. Given that AP = PB, show that 10y +4x - 53 = 0.

Prove that the sides 4B and BC of the triangle ABC are perpendicular, where 4, B,
and C are the points (-2, 1), (7, 4) and (9, —2) respectively.

The midpoint of the straight line joining two given points

Example 4.4

Find the coordinates of the midpoint of the line AB, where A and B are the points
(2,3) and (4, 7).

(=]
Q
vob--mm e

In the diagram, M is the midpoint of 4B. It is possible to prove (but we shall not
do so here) that R and S are the midpoints of CD and EF, respectively.
Then the x coordinate of A = OR = OC+CR

= 0C++$CD

=2+4(4-2) = 3.

Also the y coordinate of M = OS = OE+ES
= OE+ 3EF

=3+3(7-3) =5
Thus M is the point (3, 5).
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Inspection of the original coordinates shows
xof M =3 = —;—(x of A+ xof B),

yofM =5 = J(yofA+yofB).

This is a general result in fact. If 4 is the point (xq, y1), B .is (x5, ¥p) then the
above calculations with OC =xy, OD = x,, OE =y, OF =y, gives
x coordinate of M = x; + —%CD =x1+ —%(xz -x1) = %(xl + x5)

and y coordinate of M= y; + ziEF =y+t %()/2 -y = %(Yl +y2).

Rule
The midpoint of the line joining the points (xy, y1) and (x,, y,) has coordinates

(xl +X, Yty

2 2
This result holds when some or all of the coordinates are negative.

Example 4.5
Find the coordinates of the midpoint of the line joining the points (—1,4) and
(3,-8).

Then for the midpoint

(-D+3  -1+3

x = =1,
2 2
4+ (-8) 4-8
y = = = 2.
2 2

Exercises 4.2 _ _
Find the coordinates of the midpoints of the lines joining the following pairs of

points - (a) (1,2),(2,4) (b) (1,2),(-1,3) (c) (2, 1),(0,2)
(d) (0,0),(=3,-4) (&) (-2,-3), (-4,-5).

A, B, and C are the points (4, 9), (-2, 1) and (6, 7), respectively. Show that AABC
is isosceles and find the midpoint of the base AC. Hence find the area of A4BC.
[Assume that the area of a triangle is %base x height.]

A, B, M are three points such that M is the midpoint of AB. The coordinates of A
and M are (3, 5) and (-1, 2) respectively. Find the coordinates of B.

Find the centre and radius of the circle which has the line joining A(1, 4) and
B(3, 8) as diameter.

The coordinates of the vertices P, Q, R, S of a quadrilateral are respectively

(-1,2), (5,4), (7, 0) and (=3, -2). 4, B, C, D are the midpoints of the sides PQ,
OR, RS, SP, respectively. Show that the midpoints of AC and BD coincide.
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Show that the triangle with vertices (-2, 0), (0, 4), and (4, 2) is isosceles and
right-angled. Find its area.

Show that the figure with vertices (3, 6), (5, 4), (7, 6) and (5, 8) is a square and
find its area. [Assume that the area of a square is (length of side)?.]

We continue our study of coordinate geometry by considering the geometry of
straight lines.

Gradient of a straight line

Let's consider the two straight lines given in the diagram. It is obvious from our
usual notions concerning steepness that line II is steeper than line I. The concept
of gradient enables us to say how much steeper line II is than line I.

Definition

Gradient of a line is defined as the increase in the y coordinate divided by the
increase in the x coordinate between one point on the line and another point on the
line.

Ya
B (5, 8)
AQ1,
1
0 - X

Then for the line shown above:-
. difference in y's for 4 and B 8—-4 4
gradient = — - = =— = 1.
difference in x's for 4 and B 5-1 4
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Example 4.6
Find the gradient of the line joining the points (2, 10) and (4, 4).

i in y' 4-10 -6
Then gradient = d%fference %ny S = — = -3,
difference in x's 4-2 2

y A
(2,10

4,4

0 .

The negative gradient indicates that y decreases as x increases, in other words, the

line falls to the right.
It should be noted here and elsewhere that the calculated value of the gradient is

independent of the order in which the y's or x's are subtracted.

Example 4.7
Find the slope of the line joining the points (3, —5) and (—4, 9).
: -5-9 14
Gradient = = = -
3—-(—4) 7
or = .9_—:__£;5.). —- lﬂ_ = 2.
-4-3 -7

The gradient of a line is strongly related to the angle that the line makes with the
x-axis.

opposite
hypotenuse,

_adjacent
cos 6 = hypotenuse,
tan 0 = opposite
adjacent

sin 0 =

pd

0 X

For the line shown above,
i fy' BM
gradient = d%fference DA = tan 0.
difference of x's MA
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/—m R

This definition applies whether the gradient is negative or positive. For a negative
gradient, as shown above,

you are asked to
accept here that
tan (180 —0)=—tan ©

. —-AM
gradient = ——— = —tana = tan
MB

since O+a = 180°

Definition
The gradient of the line passing through the points A(xq, y1), B(xp, ¥7) 1s

the differenceof y's  y, —y, tan 0
= = n ,
the differenceof x's  x, — x,
where 0O is the angle made by the line with the positive
X-axis.

Exercises 4.3

Find the gradients of the lines joining the following pairs of points :-
12,3),4,7 (i) (-2, 3),(2,5) (i) (=2, 3),(2,4)

(iv) (8,9),(10,7)  (v) (-3,06),(2,-5).

A(1, 5), B(3,11), (5, 17) are three points on a straight line. Three pairs of points
can be chosen from these points. Show that the value of the gradient of the line
doesn't depend upon which pair of points is chosen.

Parallel lines

If lines I and II are parallel, they make equal angles with the positive x-axis, 0
being the common angle shown in the diagram.
Since gradient = tan 0, it follows that parallel lines have equal gradients.
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Example 4.8 o
Show that the line joining (3, 7) and (5, 15) is parallel to the line joining (—6, —8)
and (2, 24).

The first gradient -7 _8 _y
c I1rs radicn - = — = .
ete 5-3 2
Th d gradient 24-(=8) _ 32 _
nd gradient = ———— = — =
e second g 2-(=6) 2

The gradients are equal so the lines are parallel.

Perpendicular lines

A

I I

90

) '(ﬂ/ 90-9/\ Topore

bd

Let's suppose we have two lines I and II intersecting at right angles as shown.
gradient of I = tan 0

gradient of I = tan (90 + 0) 90 +6 and 90 -6
= —tan (90 — 0) add up to 180,
_ 1
tan & RI
Th dient of II = ! P ©
us gradiemo gradient of I tan 6= %%

tan(90— 0) = _g%_
so gradient of IT x gradient of I = — 1.

Rule ,
The product of the gradients of two perpendicular lines is —1.

Example 4.9 ' o
Show that the line joining (1, 3) and (3, 6) is perpendicular to the line joining (8,6)
and (5, 8).

First eradient 6-3 3
irst gradient = —— = —.
& -1 2
S d eradient -6 2 2
radient = —— = — = ——
econd gradie s s 3
. 32
Product of gradients = —2-><—-3— = -1

Hence the lines are perpendicular.

4.7
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Exercises 4.4

Determine whether 4B is perpendicular or parallel to CD, or neither :-

(a) A(1,0) B(2,2), C(2,6) D(0,?2)

(b) A(-2,0) B(0, 1), C(—4,0) D(-3,-2)

(c) A(1,1) B(-5,-1), C(-3,-3) D(-1,-9)

(d) A(3,7) B(0,-8), C(3,12) D(1, 2).

The points 4(2, 3), B(3, 5), C(2,2), D(a, b) form a parallelogram ABCD. Find a
and b.

Show that the points A(0, 2), B(4, 6), C(3, 7), D(-1, 3) form a rectangle ABCD.
Find the area of this rectangle.

The points A(3, 7), B(6, 1) and C(a, —3) form a triangle ABC with LABC = 90°.
Find a and the area of the triangle.

A3, -3), B(-5, -3) and C(3, 5) form a triangle ABC. D is the midpoint of BC.
Show that AD is perpendicular to BC. Find the area of AABC.

Show that P(11, 12), O(33, 34), R(-22, 23) and S(-44, 1) form a parallelogram.
Show further that the midpoints of PR and QS coincide.

ABCD is a quadrilateral where 4, B, C, D are the points (0, —4), (3, =3), (4, 0) and
(a, —1), respectively. If the diagonals intersect at right angles, find a.

The equations of straight lines
We start by considering a formula which involves x and y.

Example 4.10

Given y = 2x + 1 draw up a table of values of y for values of x from -2 to 3 in
steps of 1. Draw a graph showing the pairs of values of x and y.

x -2 -1 0 1 2 3
2x -4 -2 0 2 4 6
y=2x+1 -3 -1 1 3 5 7
y A
7..
6
5

\ 4
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It is seen that a straight line can be drawn through all the points. A little thought
indicates the reason for the graph being a straight line. From the table we see that
whenever x increases by 1, y always increases by 2, or when x increases by 2, y
increases by 4. The important point is that when x increases by a constant amount
y increases by a constant (usually not the same as the x increase) amount.

This constant increase of y with x does not occur with y = x2 + 1, as can be seen
from the table.

X -2 -1 0 1 2 3

x? 4 1 0 1 4 9

y=x2+1 5 2 1 5 10
y A

Inspection of the graph in this case
reveals that a curve, not a straight line,
is obtained.

0

In fact, a straight line graph is only and always
obtained when the formula relating x and y is of the
form ax + By + v =0, where ax, 3, and y are constants.

It should be noted that the relationship is first degree in

x and y (i.e. involves only x! and yl). Also, in some cases one or two of the

constants may be zero, e.g. x =0, y = %, x = =3 are all equations describing

The establishment
of this result will
be given later.

straight lines.

Exercises 4.5

Which of the following equations represent straight lines :-

(@ y=2x+3, (b) y=-3x+2 (¢c) 2y=x2+1 (d) 2y=—x+3
@y=x> O y=x (g x=-4 (M)y=5 (@) y=0

In the above it was asserted that the equation of a straight line is always of the

form ax + By +y = 0, where o, B, and y are constants.
Here we specify straight lines in different ways, and show that this type of
equation is always obtained whatever the specification.

Straight lines of given slope passing through the origin

yh
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Let's suppose that a straight line OA4 passes through the origin and makes an angle

6 with the positive x-axis direction. P(x, y) is a general point on the line, and PM
is perpendicular to the x-axis.

Now ZPMO =90° and in APOM,

Y .
tan = = _ opposite
X tan = agjacent
or y = xtan®.

Now if we write the gradient tan 6 = m then y and x satisfy
y =mx or y—mx=0,
the equation of the straight line OA.
This is of the form ox + By + y =0, with ox = —m, B =1, and y = 0.

Straight line of given slope intersecting the y-axis at a given point.

The line AB makes an angle 6 with the positive x-axis direction, and crosses the
y-axis at A where OA is c¢. Let P(x, y) be a general point on the line, AN parallel
to the x-axis and PM parallel to the y-axis as shown.

Now ZPNA = 90°and ZPAN = 8.

In APAN,
tan 0 = opposite _ PN _Yy-c
adjacent AN X

SO y—c = xtan9
or y = xtanf+c.
Writing the gradient tan © = m, we obtain

y =mxtc
or y—mx—c = Q.

This is of the form
O(.x+By+y = (
whereoo =—m,=1,y=-c.
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Straight line of given slope passing through a fixed point.
The case is a generalisation of (i) : the given point may not be on the y-axis.

>x

The line 4B makes an angle 6 with the positive x-axis direction and passes
through the point C(x;, y7), where x; and y; are assumed known. P(x, y) is a
general point on the line, CR and PM are parallel to the y-axis and CN is parallel
to the x-axis.
Then /PNC=90° and ZPCN=0. In APCN,
tan O = PN Raued
NC X=X
(x—x))tan® = y—y.
If we write gradient tan 6 = m, then the equation is
y=y1 = mx—xp).

This form of the equation is often used. However, writing it in the form

y-—mx—-y;+tmx; =0
we 1dentify it as being of the form

oax+Py+y =0

wherea=—m, B=1,y=—y; + mx].

The equation of the line passing through.two given points.

ylk
A i.s (x )
Bis(x,y,)

4

0]

The line 4B passes through the two points A(xy, y1) and B(xy, y;), where x1,x5, ¥;
and y, are assumed known. P(x, y) is a general point on AB, whilst AN, PM, and
BR are parallel to the y-axis and ATS is parallel to the x-axis. The angle made by
the line AB with the positive x-axis is 6 which is not known i.e. not given.

Then LPAT=0 and £ZPTA = ZBST = 90°.
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From the right angled triangles PAT, BAS : -
tanb = Pr = —Bﬁ (D)
T4 SA

The details of various lengths are not shown on the diagram but a little thought
leads to ON =x1, OM =x, OR =xp and AN =y, PM =y and BR = y,.
Then PT = PM—-TM = PM—-AN = y—y;,

TA = NM = OM - ON = X = X1,

BS = BR-SR = BR—AN = y; -y,

SA4 = NR = OR-ON = x2—x1.
Then substitute in (1).

tang — YN _Y1=¥

0 X=X X,=Xx
This can now
be ignored.
_ Yo
SO y=y1 = ———(x—xl)
Xy =X

which is of the form
y=y1 = mx-x), (2) Y1 Vs X1, X3
where m = gradient = 227N a}r:llcn lglvgnw;o
X, — X *
Then equation (2) is of the same form as that given in case (iii). In fact (2) 1s of
the form
ax+fy+y =0
where o =— | 22 , B=1, y=—y; + LN X1
xz - xl X, — )C]
Summary
The four cases (i) to (iv) indicate that straight lines have equations of the form
ox+Py+ty =0
where o, [} and y are constants.
In practice, most straight lines can be considered to be of the forms
y = mx+c

or y—y1 = mx-xp).

Example 4.11
Find the equation of the straight line having gradient % and intercept 4 on the

y-axis.
From the equation n is the gradient,
y =mx+tc c is the intercept
we see that the required equation is
1
= =xt+4
Y73
or 3y =x+12
or 3y-x-12 = 0.
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Example 4.12 .
Find the equation of the straight line having gradient — 2 and which passes
through the point (2,1).

From Y=y = m(x—x;) we obtain immediately
y—1 =-=2(x-2)

so y-1 =-2x+4

y =-=2x+5

or y+2x-5 = 0.

Note

This question and all others involving straight lines can be worked using the other
form of the equation of a line :-
Yy = mx+tc

Here m = —2(given)butc = ?
The equation is therefore
y =-=-2x+c

We are able to find ¢ by noting that the line passes through (2, 1).
Using x =2, y =1 in the above, we have

1 =-2x2+c
S c =5
and thus the required equation is
y = —2x+5, asbefore.
Example 4.13

Find the equation of the line passing through the point§ (2,-1) and (-1, 6).
The given points enable us to find the gradient of the line.

6—-(-1) 7 7
Then = =

-2 3 3

7
-—(x-2

3( )

7 14
SO y+1 =—§x+?.
7 .1
= __x —
Y 3 3

0.

Then y—(-1)

or 3y+7x—-11

Alternatively, we may write
y =mx+tc

where m and ¢ are unknown constants to be determined as follows.
Now whenx =2, y=-1 and whenx=-1,y = 6.
x=2.y=-1 -1 =2m+c (D

Given points
are on the line.
x=-1.y=6 6 =-m+tc 2)

(1) and (2) are two simultaneous equations for two unknowns m and c.
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Subtract (2) from (1).

=7 = 3m

7

SO m = ——,
3

Substitute the value of m into (1).

-1 = 2(——7—J +c
3

Substitute value
of m and ¢ into

.. L+ 14 11 (2) to check
1vin c =-1+-21 ==
giving 3 3
The equation is therefore
g 3 3

or 3y+7x—-11 =0, asbefore.

Exercises 4.6

Write down the slopes and intercepts on the y-axis for the straight lines :

(a) y = 2x b) y =-x+1 () y+2x-3 =0

d) 2y =x-5 (e) 49-3x+7 = 0.

Write down the equations of the lines passing through the origin O (0, 0) and with
the following gradients : - (a) 2 (b) -5 (c) —;f— (d) - % (e) 0.

Find the equations of the lines passing through the given points and with the given
. 1 1
gradlent - (a) (19 2)) 5 (b) (-1> 2)7 3 (C) (Oa 1)’ 4 (d) (_2: 0)7 _5-

Find the equations of the lines passing through the following pairs of points:-
(a) (15 2)3 (3a 4) (b) ('—13 3)5 (23 3) (C) (Oa 1)5 (25 O) (d) (_—2’ _1)= (—35 —4)

Write down the equation of the lines which are parallel to the given lines and have
the given intercepts on the y-axis :-

1
(a)y:3X+2a6 (b)y:_EX+1>2
() 2y =x+54 (d)3y-2x-7 =0, 6.
Find the equations of the lines which are perpendicular to the given lines and pass
through the given points :- :
1
(a) y = X+5’ (072) (b) Yy = ——EX+4> (173) (C) 3y = —4X+9a (2a3)
(d) 3y+5x-7=10,(1,2) (e) 4y+7x~3 = 0, (0, 0).
Find the coordinates of the midpoint M of the line joining the points A(1, 4) and

B(3, 2). Find also the equation of the line passing through M which is
perpendicular to AB. (Such a line is called the perpendicular bisector of AB).
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Cartesian Coordinate Geometry

Two parallel lines AP and BQ pass through the points 4(3, 0) and B(0, 4),
respectively. If the point C(2, 1) is on the line 4P, find the equations of 4P and

BO.

Given the points A(0, 2), B(4, 6), C(3, 7) and D(1, 5), find the equations of the
lines AC and BD. Check by substitution into these two equations that the point

(2,?) lies on both lines, i.e. that its coordinates satisfy both equations.

Cartesian equations of curves

In the previous section we considered straight lines and their equations. What do
we mean when we say the equation of a straight line is 2x + 3y — 5 = 07
Essentially what we mean is this :- for a point to lie on the line its abscissa (x) and
ordinate (y) must satisfy the equation. In other words, the equation places a
restriction upon x and y in order that the point be on the straight line.

Example 4.14

Do the points (3, 5), (6, 10) lie on the line y = 2x — 17

For(3,5),y = 5and2x-1=2x3-1 =5

so that the equation is satisfied and (3, 5) lies on the line.

For (6,10),y =10and2x-1=2x6-1 = 11

so that the equation is not satisfied and the point does not lie on the line.

To represent a straight line, an equation must be of first degree in x and y. When
the equation is not of first degree in x and y, the graph will not be a straight line.

Example 4.15
Plot y = x2+xforx = -2,-1,0,1,2
x -2 -1 0 1
x? 4 1 0 1 4
y=x2+x 2 0 0 2

The particular restriction (equation) placed upon x and y leads to a curved graph.
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Cartesian Coordinate Geometry

Rule
When the equation in x and y is not of the form
axtpy+y =0

the associated graph will almost always be a curved graph. There are a few

Nomore than
twoofa, B,y
may be zero

exceptions to this rule,

e.g. the equation x2-y2=10
leads to - )x+y) =0 2
which gives x-y =0orx+y=0.

These exceptions may be ignored here because we shall not consider equations
y occurs only
asy’

Previously we used
f(x) to denote general
polynomials. Here
other expressions

are allowed.

involving terms like 2. Indeed, for the present, we
consider equations (restrictions) of the form

y = f(x),
where f(x) is a way of writing some general

expression in x. Thus, expressions such as
y =x2+2x+5

y =Ax+2

y = —+x
X

could be considered, but expressions such as
x2+y2 - 2x—4dy+5 =0,

would not be.

Exercises 4.7
Which of the following equations will lead to curved graphs :-

@y =G-DE2) By
©r= @y =56-9
(@y:x+§ ©® y = x(1-x.

Draw sketches of graphs between x = — 3 and x = 3 for equations (a), (¢) and (f) in
question 1.

Determine whether the given points lie on the given curves :-
1
@y =x2+4, (-2,8) b)y=—— 102
x+1

d y+3x2 =4, (1, 1)

© » = (- DE=2), 46)
(e) —2—+y =3, (1, 2).
X
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Cartesian Coordinate Geometry

Find the values of y when x = 0 in the following cases :-

@) y = @=2)(x+3) (b) y = (© x+2y =5
! +2y = x (xi—é).

2x+5 2

Find the values of x when y = 0 for (a) and (d) in question 4.

x+1

(d) y+2x2 = 18 ()

Intersection of curves

Sometimes in coordinate geometry we meet concepts which require no distinction
to be made between straight lines and curves. For such a concept, we assume that
'curves' signifies either curves or straight lines.

Intersection is such a concept. The point at which two curves cut is called a point
of intersection. At a point of intersection of two curves, the point's coordinates x
and y are subject to two restrictions : they must satisfy both equations describing
the curves. Thus, to find those coordinates we solve the equations
simultaneously.

Example 4.16

Find the point of intersection of the curves ~
_ Straight lines,
and 2y+d4x+7 = 0.
If the point of intersection is P(x, y) then x and y must satisfy both equations as P
lies on both curves. We solve
y+6x—-3 = 0. (1)
2y+d4x+7 =0. (2)

(1) x2-(2). Recall chap;cic(r 2.
Here we make y
12x-4x-6-7 = 0. coefficients equal,
& =13
13
SO X = —.
8

Substitute this value of x in (1).
y+6x % -3=20

8 4 You could check the
) . . . 27 answers by
.. Point of intersection is —-,—-Z substitutions in (2).

Example 4.17

Find the point of intersection of y = x2+ 8x+ 6 and y
Solve y =x2+8x+6 (1)

and y = 3x (2)

simultaneously.

3x.

Il
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Cartesian Coordinate Geometry

Subtraction of (2)
from (1) would lead
to the same result.

Substitute for y from (2) into (1).
3x =x2+8x+6
so X2+5x+6 =0.
We may find x by factorising or by using the quadratic formula (Chapter 2).
By factorising,
(x+3)x+2) = 0.

x+3 Oorx+2 =0
S0 x =-=-3o0or x =-2.
Substitute these values of x into (2).
When x = -3, y = 3x(-3) =-9.
When x = -2, y = 3x(-2) = -6.
There are two points of intersection, namely
(-3, -9) and (-2, -6).

The answers could
be checked by
substitution in (1)-

Exercises 4.8

Find the points of intersection of the following pairs of curves :-

@ y-2x+4 =0, 2y+x-3 =10 (b) x+3y-5=0,3x+y+4 =10
(©)y=2x+3,y=x2+9%+9 (dy=x2+4x+2, y = x2+Tx+3
€ y=x(1-x), y =x(x+2).

Show that the curves y = x2 + dx ~ 9 and y = 3x2 + 5x — 6 do not intersect, i.c.
there are no real values of x and y satisfying both equations.

Find the coordinates of the point of intersection of y = 3x2 and y = 3x1/2,

The sides of a triangle are the linesx=0,2x+3y+5 = Oand 3x +2y —4 = 0.
Find the coordinates of the vertices of the triangle.

Find the values of @ and b if ax + 2y = 6 and 3x + by = 6 intersect at the point
(=1, 2). If the lines meet the y-axis at 4 and B, find the length of 4B.

The equations of the sides AB, BC and C4A of AABCarex+y = 4,x—y = 6 and
2x + y = 15 respectively, and D is the midpoint of BC. Find the coordinates of 4,
B, C, D and verify that AB2 + AC? = 24D2 + 2BD?2.

The vertices of APQR are P(0, 2), O(4, 0) and R(6, 8). Find the equations of the
perpendicular bisectors of the sides PQ and QR. Show that the point of
intersection of the perpendicular bisectors is equidistant from P, Q and R.

Find the equation of the perpendicular from the point A4(2,1) to the line
y —3x+2=0. Hence find the perpendicular distance of 4 from the line.

Prove that the diagonals of the parallelogram whose sides are given by
2x+y=3,x+2y=3,2x+y = 6,x+2y = 6 arc at right angles to one another.

We return to points of intersection in Chapters 6 and 10.
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5.1

Angles and Angular Measure

Chapter 5

Angles and Angular Measure

The use of degrees to measure angles is well known. The use of radians to
measure angles is less well known. Both measures are considered in this chapter.

Degrees and radians

The angle between two intersecting lines OX and OP is defined to be the amount
of rotation required to take one of the lines to the other. If the rotation required is
anticlockwise, we take the angle to be positive.

P

positive
X angle
(0] X

Angles may be measured in degrees or radians.

Degrees
A complete revolution in which the line OX
360° travels a complete circle is defined to be an
0] X angle of 360 degrees, written as 360°.

Fractions of revolution correspond to angles
which are fractions of 360°.

90° m 180° 270°

% revolution % revolution % of a revolution

Further subdivisions are possible when using degrees. Thus

I minute = 1' = Lth of a degree
60
and 1second = 1" = 6L0th of a minute

= —1—~th of a degree.
600
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Angles and Angular Measure

Radians

Suppose OX rotates through an angle 0 as
shown. During this rotation X moves
\ 6 along a circular arc to P.

o

Definition

The radian measure of the angle is defined by
0 = arc PX arc PX

0).4 o opP
Then 1 radian is the angle subtended at the point O when the arc length equals OX
or OP.
In a complete revolution, X moves along a circle
through a distance 2n x OX (ie. the
circumference of the circle). Thus in one
complete revolution the angle subtended is

27zx OX

— = 2m.

0).4

Fractions of a complete revolution correspond to angles which are fractions of 2.

27 radians

I 18
2 /\

1 }
— revolution
4

1 . 3 )
5 revolution — of arevolution

To convert from degrees to radians (or vice versa) :-
2 radians is equivalent to 360°

2 )
360°
27

so 1 radian is equivalent to

and x radians is equivalent to x x
o . 2T .
Also 1° is equivalent to % radians

. . 2 .
so y° is equivalent to y x % radians.

To convert angles measured in degrees into radians, the angle must be expressed
in decimal form, for example to convert 113° 33" into radians, first express it as
113.55¢°,
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5.2

Angles and Angular Measure

Exercises 5.1 _ .
Draw diagrams to indicate each of the following angles, labelling the angle in
both degrees and radians :-

(1i1) érevolution

1 .
(1) %revolution (i1) P revolution

o1 : 1 . N 2 .
(iv) o revolution  (v) 7 revolution (vi) — revolution.
2

Convert each of the following to radians :-
(1) 36° (i1) 54° (iii) 156°
(vi)y 119.5°

Convert each of the following to degrees :-

(iv) 192° (v) 288°
(1) —é—radlans (11) ] radians (iti) 1 radian (iv) 0.75 radians.

Length of arc and area of a sector of circle

Suppose the arc PQ subtends an angle 6 radians at

Q the centre of the circle. Since an angle of 27 radians
corresponds to a complete revolution, 6 corresponds
. g
to a fraction of a revolution, —.
P 27

The circumference of the circle is 27r.

o g
Then the length of the arc PQ 1s given by Py x2m = ro.

The area of the circle is ©r2.

. g 2 1 2
The area of the sector POQ is given by by x - =—=r°o.

Exercises 5.2
Find each of the shaded areas :-
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Angles and Angular Measure

Find the length of the arc PRQ in each of the following cases :-

Aﬁ P P
) X i) R
(iii) . iv
o

Given that the length of the arc is 5Scm, find the value of the area of the sector

AOB.
A
M5
o
0 4 B

Given that the area of the sector A0B is 50cm 2 , find the value of the perimeter of
the sector.

A

/\
)
O B

Given that the length of the arc 4B is 12 cm and the area of the sector AOB is
48cm?, find the values of 7and 0 |

A
/\
O 0 B

Write down expressions for the area 4 cm? and the perimeter P cm of the sector
AOB in terms of r and 6 .

A
/m
0
0] B

Given that P = 20, show that 4 =10y — 2.
Find, by completing the square, the maximum value of 4.
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5.3

Angles and Angular Measure

Trigonometric ratios for angles between 0° and 90° . '
Trigonometric ratios for acute angles are defined in terms of the ratio of sides of
right-angled triangles. Suppose triangle ABC is such that ZCAB = 90°. We say

that ZCAB is a right angle. C
The defnitions given
below will be familiar.
we label AC as 'opposite side', 4" B
AB as 'adjacent side’".

The side BC is usually termed the 'hypotenuse'.

Now for the angle ZCBA =6,

Then using the words 'opposite' and 'adjacent" to
denote 'opposite side' and ‘adjacent side'
respectively, we define _
it AC (O
sing = _opposite _ [_J,
hypotenuse BC\H

These definitions
are remembered
by some students
by the word
SOH CAH TOA.
SN—’

S

adjacent AB[A)
cos = ——— = — — |,
hypotenuse BC

tan® =

opposite  _ AC(O]
adjacent AB

Note cosec 6
isnot 1

cos O

There are other ratios:-

0 1 0 ! cot = !
= , secO = , =
cosec praw S s an &

Example 5.1
Use the right-angled triangle to find cos 0.

4 adjacent [ A
Nowcos = —————— | —

hypotenuse \ H
3 _BC 4
0 BA  BA
B 4 C

The hypotenuse AB is unknown but may be found by Pythagoras’ theorem.
AB? = 32442 = 25,
AB = 5.

Then cos 0 = %: 0.8.
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Example 5.2
Use the right angled triangle to find sin ¢.

opposite XY XY

singp = = = :
hypotenuse XZ 3
Y By Pythagoras,
Q 3 32 = 12+ Xx72
SO X¥2=32-12=9_1 =38,
1 ‘ XY =48
z . V8 .
and  sin¢ = — =0.9428, correct to four decimal places.

3

Calculators with the appropriate function keys provide the answers to such
questions as :-
What is sin 55.6° or cos 0.361 radians or which angle has a tangent equal to 4.1?
The inverse or 2nd function or shift key must be pressed to answer questions of
the latter type.

Example 5.3
Use your calculator to find (i) sin 0.3 and (ii) cos 63° 46' (iii) cosec 69°3".

In mathematics when the angle units are not specified, it should be assumed that
the angle is measured in radians. Thus, on ensuring your calculator is in radian
mode, entering 0.3 and pressing the sin key, you should obtain sin 0.3 = 0.2955,
correct to four decimal places.

The minutes should
be converted into
degrees.

Then ensuring your calculator is in degree mode,
entering 63.7667 and pressing the cos key, you
should obtain cos 63.7667° = 0.4420, correct to 4
decimal places.

. 1
(ii1) Most calculators do not contain a cosec key. However cosec = 5 Thus
sin
1. convert 69° 3' to 69.05°,
2. ensure the calculator is in degree mode,
3. enter 69.05 and press sin key to obtain sin 69.05°,
4. enter 1 (you may need to press 2nd F or inv or shift key first)
x

to obtain cosec 69.05° = 1.0708, correct to four decimal places.
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Angles and Angular Measure

Example 5.4
Use your calculator to find the angles in degrees and radians whose

cosine is 0.6357, (ii) sineis 0.1361, (iii) tangent is 0.5369.

Your calculator has a cosine key which should enable you to find the angle
corresponding to a given cosine. The operation required here may be thought as
undoing the cosine and is referred to as finding the inverse cosine or cos—!. The
inverse cosine is also known as arccos.

We require cos! (0.6357) or arccos (0.6357). Some calculators have cos-! or
arccos marked on the keyboard. The usual procedure is

(a) enter 0.6357,

(b) press the 2nd F or inv or shift keys and then the cos key.

The result will be displayed as 50.5281° or 0.8819 radians.

Here we enter 0.1361, press 2nd F or inv or shift keys and then press the sin key.
The result is 0.1365 radians or 7.8222°.

(iii) Similarly, tan-1 (0.5369) = 28.2314° or 0.4927 radians.

1.(1)

(i)

Exercises 5.3
Find sin 0 for each of the following triangles :-

A D z
O
2 5 >
1 E 8
0 AN y

B c F X~ %
Find cos 0 for each of the following triangles :-
E
12 O
16 G
B <) 3

D F

Find the values of tan 0 in Question 1.

Find (i) sin 36.31° (ii) cos 26.52° (11) tan 15°37" (iv) tan 0.6315
(v) sin 0.7128.
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(1)

Angles and Angular Measure

Find (i) sin=1(0.7071) (ii) tan~1(2) (iii) cos~1(0.9161), giving the answers in
degrees and radians.

Find the angles 0 in degrees in the following :-

@ 15—\

36

48

0 16

5 60
In spite of the access to answers via calculators, knowledge of the trigonometric
ratios of some special angles is often useful in calculations.
Trigonometric ratios for special angles

For the present we consider 30° (g), 45¢° (g) and 60° [?j Later we consider

the angles 6 = 0° (0 radians) and 90° (gj

o[z

We consider an equilateral triangle ABC of side 2 units as shown, where 4D is the
perpendicular bisector of BC.

The perpendicular
bisector also bisects
the angle at 4.

Now triangle BAD is right angled and by Pythagoras’ Theorem,

22 = 4D2+ 12
so AD? =41 =3
and AD = 3.
R BD
Then sin BAD = — O tor pi
BA Vi for BAD
i 1
S0 sn30° = =~
2
or sin f—) = l
6 2
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Angles and Angular Measure

% for BAD

Also cos BAD
SO cos 30° = —"/—_3—
2
or o Z = V3
6 2
Finally, tanBAD = BD
AD
NE)
1
or tan — = —.
V3

. o7
(ii) 60 (3J

Consider ABD , which equals 60°, in triangle BAD.

Then

SO

or

Also

SO

or

Finally,

SO

or

sin 480 = A2
AB

sin 60° = —\/—5—

2

T 3

sin — = —.

3 2
cos ABD = ——-BD
AB

cos 60° = l

2

T 1

COS — = —,

3 2
tan ABD = 22
BD

tan 60° = \/5
tan — = \/5

AD
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We consider the isosceles right-angled triangle UVW as shown.

45°

w

45°

.

1

y

The sides UV, VW are each of 1 unit and WUV = UWV = 45°.

Then
Then

SO

or

Also

SO

or

Finally,

SO

or

Uuw? =
uw =

sin WOV =

U2+ Vw2 = 12+12 = 2,

tan 45°=

tan 45° =

A
tan — =
4

We leave the above trigonometrical ratios in fractional and surd form for ease of
manipulation.
The results given in (1), (1), (iil) are summarised in the following table.
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Angles and Angular Measure Further Trigonometry

For completeness, the results for 0°, 90°, 180°, 270° and 360° are also given
although they have not been established. Angles such as 180° and 270° will be
considered by other methods, of course, because it is impossible to draw a right
angled triangle (or indeed, any triangle) having one of its angles equal to 180° or
270°.

Chapter 6

Further Trigonometry

sin, cos, tan of some special angles
2 sin 6 cos 6 tan O In Chapter 5, we introduced the definitions of sin, cos, tan for acute angles. Here we
*0°(0) 0 1 0 * to be (a) extend the definitions to angles other than acute,
200( % 1 NE) 1 established. (b)  use trigonometry to find areas of some plane geometric figures,
3 2 Y NE) (c) introduce a trigonometric identity,
- 1 1 and
45° 5 \/_5. —\/—5— 1 sec 0, cosec 0 (d) solve some simple trigonometric equations.
] and cot 6 may . . .
of 7 V3 2 also be written 6.1 Trigonometric ratios for general angles
0% 3 - 2 V3 d
3 2 own.
- Y
* 90° (Ej 1 0 undefined P(x.y)
1
*180°(m) 0 -1 0 y
* 270° [ 3;7] 1 0 undefined 5
X 18] x N X
* 360° (2m) 0 1 0
YI

Exercises 5.4

) . In the diagram, X'OX and Y'OY are two perpendicular axes. OP is a line which is
Find the acute angle & in the following, without use of a calculator.

supposed to rotate anticlockwise about O, OP is of length 1 unit.

. 3 o) 1 If P is in the first quadrant as shown then POX = 8 is an acute angle. Drawing
= |= 2. +30" |]=— ; :
L sin3¢ \/; COS( ) NG PN to complete a right-angled triangle PON, we see that
| no = PV _
3. tan(&’—lSo):T 4. sm[26’+ j : st oP 1
13 ‘ SO y = sin6.
5 005[4(9_2) = — 6. sm(86’+ 12 ) ;e Also cos O = __O_]_v_ - i
4) 2 § | oP 1
: V4 0 ~ SO x = cos®.
iy . tan{46+ 23" )=1. § . . . .
7. sm(S&’ 4] 0 8 an( ) § Thus when OP is 1 and P is in the first quadrant with POX = 6, the coordinates
? of P are (cos 0, sin 0).
% This idea is now extended to angles of any magnitude.
i Definition If POX = 6 and OP = 1, whatever the value of 6, the coordinates of P
are (cos 0, sin0) and tan 6 = S 6’.
i cosd
78
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Further Trigonometry

Example 6.1
Find the values of cos 160°, sin 160° and tan 160°.
Y
P
i
f 1
! 160°
I <l
X— 207 N X
N o
YI

In this case, P lies in the second quadrant.
Now for P, x <0 so cos 160° <0,
y>0 so sin 160°> 0,

since the coordinates of P are taken to be (cos 160°, sin 160°) by definition.

Further if we drop the perpendicular PN from P to X'OX,
cos 160° = — ON,
sin 160° = PN.
Now POX" = 20° and

ON . PN . o Triangle PON
T cos 20°, T = smn 20°. is right-angled.

ON = co0s20°, PN = sin 20°.
cos 160° =— ON=-cos 20°= - 0.9397,
sin 160° = PN = sin20° = 0.3420
sin160° sin 20°

correct to 4
decimal places

and tan 160° = = = —tan 20° = — 0.3640.
cos160° —c0s20°
Example 6.2
Find the values of sin 250°, cos 250° and tan 250°.
Y
X
X N 0 X

! The coordinates of P
Y are cos 250°, sin 250°.
P

P lies in the third quadrant. Then for the point P,
x <0, y<O0
SO cos 250° < 0, sin 250° < 0.
Then if N is the foot of the perpendicular from P to X'OX,
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cos 250° = — ON,

sin 250° = — PN.
Now PON = 70° and v —2530

O_1N — cos 70%, !%v’ — sin 70° 70°{L~0

SO ON = cos70° and PN = sin 70°.
Then cos 250° = — ON = —cos 70° = —0.3420,

sin250° = = PN = —sin 70° = —0.9397,
and tan 250° = —S70° 700 = 27475,

—co0s70°

Example 6.3

Find the values of sin 310°, cos 310° and tan 310°.

Q /50° X

1

o

Y1 P

Here P 1s in the fourth quadrant and x>0, y <0

SO cos 310° >0, sin 310° < 0.

Then as before, if PN is the perpendicular from P to X'OX,
cos 310° = ON,
sin 310° = — PN.

Now PON = 50° and

—OTA[ = co0s 50°, fl—]\—[ = sin 50°,
SO ON = cos50°, PN = sin 50°.
Then cos 310° = ON = cos 50° = 0.6428,
sin 310° = = PN = —sin 50° = — 0.7660,
and tan310° = S0 _ =sinS0° - s0e = 11018,

cos310° cos50°

Examples 6.1 — 6.3 illustrate the following rules for assigning values of sin, cos
and tan to general angles.

Rules for finding sin, cos and tan of general angles
Determine in which quadrant the angle lies and allocate signs to sin and cos by
reference to the signs of x and y.

Find the acute angle between OP and X'OX and write down the value of sin, cos
of the acute angle, and then use (i). Finally, if required tan = sin 0/cos 6.
After some practise, the quadrant and the acute angle may be found mentally.
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Angles greater than 360° are easily accommodated by this rule.

Example 6.4
Find sin 490°, cos 490°, and tan 490°.
Now 490° is the equivalent to one revolution
Y o o o i
' (360°) plus 130°. The angle 130° is in the

: .,1 — 130° second quadrant and the acute angle is 50°.
» SN ¢ Then cos 490° = cos 130° = — cos 50°,
o sin 490° = sin 130° = sin 50°,
tan 490° = sind90° _ _sin30° - —tan 50°.
Y cos490°  —cos50°

Finally, the procedure enables us to find the trigonometric ratios for 0°,180°, 270°
and 360°.

Y For 6 = 0°, the point P lies on the x - axis, with
OP=1.
Then cos® = cos0° = 1,
X 0 1 P X sin0 = Sl.n(()): =0, forP, x=1
and tan0° = s = 0. y=0.
Y cos0°

The derivation of the other results are left as exercises.

Exercises 6.1
State whether the following values are positive or negative.
(i) sin 162° (ii) sin 325° (iii) cos 279° (iv) tan220° (v) cos (-33.6°)
(vi) sin 600° (vii) cot 195° (viii) sin (—=135°) (ix) sec 140° (x) tan (-158°).
Express the following as trigonometric ratios of an acute angle with the proper
sign :-
(1) cos 256° (ii) sin 114° (iii) sin (~=10°) (iv) tan 183°6" (v) sin 345°
(vi) cos (—248°) (vii) tan 93.1° (viii) cos 585° (ix) tan (—460°).
Find, where the quantities are defined :- sin 90°, cos 90°, tan 90°, sin 180°,
cos 180°, tan 180°, sin 270°, cos 270°, tan 270°, sin 360°, cos 360° and tan 360°.
In which quadrant does the angle 0 lie if
(1) sin® >0, cos 0<0,
(i) tan © > 0, cos 6 <0.
For any acute angle, show by means of a sketch that sin(180 — 0) = sin 6 and
cos(180 — 0) = — cos 0 and write tan (180 — 0) in terms of tan 6.
For any acute angle 6, show that
sin(180 +6) = — sin 6,
cos(180 +6)=—cos 0
and find tan (180 + 6) in terms of tan 0.
Show that if O is acute
sin(-0) = —sin 0, cos(—B) = cos O
and find tan (-0) in terms of tan 0.
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Having defined the trigonometric ratios for general angles, we are able to write
down formulae for areas of triangles and parallelograms.

Areas of triangles and parallelograms
Triangles
Let's consider first the areas of right-angled triangles such as ABC and XYZ.

B

The areas of the triangles may be considered to be exactly half of the areas of the
rectangles shown.

The area of rectangle ABCD = AB x BC so that the area of triangle ABC is
+4B x BC.

Similarly, the area of triangle XYZ = %Z Y x XY.
For a right-angled triangle,

Note that the
hypotenuse is not
involved here.

1 .
area = 5 base x height.

Now triangles which are not right-angled can be built up by combining right-
angled triangles.

D W
| |

| i

| |

! l

I

1
ET G F x------ T 4

In triangle DEF, drop the In triangle UVW, drop the

perpendicular DG onto EF. perpendicular WX onto VU.
Then triangle DEF Then triangle WUX
= triangle DEG + triangle DGF = triangle WXV — triangle WXU
D
s0 area DEF . - Lyyowx- Lxvxowx
= SEGx DG+ _GF x DG % 2
I = —(XV - XU) x WX
= E(EG + GF) x DG %
1 = —UVx WX
= 2

EEF x DG "
= 5 base x height.

1 .
= Py base x height.
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We conclude that Area of a parallelogram

E A

1 .
for any triangle, arca = > base x height. - - -

We may express the area of a triangle in terms of one of the triangle's angles.

D
Z i
: [ The area of parallelogram ABCD
| : = area of triangle 4ABD + area of triangle BCD
| ' 0 - LB pE+LDCKBF
0 ) c g Y 2 2
B D W X 1 1 AB = DC
=—2—DC><BF+5DC><BF DE = BF
= base x height
For triangle ABC For triangle XYZ, Area of parallelogram = base x height.
’ I
area = lBC><AD area = EXYX wZz
2 1 The area may also be expressed in terms of the sine of one of the angles.
= e BAsinG _ L xyx Zxsin (180 - 0)
2 ’.i. A B
= —;jproduct of two sides = EXY x ZX sin 0
1 .
x sin(angle between those sides). = EPYOdUCt of two sides
. 0
x sin(angle between those sides). C

Then if ACD =0 then BDF =0

an —— = sin
BD angles

Thus for any triangle,

area = 1 x product of two sides x sin (included angle).
2

SO BF = BD sin 6.

Then area of parallelogram ABCD = DC x BF
= DCx BDsin 9
= DCxACsin©

= product of two adjacent sides
x sin (included angle between sides).

Area of parallelogram = product of two adjacent sides x sin (included angle).
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(d)

Exercises 6.2 .
1 Find the area of each of the following triangles :-
8
(a) (b 4
48° 110°
6
/J\ ) 4 2
(e
i |
I i
i 2 |
(d | !
//\ . 6 :
™
4
® Find
area ABC
o
) ) . _110°. find the shaded In the diagram, 4B is a tangent to a circle of centre O and of radius 3cm; OA is of
2 Given a circle centre C, radius 2 cm and ZACB =110°, find the shaded area 1 length 6cm and AOB = 6 radians. Find the shaded area in terms of 0.
(Careful!). ;
2 : 5 In the diagram, 4B 1s a chord of a circle of centre O and radius »; and
. A
), |
_ _ . B
3 Find the areas of the following shapes. f AOB = 6 radians. Find the shaded area in terms of 7 and 0 .
(a) ) N.B. This is an important result which often occurs in questions involving radian

measure.

6.3 Graphs of trigonometric functions
In Section 6.1, the values of sin, cos and tan were defined for any angle. Using
these values, we are able to draw graphs of the functions.

]
i
' 2
I
4

Example 6.5
Complete the following table and plot these points on a graph.
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0 (degrees) | 0 45°  90° 135° 180° 225° 270° 315° 360°

(i)

(11) The minimum value of sin 6 is —1 and occurs at . . .

sin 0 |0 07071

The values may be found by means of a calculator or by means of the concepts
introduced in section 6.1.

Thus sin 90° =1, sin 135° = sin 45° ~ 0.7071, sin 180° = 0,

sin 225° = —sin 45° ~ - 0.7071, sin 270° = -1,

sin 315° = —sin 45° ~ — 0.7071 and sin 360° = 0.

The points are shown below on the graph.

Graph of sin

1 sin 0 o
./ N 0 0 0 6/ 450° \ "
-360°  -270° -180° -90° 90" 180° 270° 360" 4 o>
7 -3n = = [0 12:_ 3n T §21_t o
, 2 N 2, 2 <
/ _ goes on v ) goeson __|
“~ forever T - 1 forever

These points may be joined by a smooth curve as shown, illustrating the graph for
sin O in the range 0° — 360° (or 0 to 27 radians). '

Generally, the sine of any angle can be related to the sine of an angle in the range
0° — 360° by addition or subtraction of multiples of 360°. The extension of the
graph for angles outside the range 0° — 360° is shown by the dotted lines.

The main features of the function sin 6 may be noted from the graph.

'-"'3_1[7&5_‘[;’--'
222
at intervals of
27 radians

The maximum value of sin 6 is 1 and occurs at . . .
—270°,90°, 450°, . . . and at intervals of 360°.

) "E:.E,‘Zl[:"'
222

at intervals of

27 radians

-90°, 270°, 630°, . . . and at intervals of 360°.

(1i1) sin © = 0 when 6 = . . . —=180°, 0, 180°, . . . and at at’1:tter(3ra1l[sof
intervals of 180°. n radians

(iv) The shape of the graph of sin 6 from 6 = 0°(0) to 360°(2n) is repeated over

intervals of 360°(2n). The function is said to be periodic or cyclic. We say the
period of the graph is 360° or, more usually, 2n (radians). The graph exhibits a
wavelike nature and is often referred to as a sine wave.

Check some values
cos 45" =0.7071
cos 135" =-0.7071
cos 180 =-1

Graph of cos
The graph of the cosine function cos 6 may be plotted
in the same way and has the shape shown on the next

page.
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cos 0 ‘tl

0270° -180° -9/ \90° 180° 270° 360" %50°
-3x - T 0 T n 2n St @
!25\/2 g\/z— ’ \\_>

<« 8ocson 41 goeson -

forever
forever

The main features of the function cos 6 may be noted from the graph.

(1) The maximum value of cos 6 is 1 and occurs at . . . 0°, . 0,2m, .,
o . o at intervals of
360°, . . ., and at intervals of 360°. 1 radians
. . . ) PPy (P | S
(11) The minimum val.ue of cos 0 is — 1 and occurs at . . . —180°, at intervals of
180°, ..., and at intervals of 360°. 27 radians
R A A
) 2 2
(ii1) cos 6 = 0 when 6 =...-90° 90°, . . ., and at intervals of at intervals of
7 radians

180°.

(iv) The shape of the graph of cos 6 from 0 to 360° (0 to 2m) is repeated over intervals

of 360° (2m). The function cos 6 is also periodic or cyclic with period 360° or 2n
radians, and its graph exhibits a wavelike nature
similar to that of the sine function. Indeed, inspection
of the graphs of sin 6 and cos 6 indicate that the graph
of cos 6 can be obtained by moving the graph of sin 6

to the left through 90° (or ‘5_5 radians). For that reason,

the graph of cos 6 is also often referred to as a sine
wave.

Example 6.6
From the graph of sin 6 and given that sin 132° = 0.7431, correct to 4 decimal

places, find all angles between —360° and 360° which have their sines equal to

0.7431, correct to 4 decimal places.
Sin

From the graph the angles are — 360° + 48°, —360° + 132°, 48°, 132°, 1.e. — 312°,
—228°, 48°, 132°.
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Graph of tan 6
To draw the graph of tan 6 we first construct a table of values for values of 0

between 0° and 360° (or 0 to 27 radians).

6 0 45° 90° 135° | 180° | 225° 270° 315° | 360°

tan O 0 1 undefined -1 0 1 undefined -1 0
The graph is shown below.
$tan 0
1 ] 1 | |
i I I | |
| 1 | 1 |
i I | 1 |
i I I I |
3% -1 ft n 5n
2 2 2 D,
0" A180°  —90° 0 90° /180° 2700 60 1450
i 1 |
| | | | |
| 1 | 1 I
I I i [ |
| I 1 I |
| 1 | I {
The graph has breaks at 0 =. . ., — 270°, — 90°, 90°, . . ., and at intervals of 180°

(27 radians). The function is said to be discontinuous at these points. Whilst the
graphs of sin 6 and cos 6 (which are continuous functions) lie entirely between the
values —1 and 1, the graph of tan 6 stretches indefinitely upwards and downwards.

As 0 approaches 90° (or g radians) from the left, i.e. by gradually increasing
values, tan 0 increases indefinitely, e.g. tan 88°30" = 38.19, tan 89°. z.57.29, tan
89.9° ~ 572.96; and between 89.9° and 90° tan 6 increases without limit. We say
that tan © — o as 6 — 90° (‘272 radians) from below or from the left.

In contrast, as © approaches 90° from above or the right, tan O decreases
indefinitely: tan 91.5° ~ — 38.19, tan 90.1° = — 572.96. We say that tan 0 — —
as 6 —» 90° (%[ radians) from the right or above.

Thus when 6 is just less than 90°, tan 0 is a very large
positive number; when 0 is just greater than 90°, tan 9 is a
very large negative number. We are unable to assign a

definite value to tan 90° or tan -275: it is undefined.

sin 6
cos 0

and sin 90° =1

cos 90° =0.

tan @ =

The main features of the function tan 6 may be noted from its graph, as follows:

90

%
.
:
§
.

(1)
(i1)
(iii)

Further Trigonometry

tan 6 has neither maximum nor minimum values;
tan 6 =0when 6 =... —180°, 0, 180°, . . . at intervals of 180° or = radians:;

the shape of the graph from —90° to 90° is repeated over

intervals of 180°: the function is periodic with period 180° & tan 210" = tan 30;
(m radians), in contrast to the sine and cosine functions
which have period 360° (2n radians).

In chapter 4 the link between the points of intersection of graphs and the solution
of equations was explored. There the points of intersection were found by solving
equations.

Here, the link is considered from the opposite viewpoint: points of intersection are
used to make deductions concerning roots of equations.

Example 6.7

Show by sketching the graphs of
y =¢9—§ and y =siné&

that the equation
2sinf-0+r=46

T
has a root between -2— and Tt.

We note that where the graphs intersect,

T
- By =sin & Equating the ys

or 2sinfd-0+7=20. (1)

The graphs are shown below.

y 4

. . T g
It is seen that the graphs intersect once between & = 3 and ¢ = r, indicating

there is a root of equation (1) in this range of 4.
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Exercises 6.3
Find all angles between 0 and 360°, inclusive, satisfying the following equations:-
1 1 1 V3
aysin0=-—(b) cosO=—= (¢c) tanO=— (d) cosO=——
(a) 72 (b) 5 (c) Ne 5

(¢) cosB=1 (f)tanB=0 (g sin9=—§ (h) cos6=-1 (i) tan0 =—-1.

P 1
Find the values of 6 between 0 and g satisfying sin 20 = —.

V2
Without using a calculator, find
(1) tan 180° (ii) tan 360° (iii) tan 60° (iv) tan 240°
(v) sin330° (vi) cos 420° (vii) sin 480° (viii) cos 570°.

o 1
Find the values of 6 between 0 and & satisfying tan 30 = \/_5.
Find the values of 6 between 0° and 180° satisfying
30 ..
(1) sin (B + 60°) = —;- (i1) cos (B —45°) = —\/2: (111) tan (6 - 30°) =1.

Solve the following equations for values of #from 0° to 360°, inclusive: -

I 1
(a) sin 6’:2 (b) tan 6’—5
(c) sin34 = -1 (d) 2cos26 =1
(e) tan’ @+ tanf=0 63 2cos’ @=cos ¥
(2) 3sin’ @+sind=0 (h) 4cos’ @=cosd

(1) tanfd=2sind.

B

A chord 4B subtends an angle 0 at the centre of a circle of radius . Given that the
chord bisects the sector OA4B, show that
f=2sind.

By sketching the graphs of y = —g and y =sin &, show that there is a root of this

. Vs
equation between By and 4.
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By sketching the graphs of y=tan& and y =1+ &, show there is a root of the
equation
tand=1+6

T T
between Z and —.

2
A trigonometric identity

The trigonometric ratios for general angles were defined in Section 6.1. Let’s
recall the definition.

Y

/_.\9
@)

Yl

In the diagram, X"OX and Y OY are the usual perpendicular axes and

POX=90.

From the definitions, P has coordinates
X=C08d, y=siné.

This applies in
whichever quadrant P
is situated

Then if PN is perpendicular to X’ 0, the triangle PNO is right-angled.
Let’s use Pythagoras’ Theorem.

Then ON’ + NP? =1
Since x = —ON and y = NP, we have

x? +y2 =1
or cos?@+sin’d=1

The symbol = is used to stress that the relationship is an identity, i.e. it holds
for all values of 0.

Two further identities will be introduced in the P3 unit.
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Example 6.8
Solve the equation
1+sind=2cos’ &,
for values of @ between 0 and 360°.

sin® @+cos’ =1
so whenever you

2 .
The term in cos’ @ on the right hand side indicates see COS” &, think of

that the equations may be written in terms of siné&
only.
Then from sin® @+ cos’ & =1, we obtain
cos’@=1-sin’ 4
and the given equation becomes
1+sind=2(1-sin> ).

. 2 .
sin” ¢ and vice versa.

2sin’ @ +sind-1=0.
Then (2 sind—1)sinf+1)=0

or use the
quadratic formula

Remember — 90°
from your calculator

is equivalent to 270°
after adding 360° .

1
sind=— or-1.
2

Then 8 =30°, 150° or 270°.

Example 6.9
Show that

(cos & + sin (9)2 +(cos @ —sin gy =2.

Note there
are six terms,

Now (cosé +sin o) + (cos @ —sin 8y’

= cos’ @ +sin’ @+ 2cos@sinf+ cos> 8 +sin’ @ —2cosPsin b not four.
k—-————v—./ M s
1 1
=2,
Example 6.10

Ifsin &= —i— find, without using a calculator, the possible values of cos ¢

and tan 4.

Now sin’&+cos’ & =1

. 3Y 9 16
) cos’f=1-sin’f=1-]=| =1-—=—.
5 25 25
4
Then cosf =+ E:i—.
25 5
94
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3
Also tand = Sme:—s——zii.
cosd +i 4

5

Exercises 6.4

Find all the values of & between 0° and 360° satisfying the following equations,
(1) sin’ @+ cos@+1=0 (11) 3-3sind =2cos’ &
(i) 1-sin@d=cos’ ¥ (iv)  sin’@—cos’ #=3cosf-2.

1 . : . .
If cosf = Y and & 1s obtuse (i.e. 90°< #<180°), find, without using a

calculator, the values of (i) sin &, (ii) tan &.

V3

If cos & =— -—2—— and 180°<@< 270° find, without using a calculator, the values

of (i) sin& (ii) tan 4.

If sin¢ = ———1——and 270° <@< 360°, find, without using a calculator, the value of

V2
cos 4.
Ifx =a siné#, write the following in terms of &,

()Va® - x> (ii)\/——z-_xl—z.
a —X

If y =b cos @, write the following in terms of &,

Q) b — (i) -———be_y.
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7.1

Differentiation

Chapter 7

Differentiation

Differentiation is a process related to the rates of change of functions. Let's start
by considering some examples concerned with the steepness of graphs of
functions.

Gradients of straight line graphs

Example 7.1
We compare the graphs of the functions f{(x) = 5x and g(x) = %x.
y y
y = 5x
y= 1§ X
X X
0 0

It is observed that both graphs are straight lines and that the first is steeper than
the second. To analyse steepness, by analogy with descriptions of hills, we
consider the gradients of the lines.

One way of characterising the gradient is to compare the rate at which y changes
compared with x for motion along the line.

tY 4,20 A 1
@, 10) 10 @ 1
4 2 1,d 1
C 1 .
» X
0 y=5x 0 y=%x

Points A(2, 10), B(4, 20) are taken on the first line, and points C(1, %), D2, 1) are

taken on the second line. The gradients may be measured as
difference of y's for 4(C) and B(D)

difference of x's for A(C) and B(D)

Gradient (or slope) =

96

Differentiation

_20-1 -3
These give 0-10 and —2,
4-2 2-1
. 1
ie. 5 and —.

A few points are worthy of note here.

(i) The calculated gradient (or slope) is greater for the first which ties in with our
intuition.

(i1) The numbers 5 and % ariseiny=>5x and y= %x.

(1i1) The same numbers arise if we take different points on the line. Thus 4'(5, 25),

B'(12, 60) lie on the first line and give
difference of y's

Check C’(6,3), D’(20,10) lie
on the second line and give
1

>

Il

gradient

difference of x's
60-25
12-5

The answers of 5 and % for the gradients of y = 5x and

y = -;-x respectively indicate that the slope of the line

gradient =

‘Slope’ will
sometimes be
used instead of
gradient.

described by y = mx is m.

Example 7.2
What is the slope of the line given by y = 7x + 3?

The general form

of the equation
isy=mx+c.

The slope of the straight line may be found in the same
way as before. Two points are taken on the line, say

(2,17) and (9, 66). o
1 ' €ec €se
Then  slope = 6617 (d1fference of y s) @

9-2 difference of x's

4
Y4
7

The same result is obtained if any other two points on the Check (15,108)
line are taken. and (28,199).

The slope or gradient of
y =Tx+31s 7.

i
For y = —3x+2 check
with the points (4,-10)
and (10,-28) that the

slope is -3.

More generally, if
y = mx * c, the slope is m, whether
m 1s positive, zero or negative.

For y = 8 (constant), the slope is zero, because (3, 8),

(10, 8) are on the line and F (3.8) (10,8)

slope = —— = — = 0.
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Exercises 7.1
Write down the gradients (or slopes) of

(1) y=56x+3 (ii)y=—1—(12x+11 (i) y=-7

x+1000

) 1
w) y=13-6x (v) y=
(v) y (v) y 7000

(vi) 3y=x+6 (vil) 7y=-3x+ 1.

Gradients of curves

71 B 4(3,10) The calculation of the slope of a curve is a more
difficult problem. For instance, let's consider the
graph of flx) =x2+1ory=x2 + 1.
4 1,2
(1.2) Now for the two points 4 and B on the curve it is
0 > X clear that the curve is steeper at B than at 4.
y =x+ 1

To make progress in investigating the slope of the curve we exploit our
knowledge of slopes of straight lines. Let's adopt the following definition.

Definition

The slope (or gradient) of a curve at a point is the slope of the tangent to the curve
at that point. The slope characterises the rate of change of y with x.

The introduction of the tangent to the curve in order to characterise the curve's
slope appears reasonable when reference is made to a diagram.

Y4

B
\/ y
0 > X

In the diagram, the curve is steeper at B than at 4, and the tangent at B is also
steeper than the tangent at 4.

Thus, one method of measuring the slope of a curve at a point is to draw the
tangent to the curve and calculate the slope of this tangent by finding
difference of y's

- for two points on the tangent. This method is not recommended
difference of x's

because of the difficulty of drawing tangents accurately. A more objective
method is preferable.
We study tangents by first considering chords of the curve.
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Example 7.3
This refers to the curve y =x2 + 1. Find the slopes of the chords joining the points
(a) A(1, 2), B1(2, 5) (b) A(1, 2), B5(1.7,3.89)  (c) A(1, 2), B5(1.5, 3.25)

(d) A(1, 2), B4(1.2,2.44) (e) A(1, 2), B5(1.01, 2.0201).
The sketch (not to scale) shows the relative positions of 4 and B to Bs.

The chords 4By, AB,, AB3, AB4, AB5, may be regarded as approximations to the
tangent to the curve at 4, 4B being the most accurate approximation. The slopes
of chords 4By, AB,, . . . ABs are successive approximations of increasing
accuracy to the slope of the tangent at 4, and therefore by definition, to the slope
of the curve at 4.

Let's find the slopes of the four (straight line) chords. We recall that if we have
two points on a straight line then

difference of ys

slope = — .
difference of xs

slope of AB| = %:—ZI =3
4B,  A(1,2),B5(1.7,3.89)
slope of 4B, = 38972 _ 2.7
1.7-1
4By A(1,2), B3(1.5, 3.25)
25-2
slope of 4B; = 325 =25
1.5-1
4By A(1,2), By(1.2,2.44)
2.44 -2
slope of 4B, = 24472 _ 2.2
1.2-1
4Bs  A(1,2), Bs(1.01,2.0201)
2.0201-2
slope of 4B5 = 2.0201-2 _ 2.01.
1.01-1

Now the slope of the chord joining A4 to a point very
close to 4 would be a good approximation to the slope of
the tangent at 4.

Rather than try more numerical examples along the lines
of above, it is useful to generalise and consider a point B
near (1, 2) with coordinates (1 + 4, (1 + A)2 + 1).

points on the
curve satisty
y=x +1.
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The slope of the chord AB is

B(Lth,(LHh) +1) differenceof ys  _ (1+h)2 +1-2
difference of xs 1+h-1
2
4(1,2) _ 14+2n+R 412 RP42R 2tk
h h

changing the order of terms for convenience.

This algebraic example conveys more information than
numerical examples, namely that the slope of the chord
joining A(1, 2) and B(1 + A, (1 + h)? +1)is 2 + h, and
the nearer to zero # is, the closer this slope is to 2. By
taking / sufficiently close to zero, the slope of the chord
may be made as close to 2 as we please. We conclude
that the slope of the tangent to the curve y = x2+1at(1,2)is 2.

The result of example 7.3, whilst instructive, is of limited appeal in that it refers to
the particular point (1, 2); a more useful result would be the slope of the curve at
any point.

N.B.
‘We cannot take
h = 0 because one
step in obtaining
the slope was to
divide by A.

Example 7.4

Following the procedure outlined in example 7.3, find the slope of the tangent
(and, therefore, of the curve) at the point (a, a? + 1) on the curve y = x2+1.

We take the point (a, a2 + 1) and a neighbouring point (a + 4, (a + h)2 + 1) on the
curve.

The slope of the curve joining these points is

differenceof ys _ (a+h)* +1-(a’+1)

difference of xs a+h—a Use brackets around
a2+2ah+h2+l-a2-—1 a2+1_t0a.void
- 7 erTors in signs.
2
= ———————20}1; W 2a+ h.

Then as 2 — 0, the slope of the chord approaches the value 2a.
Thus the slope of the tangent to the curve y = x2 + 1 at any point is
2 x x-coordinate of the point.

The procedure is easily applied to polynomials of higher degree although you
will not be required to do so in the P1 examination.
To apply the procedure to a polynomial of degree 3 we
require knowledge of the following expansion:-

(a+b) =a’ +3a’b+3ab’ +b°.

This is not required
for the examination

We ask you to accept this result; if you do not wish
to do so it can be derived from

(@+b) =(a+bYa+b) =(a+b)a’ +2ab+b2) etc.
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Example 7.5

Find the slope at a point (a, a3 + 3a + 2) on the curve y = x3 + 3x + 2.
We consider the given point (a, a® + 3a + 2) and a neighbouring point
(@a+h, (a+h)3+3(a+h)+2).

Then the slope of the chord joining these points is

differenceof ys  (a+h)’ +3(a+h)+2—(a’ +3a+2) Recall expansion for
difference of xs a+h-a (a + b)3 and let b=h.
a’ +3a*h+3ah* +h* +3a+3h+2-a* -3a-2
- h
3a’h+3ah® + h> +3h
h

= 34?2 + 3+ 3ah + h2, onreordering the terms.
As h — 0, the slope of chord — 3a? + 3.
Slope of curve = slope of tangent = 3a2 + 3, at the point (a, a® + 3a + 2)
or the slope of the curve at any point = 3(x-coordinate)? + 3.

The above process of finding the slope of the curve illustrates a process known as
differentiation.

In fact, the actual process is differentiation from first principles. Later we
shorten the process of differentiation and give rules which enable it to be done
almost immediately. For the moment, let's look back at the ideas in examples 7.4
and 7.5.

In both cases, we were given equations of curves in Ex 74 1) =2+ 1
the form y = f(x) and found the slope of the curve at Ex 7.5, f(x) = x° + 3x + 2
(a, f(a)). In fact, we started by considering the slope

of a chord joining (a, f(a)) to a neighbouring point (a+4, f(a + k)) :-

———TT T
e.g. in Ex 7.5
(a+h)’+3(arh)+2-(a*+3a+2)
h

After some tidying up, we imagined /4 to become smaller and smaller, i.e. to tend
to zero, and identified the final result as the slope of the curve at (a, f(a)).

differenceof ys _ f(a +h)—1f(a)
difference of xs h '

We make some further observations on the process.

(i) It is unnecessary to introduce the letter 'a' to denote a general point : the letter x is
equally valid. Thus in example 7.4 the slope at the point (x, x2 + 1) is 2x; and in
example 7.5 the slope at the point (x, x3 + 3x + 2) is 3x2 + 3. Thus we may

f(x+h)—f(x) f(a+h)—f(a)

consider the ratio mstead of

(ii) A convenient way of writing the slope of the function f(x) is to use the symbol
f'(x). Thus we have shown
thatif f(x) = x2+1 then f'(x)= 2x,
andif f(x) = x3+3x+2then f'(x)= 3x2+ 3.
The function f'(x) is called the derivative or derived function of f(x).
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(iii) The process of differentiating involves the final stage of letting A — 0 and
deciding upon the limit of the final expression.
Drawing on the points considered in (i), (ii), (iii), we say that the derived function
f'(x) of f(x) is given by

-t
Fe) = fimie JEFD I
h—0 h

We use this result in the following example.

Example 7.6 (Non-examinable, but very important)
Given f(x) = x3 — 4x + 1 find f'(x), i.e. find the derived function {'(x) or
differentiate f(x).

Now f'(x) = limit

See expansion for

f(x+h) - £(x) (a+b)® with

h—>0 h a=x,b=h
(xR —A(x ) F1=(x —dx+1)
= limit
h—0 h
.. x3+3x2h+3xh2+h3—4x—4h+1—x3+4x—1
= limit
h—0 h
o 3x2ha3xh 4R —4h
= limit :
h—0 h
— limit 3x% +3xh+h* -4
h—0
= 3x2 -4,

Thus if f(x) =x3—4x+1
then f'(x) = 3x2—4.

Exercises 7.2

Find the slope of the chord joining the points (2, 8) and (2.1, 9.261) on the curve
y=x3.

Find the slope of the chord joining the points (2,16) and (2 + &, 3(2 + k)2 + 4) on
the curve y = 3x2 + 4. By letting & — 0, find the slope of the curve at (2,16).

Find the slope of the curve y = x3 — 3x +°1 at the point (3, 19).

If f(x) = 2x2 + 3x — 4, show that flx h})l miiCI 4x + 3 + 2h and hence find

£'(x).

Given f(x) = 7x2 — 3x + 10, find {'(x) from first principles.
Differentiate f(x) = x3 — x2+ 4 from first principles.

Differentiate the following from first principles

() 3x3 (i) 2x2 (iii) 6x (iv) 3x3 +2x2+6x

What is the relationship between the answers to (i), (ii), (iii) and (iv)?
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Note on limits
The process of finding a limit is an essential component of differentiating

functions from first principles. To recall, given a function f(x) then
f(x+h)-f(x)

f'(x) = limit

hr—0 h
Thus, for example, if f(x) = x2,
. h)? - x*
Fiey = limit FFEM =X
h—0

~ limit(2x + &) @
h—0

= 2x.
The argument is thatas 4 — 0, 2x + A — 2x.
The following question is often raised by students. As in effect we set 2 =0 in
2x + h to obtain 2x, why don't we put 4 = 0 earlier in the calculation?
To respond to this question, we note that we first consider the slope of the chord
joining the points (x, f(x)) and (x + A, f(x + 4)) and a chord requires two end points
for its definition, so 2 # 0. During the limiting process we suppose 4 becomes
smaller and smaller (without allowing it to take the value zero), and observe in the

above example that 2x + 4 becomes closer and closer to 2x without attaining the
value 2x.

It should also be noted that if we set # =0 in f(x+h) - £(x)

we obtain % which

is undefined.

The delta notation
An alternative method of presenting differentiation uses the delta prefix.
In mathematics, the letter is often used to mean 'small increase' so that
dx means small increase in x,
8y means small increase in y, and so on.
To find the slope of the curve y = x2 + 1 at the point (2, 5) using this notation, we
proceed as follows.
Let A be the point (2, 5) and let dx, dy be corresponding increments in x and y so
that B is the point (2 + dx, 5 + dy) on the curve.

yA

B (2+6x, 5+ 8y)

To relate to our
previous work in
section 7.2 we note
that &x = h and
Sy =1(2.+ h) - {(2)

40,5

v
b

with f (x) = x".

Since B lies on the curve y = x2 + 1,
5+8y = 2+8x)2+1

or Sy = (2+8x)2 -4

48x + (8x)2.

It
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)

Y yran

Then - 4 + éx VP
h

=4+hiffx)=x

The slope (or gradient) at (2, 5) is found by letting dx
become smaller and smaller i.e. letting dx — 0.

= limit(4 + & Compare with
Then slope I;xrilo ( %) limit (4 + k).
= 4. h— 0
. . d
We write  limit é}— = —J—},
&—0 & dx
thus if y = x2+1then If () = 41
Y - 4as). then '(2) = 4.
dx
As in section 7.2, we are able to find the gradient at any point on the curve.
Example 7.7
Ify=x3—-x+2,find % at the point (x, x3 —x + 2).
Now y = x3—x+2. )
Let x, 8y be corresponding increments in x and y respectively so that
y+oy = (x+ 6x)3 — (x +8x) + 2. 2) Note the use of
Subtracting (1) from (2), we obtain brackets when

oy = (x + 6x)3 —(x+dx)+2- (x3 -x+2) subtracting.

X3+ 3x28x + 3x(8x)2 + (Bx)3 —x —dx +2 —x3 +x -2
Sy = 3x2—-1)dx+ 3x(8x)2 + (8x)3

and @ 3x2 — 1 + 3x8x + (8x)2.
% Note expansion
Then  — limit ¥y limit (3x2 — 1 + 3x8x + (8x)2) for (a+b)’ with
dx &0 o &0 a=x.b=5x
= 3x2-1.
Thusif y = x3—x+2,then
—(Pi = 3x2 - 1.
dx
Example 7.8

Ify=l, find 512}—
X dx

. dy
It is assumed that — at the
dx

general point is required.

Now y = l (1)
x -
Let 8x, 8y be corresponding increments in x and y respectively so that
+dy = . 2
yroy = —— )
Subtract (1) from (2).
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Differentiation
1 1
Sy = =
Y X+ x
_x—(x+ o)
- (x+ d)x using the common
& denominator to
= subtract fractions
(x+ d)x
Then ¥ _ -1
x (x+ox)x
and Yo imit? = fimit——L - L _ L
dx &—0 & &0 (x+ &X)x x.x x?
Thus if y = l, d_y = —L
X dx x2

Exercises 7.3
Given y = x” and 8x, 8y are corresponding increments in x and y
respectively, show that
Sy = 2x8x + (8x)’
and hence show that
dy

- =2x.

dx

Given y = x’, apply the procedure adopted in question 1 to show that
& = 3x2 + 3x(Sc ) + (5.
Find Q
dx

Given y = x, apply the procedure adopted in question 1 to show that

oy = ox.

Hence find iy_ .
dx

Given y = 1, show that

5 = 0.

Deduce the value of @}—
dx.

If y=3x> —5x +7, show that
8y = (6x— 5)dx + 3(8x)% -

If y=5x>+3x*>+2x +1, show that
8y =(15x%+ 6x +2)8x + (15x + 3)(6x) > +5(5x)" .

Deduce the value of Eil .
dx
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Find g—)—)— in the following cases:-
X

@A) y=6x (i1)
(iv)  y=3x"+2x’ +6x

y=2x"

3

(i)  y=3x

What is the relationship between the answers to (i), (ii), (iii) and (iv)?

: 1
Giveny =—-, show that
x

—2x0x — (6x)2
oy = 2 2
(x + 5x) X
Hence show that
dy _-2
dx  x3 '
Given that
1
Y 2x+3
show that
3 - 20
(2x + 268+ 3)2x +3)
Hence show that
__ -2
dx (2x+3)2 .
Given that
1
Y 6x+1
d -6
show that Y —_—
dx  (6x+1)

The differentiation of functions, whether using the f or J notation, from first
principles is often tedious. The tedium is avoided by drawing up a catalogue of
results for some basic functions and developing rules for use with this catalogue.
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Differentiation

7.4 Differentiation of some basic functions

Summarising the results of example 7.8 and questions 1, 2, 3, 4, 8 of exercises
7.3, we have

D(1)=0,
D(x) =1, D(1) means EZ—QZ etc.
D(x*)=2x, dx
D(x’)=3x",
D(x")=-1x"%,
D(x7%)=-2x"".
All these results obey the general rule
D(x")=nx""

or f(x)=x", f'(x)=nx"".

We assume now without proof that
if flx) = x* then

f'(x) = nx-1 D
1s valid for all values of n, whether
integer, fractional, positive or
negative, or zero.

Example 7.9
1
If f(x) :T: x—3’
x
f1(@)=-3x""
3
=-3xt=-=.
x4
Example 7.10
3
If y = x2, ( :%)
d 3 2
Ei}— = -2—x2 ! (from Rule I)
34 3
= ___x2 = —alX
2 2
Example 7.11
1 i
If flx) = — = x (n=-1)
x2
1
then  f'(x) = —%x 2!
7 -2 -7
= —=Xx ? = 7
2 2x?
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Rule I can also be applied to the differentiation of constants; because

See question 4, exercise 7.3

flx) = ¢ or y =g

where ¢ is a constant, may be written
fx) = x0 or y = xD,

(anything)’ = 1
Then £'() = 0x0-1 or & = 0x0-1
dx
W\ — dy
% e =0 or dx 0. This says slope
ofy=cis 0.
Y4
This result is worthy of display as a second rule. .
—t—>x
If f(x) = constant,
f'x) =0
or y = constant, 1)
v,
dx
Example 7.12
Find o4 if y =8.
dx
fd)j = 0 byRulell
dx

The third rule relates to the differentiation of functions such as f(x) = 3x°.
Consider f(x) = 3x9,
3
fx) = —6x2,
or more generally, f(x)= Cx",
where C and » are constants.

The rule is if f(x) = Cx*
then f'(x) = Cnx"-1 | (1)

The rule is derived from

Fi(0) = limit SEH €
h—0 h
Then for f(x) = 3x9,

f'(x) = 3 x9x8 = 27x8;

We don’t pursue this here.

3
and if y = —6x2

9)_)_ :_6x§x%_l =—9x%. Here C = -6.
dx 2

then
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Before concluding this section, we give, without proof at this stage, a rule for
differentiating the sum of functions. In question 7 of exercises 7.2, you were
asked to differentiate 3x3 + 2x2 + 6x. It is straightforward to show from first
principles that if

fx) = 3x3+2x2 + 6x
then f'(x) = 9x2 +4x + 6.

If we apply Rule I to the separate functions 3x3, 2x2, 6x
we obtain 9x2, 4x, 6.

Then if f(x) = 3x3 +2x2 + 6x,
Vool
f'(x) = 9x2 + 4x +6.
Thus the first principles differentiation of f(x) shows that for this polynomial
function the final result could have been found by differentiating term by term.
This rule applies to all types of functions, in fact. Thus if

1
y =3x2+ — + 9,
x

Ly

Y 6x+ (=1x"1-1+0 = 6x——}—.
dx %2

Addition Rule
Differentiation of expressions involving sums or
subtractions of terms involving powers of x can be | (IV)
achieved by differentiating each term separately and
adding or subtracting each term as appropriate.

Example 7.13
Kl
3x% - 2x7 +3

(i) (x— Dx+2) (i) N
X

Differentiate (i) 3x7 — 6x> + iz +3
X

Term by term differentiation gives
IxTx0 — 6x54 + 9x-2xx3 + 0
2 2 \ 2
rule IIT rule III rule III rule I1
with C=3,n=7 (C=-6,n=5 (C=9,n=-2
= 21x6 - 30x% - -1—?—

x3

We expand (x — 1)(x + 2) to obtain
R+2x-x-2 =x2+x-2.
Then term by term differentiation gives
2x+1-0 = 2x+1.

109



Differentiation

(i11) We first divide out to obtain

7 1
3x2 —2x+i, recalling that Jx = x2,
Jx

Then differentiating term by term gives

7 3 O
3x5xx2 -2 +3><—~2—><x2
! N\ ~
Rule III Rule III Rule III
(C=3,n=1) (C=-2,n=1) (C=3,n=-3)
5
= 2x2 __2__ 3 .
2 3
2x2

Before leaving this chapter, we recall that we started by asking how we could
characterise the steepness of a curve. The concept of differentiation was
introduced to find the gradient of a tangent to the curve. Then if the curve is
given by y = f(x) we defined the gradient of the curve (and of the tangent) to be
% or f'(x). We conclude this chapter by returning to the concept of tangent to a

curve.

Example 7.14

A curve is described by the equation y = x3 — 2x2 + 4. Find the slope of the
tangent to the curve at the point (2, 4).

Now for y =x3 — 2x2 + 4, the slope of the tangent at a point is given by

b 3x2 — 4x.
dx

When x =2, Y =3(2)2-4x2 =4
dx

Example 7.15

Find the values of x at which the slopes of the tangents to the curve
y = 2x3 +3x2 — 6x + 2 are equal to 6.

Slope of the tangent is %: 6x2 + 6x — 6.

Required values of x satisfy 6x2 + 6x — 6 =6 (given)

SO 6x2+6x-12 =0
or 6(x2+x-2) = 0.
Then 2+x-2 =0
or x+2)x-1) =0.
‘ x =—2orl
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Example 7.16
Find the values of x at which the tangents to the graph of

fx) = x3—2x2—4x+ 8 are parallel to the x-axis.
Slope of the tangent is

f'(x) = 3x2—4x— 4. -
When the tangent is parallel to the x-axis, The fﬁms hasl, Zero
£'x) = 0 gradient or slope.

SO 3x2—4x—-4 = 0.
This factorises to give

Bx+2)x-2) =0 or use the
2 quadratic -
50 X = 3 or 2. formula

Exercises 7.4
Differentiate with respect to x:-

() 9x10 (i) —37 Qi) 7 (v) 222 () % (vi) 2x2 - 9x
X

x?
2
(il) 33+ 024 (viil) (k+ D -3) (i) 2 ) e 1)2
X
(xi) (x—1D(x +x) (xi) 1+3+-22—+—43—.
X x X

Find the gradients of the given curves at the given points :-

(1) y=x2+9 where x=3 (i) y=3x3 -5 wherex=1
1 ,
(11) y=— where x=2 (iv) y=0CBx+ 1)(x-95) wherex=0
X
) y=1+% where x =2 (vi) y=x3+2x2+3x+6+i where x=1.
X X

. dy . : :
Find Ex)i in the following cases and hence find the points on the curves where the

tangents have the given slopes.

(i) y=x2+4 (m=-38) (i) y=x3+x+2 (m=1)
(i) y=3x2-2x+4 (m=10) 1v) y=(+ Dx+3) (m=-18)
) y=2x+l (m=-2) (vi) y=———13— (m=27)

X X

(vil) y=x3+x2+x+4 (m=9).

Find the slope of the tangent to the curve y = 2x — x3 at the point (1, 1).

Find the slope of the tangent to the graph of the function f(x) = (x + 2)(x — 3) at
the point where x = 2.

Find the gradients of the graph of f(x) = x2 — 2x — 3 at the points where the graph
crosses the x-axis.

: : 1
Find the gradients of the tangents to the curve y = x2 — x at x = 5 and x = -23- For

what value of x is the gradient of the curve equal to zero?
Find the coordinates of the points on the graph of y = x3 — 3x2 + 6 at which the
tangents are parallel to the x-axis.
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8.1

Applications of Differentiation

Chapter 8

Applications of Differentiation

In section 2.4 we considered maximum and minimum values of quadratic
functions by completing the square. Here we use differentiation to investigate
maximum and minimum values of functions. Before doing so, we consider the
relationship between the derivative of a function and the slope of the tangent to
the associated curve.

Increasing and decreasing functions

Example 8.1
Given  f(x) = 2x3-3x2 - 12x+6
we see immediately that
f'(x) = 6x2—6x—12
= 6(x2-x—2)
6(x + D)(x — 2).

The associated
curve is
y=2x" - 3x* —12x + 6

Now f'(x) is the slope of the tangent at a point on the curve.
Now whenx<—1orx>2,

Check these

1
f (x) >0 statements by
and when —1<x <2, substituting some
f’ (x) <0 values for x.

Also f'(x)=0 whenx=-1, 2.

Now  f'(x) = %x)i was derived by considering limiting slopes of chords.

y4 tangent . ) . .
N For an increasing function y increases with x and @
h ny . .
thus -C—fir—l-g-il 1S positive.
chord change in x
This fraction remains positive during the
0 » X limiting process and therefore f'(x) > 0. @
Increasing function
yt For a decreasing function, y decreases as x increases and
change iny
chord  thus ——=——<0. @
N change in x
—7 This fraction remains negative during the limiting process
fangent "  and f'(x) <0.
0 Decreasing function
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When the tangent is parallel to the x-axis as in the diagrams given below, the

slope is zero, i.e. f'(x) = 0.
yll
T—Jtangent

vt 7—Ttangent
tangent L_Z
> X » X

In summary,

f'(x) > 0 increasing function,
f'(x) < 0 decreasing function,
f'(x) = 0 the tangent is parallel to the x-axis.
Example 8.2 The function is

both increasing
and decreasing,
over different
values of x.

From Example 8.1, for
f(x)=2x"-3x" —12x+6,

f'(x)=6(x+1)(x-2).

The function increases when x < -1 or x > 2 and decreases when —1 <x < 2.

Also the tangent to y = f{x) 1s parallel to the x-axis when x = -1, 2.

Exercises 8.1

Find the ranges of x for which f(x) is (a) increasing (b) decreasing in the
following cases.

(i) fx)=x2-3x+6 (i) f(x)=2x3+3x2-12x+1

(i) fix)y=x+ ! (forx>0) (iv) fix)=6—3x —x2
X
(v) f(x)=x*-8x+10 (vi) f(x)=x>~15x3 - 3.

For which values of x are the tangents to the associated curves in question 1
parallel to the x-axis?

Stationary points and their classification

Quadratic functions have graphs which have one or other of the general shapes

shown below.
u minimum
different, of

YA YA
> X > X course.

The positions
may be

7? maximum

The left hand graph has one maximum point (a crest) and the right hand graph has
a minimum point (a trough).
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A common feature of maximum and minimum points is that the tangents at such
points are parallel to the x-axis, 1.€.

d
Y _o.

dx
Here we consider functions which may have more complicated graphs, such as the

one shown below.

7N

The signs
refer to
the gradients.

2> X

Points on a graph where a =0 are known as stationary points, the associated
dx

value being a stationary value.

In the diagram, there are stationary points at A, B, C, D, E and F. Let’s categorise
these points.

Points A, D. F The graph
changes from
climbing to

falling.

At each of these points, the gradient changes from positive to
negative and the graph has crests or maximum points.
The values of y at such points are maximum values.

Points B. E

At each of these points, the gradient changes from
negative to positive and the graph has troughs or
minimum points.

The values of y at such points are minimum values.

The graph changes
from falling to
climbing.

N.B.

The maximum and minimum are strictly local maximum and leeal minimum
points. The qualifying ‘local’ is useful because it underlines that a maximum
(minimum) point must not be understood as the overall maximum (minimum)
point. Indeed, in the diagram the (local) maximum value at F is smaller than the
(local) minimum value at B.
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The point C

. d . . . .
At the point C, :;}— =0 since the tangent is parallel to the x-axis. However, it 1s
X

clear that C is neither a maximum nor a minimum point: the graph does not stop
climbing although it is (locally) flat at C. Indeed,

dy >0

dx

both to the left and right of C. A point such

There are other types

dy .
as C where o 0 but does not change sign of points of inflexion.

is called a stationary point of inflexion
(S.P.L).

Summary

dy
Change of sign of dx (or f(x)) test for stationary points
At a stationary point

dy B
dx
) dy . .
(1) — changes from + to —, maximum point
dx
. dy .. .
(i1) o changes from — to +, minimum point D
X

(iii)  no change of sign in Ex)i , stationary point of inflexion.

Similar statements apply to /7 (x).

Exercises 8.2

On each of the following diagrams:-

: : : , d
a) mark in the stationary points and the sign of d—y ,
X

b) classify the stationary points as maximum, minimum or points of
inflexion.

i) , & (i)
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(i)

Use of the sign of —Z—)i to classify stationary points
X

Graphs of functions are not always available to assist us in investigating
stationary points. However, Rule I may be used in such cases.

Example 8.3

Find and classify the stationary points
of
y=x"+4x+25

d 2 2
Now 2 =4x? +12x2 = 4x>(x+3)

dx
and for a stationary point
Dy
- ax? (x+3)=0. Don’t cancel x .v.v1thout cgg&dermg the
possibility that x” = 0.
Then x* =0 or x+3=0
Le. x=0,-3.

There are two stationary points. Now let’s investigate the nature of those

: d . . :
stationary points, by considering the sign of -f— on either side of each point.
X

x=0
When x is just below 0, say 0.1,

d 2

Y 4(-0.1)?(~0.1+3)=0.116 > 0.
dx

When x is just above 0, say 0.1,
d
2 40.1)2(0.143)=0.124 > 0.
dx

Thus d_y > 0 either side of x = 0.
dx
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x=-3

When x is just below -3, say -3.1,
d
Y o 4(=3.1)2(=3.143) = -3.844 < 0.
dx
When x is just above -3, say —2.9,
d
Y o 4(-2.9) (-2.9+73) =3.364.
dx

fil <0 to the left of x = -3,
dx

>0 to the right of x = -3,

. d .
The signs of 2 are entered in the table as shown below:

dx
Value of x L -3 R L 0 R
. dy
Sign of =
shot =~ - 0 + + 0 +

Min 7/~ Inflexion

Thus, there is a minimum when
x=-3,y=(-3)*" +4(=3)* +25
=2
and a point of inflexion when
x=0,y=(0)"+4(0)° +25=25.

: . .oody . ) )
It 1s advisable to write ;{2)— in a factorised form and care should be taken when %
X X

involves a negative numerical factor.
Example 8.4

Find and classify the stationary values of the function given by
f(x)=3+12x-3x" —2x".
Then f'(x)=12-6x—-6x"

=—6(x’ +x-2)
=-0(x+2)(x—-1).

Don’t cancel the —6: its
presence is crucial.
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For a stationary point,
f(x)=0

so that —6(x+2)(x-1)=0
Sox=-21.

There are two stationary values.

Now let’s use the sign test on f'(x).

=2
When x is just less than -2, say —2.1,
dy _ —6(=2.1+2)(-2.1-1)
dx
=-1.86<0.
When x is just greater than -2, say —1.9,
d
Y o _6(-1.9+2)(-1.9-1)
dx
=1.74> 0.
EZJ—} <0 to the left of x = -2,
dx

>0 to the right of x = 2.

x=1
When x is just less than 1, say 0.9,

Y 609+2)09-1)
dx

=1.74 > 0.
When x is just greater than 1, say 1.1,
d
2 6(1.1+2)(1.1-1)
dx
=-1.86<0.
iiX >0totheleftofx=1,
dx

<0 to theright of x = 1.

The signs of —ij—y— are entered in the table shown below.

X
Value of x L -3 R L 0 R
. d
Sign of od _ 0 n + 0 +
dx

Minimum /7 Maximum\
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There is a minimum when x = -2
and f(x)=3+12(-2)-3(-2)" —2(-2)’
=-17
and a maximum when x = 1
with f(x)=3+12(1)-3(1)* -2(1)’
=10.

Exercises 8.3

) d : . .
Use the change of sign test for d—y or f'(x) to classify the stationary points of the
X

following.

y= x2=2x+3
f(x)=9+6x—x
y=5+24x—-9x* - 2x°
f(x)=x"—4x
y==5x%+6x" +2

f(@)=x(x-2)

2

y=x
y=-x
y=-x*.

Second derivative tests for maximum and minimum points

The derivative of a function of x is also a function of x. This function may also be
differentiable, in which case the derivative of the first derivative is called the
second derivative of the original function. Similarly, the derivative of the second
derivative is called the third derivative, and so on. Thus if

fx) = 78,
f'(x) = 7x8x7 = 56x7,
f"(x) = 56 x 7x6 = 392x6,
") = 392 x 6x5 =2352x5.
2
or y=T7x8, Y 56x7, didr) _dy _ 392x6,
dx dx | dx I
2 3
Aldy) 4y _ g3,
dx | dx® dx?
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Exercises 8.4

Prove each of the following differentiations. To summarise, at the maximum point B,
1 (1) y =3x4 - 2x3 + 6x, —jxf = 36x2 - 12x. Py _,
2 dx
(i) f) = 255, ) = o ;
2 4 3 d?y
X X X and <0. dy
1 42 y 1 3 dx? Graph of — is falling.
(111) y = \/;‘f‘T, -&-XT = —'4—‘3’/'2—4-2—‘37‘2‘. A dx
X X X
(iv) fx) = x4 +x3+x2+x+ 1, £"(x) =24x+6. i Minimum point
3 3 d%y 72 y g
(V) y=x I ‘é;;( = - dx
X 3

The second derivative may be used to classify stationary points. Let’s consider the ’
various possibilities graphically.

Maximum point

>
0 0
9/

A similar argument for the minimum point E leads to

b,
dx

A
2
. \B y and d”y S0, raph of @ is climbing
0 0 . | 2 dx

Stationary point of Inflexion

The left hand diagram shows a typical maximum point with neighbouring points

d
A and C. At the point A Ll > (0; at the point C, 2 <o ay N\
dx dx dx

d : .

The right hand diagram shows the graph of —dl against x. The particular shape of
X
. d . L
this & graph is unimportant: the essential point is that the graph falls from A to G '
dx
dy dy . ] )
C, and ™ =0 at B. Thus, the o graph has a negative gradient at A, B and C, in
X X
particular at B. 0 X 0 H
d 2
Now the gradient of Ay is i(d—y) = 3) .
dx  dx dx dx®

The left hand diagram shows a stationary point of inflexion (S.P.L.).
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The right hand diagram shows the general shape

d :
of & against x.

dx

d
The essential features of the 212/— graph are

(1)

(i1)

(iii)

the graph is falling at G, so that

Applications of Differentiation

Another type of

S.P.1L is possible
when the graph is
falling.

X

d (dyj A falling grz'lph
—|—=|<0 has a negative
dx \dx gradient
2
ie. i—;j— < 0.
dx

d .
at H, d_y has a minimum value,
X

. . . . dy
i.e.  His a stationary point for o
X

P
dx \ dx

2
or 4’y =0
dx’

The graph is rising at I, so that

a(dy >0

dx \ dx

2

or d 3)>O at .

dx”

A similar argument applies for the other type of S.P.L shown below.

4
dy
J1 dx
K dy_
x=0
: K
Ny X
0
0
J L
'y
Then > > 0atl, % oraph is rising
X dx
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2
Y _0 ak, 5
X Maximum point for —
dx
d’y dy . .
<0 atL. — graph is fallin
dx’® dx srap 5

The results for the two types of S.P.1. can be combined as follows:-

dy

- =0, Stationary point
2

d 2} ~0

dx

2

d . . .
and d—i} changes sign in moving through the point.
X

The full summary of the procedure for using second derivatives to classify
stationary points is given below.

Summary

dy ) .
— =0 (Stationary point
L

Maximum point

dzy

2 <O

at the point.

Minimum point

>0
dx”

at the point.

Stationary point of Inflexion

=0 at the point,
dx’® P
d’y . .
e changes sign as we pass through the point.
X
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Example 8.5

Investigate the function

fx) = x2+£% (x>0)
X

for maximum and minimum points.
For a stationary point,
f'(x) = 0.

X
Then f'(x) = 0 gives

432
2x - ——32— =0
x
or x3 = 82 216.
2
o x = 6.
The second derivative test requires f "(x).
2
Then f'"x) =2+ 4323X .
x
4
Whenx=6, f£7(6) =2+ 202 _ 5, 8% ¢
6 216 he precise value of f"'(6
Thus £"(6) >0 is unimportant, the sign

is the central issue.

and so the point at x = 6 is a minimum point.
When x = 6, the value of the function is

f(6) = 62+i2'3 = 108.

Thus y =x2 + 32 has a minimum point at (6, 108).
x

Example 8.6

Find the maximum and minimum points for the curve given by
y = x3-3x2 -9 +5.

For a stationary point,
dy

= =0
dx

2
. d C
We also require AP AN distinguish between These are the plurals of
d_xz maximum and minimum.
maxima and minima.

Then b _ 3x2-6x-9
dx

b

d2
Ex%=6x—6.

dy .

== T

dx gives 3x 0x=9 0 remember to divide
3(x2-2x-3)=0 throughout by 3
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or 3(x-3)x+1)= 0.
. x=3or -1
d*y
When x = -1, —5=6(-1)-6 = -12<0
dx
which corresponds to a maximum point.
d*y

When x =3, — =6(3)-6=12>0
dx

which corresponds to a minimum point.
Also, when x = -1,
y = (=12 -3(-1)2-9(-1)+5 = 10.

Whenx=3, y = (33 -3(3)2-93)+5 = ~22.
Thus (-1, 10), (3, —22) are maximum and minimum
points, respectively on the curve.

The curve is broadly of the shape shown, when we note
that y =5 when x = 0.

Example 8.7
Find and classify the stationary points for

y= x*-2x>+3.

. a d?
We require 2 and 3} .
dx dx
D _4® —6x? =2 (2x - 3),
dx
2
~d——§}— =12x? —12x =12x(x - 1).
dx
For stationary points,
dy B
dx

so that 2x*(2x—3)=0.

Thenx=0orx= —32—

2

We use I to classify the stationary points.

X
x=0

d 2
2 ~12(0)(0-1)=0.

X

Thus x = 0 may correspond to a point of inflexion but we must sr;:xfts
: . d’
check that there is a change of sign of g} . forgt‘;ti;o do
e .
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Let’s consider two values close to x = 0, one on each side, say +0.1.

x=-0.1
d’y
—=12(-0.1)(-0.1-1)
=1.32>0.
x=0.1
'y
- =12(0.1)(0.1-1)
=-1.08 < 0.
d’y
Thus I changes sign around x =0
X
2-);
and e =0atx=0.
X

Thus x = 0 corresponds to a S.P.1.
When x =0,y =(0)* -2(0)* +3=3.
.. Thereis a S.P.I. at (0, 3).

Let’s consider the other stationary point.

X =—

2

Ty 1533 112950
dx? 2A2

There is a minimum point.

4 3
21
Whenng,yz 3 —2g +3=—.
2 2 2 16

.. There is a minimum point

atx~—~3— _ﬂ
27" 16

In the last three examples, we gave sketches of the curves in question. Sketching
will be the subject of our next section. In the meantime, the following questions
do not require sketches.
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Exercises 8.5
Investigate the following for stationary points, using the second derivative to

classify the points.
1 = i—x2—3x+ﬂ
4 3 3
2 y = 2—4x—§xz—lx3
2 3
3 flx) = x* - 8x2
4 f(x) = S5x—x>
5 y = x3 + 6x2
6 y = 4+3x—x3
7 flx) = x2+—92— (x # 0)
x
4
+ 48
8 y= al (x;éO).
4x

Curve sketching

In the last section, stationary points were investigated without drawing graphs. In
fact, stationary points are often valuable aids in sketching graphs, particularly
when the general shape and position are required. In such cases, it is not necessary
to find a full table of values.

We use the following procedure to sketch graphs.

Procedure

(a) Find the value of y when x = 0.
(b) Ifpossible, find the value of x when y = 0.
(¢) Find and classify the stationary points.

(d)  Sketch the graph.

Example 8.8
Sketch the graph of y = x* +4x’.

Let’s work through the procedure indicated.
(a) When x =0, y = (0)* +4(0)*=0.
(b  y=0when x*+4x’ =0,
1.e. x*(x+4)=0.
© x=0,—-4.
From (a), (b), (0, 0) and (-4, 0) lie on the curve.
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(©) Stationary points

d
Now 2 = 4x% +12x2 =4x?(x +3),
X .

Curve is flat here, (S.P.1.)

2
LY 12 1 24x =12x(x+2). |
dx ;

For stationary points, (-4.0)
g
dx

so that 4x? (x +3) =0.
Sox=0,-3.

There are two stationary points at
x=0, y=0"+40) =0

and  x=-3,y=(-3)* +4(-3)°> =-27.

{min. point) ——> -
(-3,-27) -30

2

> Yy . . .
Let’s use 2 to classify the stationary pomts. A little thought leads to the shape of the graph shown below.
(1) x=-3
d’y y
% =12(-3)(-3+2)
=36>0.

There is a minimum point at (-3,-27).
i) x=20
2

Y 12(0)(0+2)=0.

x2

(-4,0)
It appears that (0, 0) is a possible S.P.I. but we must check for ‘
2

about x = 0.

sign of

We check signs at x = + 0.1.
When x =-0.1,
d’y
3 =12(-0.1)(-0.1+2)
=-2.28<0.
When x=0.1,

(-3.27)

Example 8.9

2 We return to example 8.4 which was concerned with y =3 + 12x — 3x* — 2x°.

Y 12(0.1)(0.142)

=
X

=2.52>0.

Let’s work through the procedure for sketching graphs.

dzy

Thus e (a) Whenx =0, y=3.
x

(b) When y =0, we have

3+12x-3x" —2x° =0.
It is not easy to find x from this equation so we do not proceed further along this
route.

changes sign and there is a S.P.1. at (0, 0).

(d) Now we sketch the curve.
Let’s put in the information derived in (a), (b), (¢).
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(©) Stationary points

It was established earlier that there is a minimum point at (-2, —17) and a
maximum point at (1, 10). y

(d) Now we sketch the curve by using the information derived in (a), (b) and (c). *

The curve may be completed as shown. Let  x = length of the square side in metres,
! y = height of the box in metres.
Y Since the volume of the box is given, y may be found in terms of x.
‘ (1,10) * xzy = 4
| SN | 4
: | - . so y =—.
\ 1’ N % X
| (03) K | ; The surface area A = area of base + area of 4 side faces
\ ] A - 4
\ ‘o : > . = x2+4xy = x2+ dx.—.
A ; \ _ 2
» i v . X
\\ I’ \‘ 2 1
S , : A = 52410 (x> 0).
\\ I’ \\ 2 x
N2 \ The minimum value of 4 is required as x varies from 0 to co.
(=2.=17) . _ d4 d*4
. Now a (local) minimum point occurs when — =0 and — > 0.
dx dx?
N dd ) 16
We note in passing that the graph intersects the x-axis at three points. We ow FE - x—z
conclude that the equation 424 1
3+12x-3x2 -2x% =0 an &2 t3
has three real roots, two of which are negative. § dA 16 *
i . — =0 gives 2x—— = 0.
dx x?
Exercises 8.6 - X =38
Sketch the graphs of the following curves. E and ) x =2
d“ 4 32 32
5 3 3 , 5 , Also s :2+——3':2+—-:6>O.
1. y=3x"—-x 2. y=x —-06x" 3. y=x —2x"+x+4 dx X 93
4. y=3x" —8x° +1 5. y=x'+32x+32 6. y=4x"—5x* Thus x = 2 corresponds to a local minimum point. We note also that
A—>o as x—0 T
A=x+16

and 4> o as x— o,
Thus the local minimum is the overall minimum.

When x = 2, A =2

1 A
= +-§6- = 12.. N\
X
The minimum surface area is 12 m2, when the base is a 0

... 4
square of 2 m and the height is 2—2 =1 metre.

X

8.6 Practical problems involving maxima and minima
The technique of finding (local) maxima and minima may often be used to solve
practical problems. We work an example before stating some rules that could
usefully be applied to such problems.

Example 8.10

A wooden box is to be built to contain 4 cubic metres. It is to have an open top
and a square base. Find the dimensions of the box in order that the surface area is
a minimum.

The single stationary value is the overall minimum value.

Before working another example, we summarise the procedure for working
practical problems in maxima and minima.
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Procedure for applications of maxima and minima

1 Set up the function whose maximum or minimum value is required in the
problem.

2 If the resulting expression contains more than one variable, attempt to
eliminate variables so that the expression may be written in terms of one
variable only.

3 Apply the rules for finding maximum and minimum values.

4 Decide whether the local maximum (or minimum) is the overall maxima
and minima by considering the values of the function at the end values of
the domain of the function. If there is only one maximum or minimum
value it is the overall maximum or minimum value.

5 If possible, sketch a graph to check the work.

Example 8.11

A sports field is to have the shape of a rectangular area PQRS with semicircular
areas at opposite ends on QR and PS as diameters. Its perimeter is to be 400 m
and the rectangular area PQRS is to be a maximum. Find the dimensions of the

rectangle.
P y
If the dimensions of the rectangle are x m and y m,
x thearea A= xy. (1)
Two variables are involved. It is given that
K 7 perimeter = 400 m.

or

2y+71’,£+71’,£ = 400
2 2

2y +mx = 400.
200 - &,
2

Y

Then substitute for y in formula (1) for A.

For maximum,

Now

Then

A4 = x(zoo—i“-).
2

2
%: 0, g_f[. < 0.
dx dx?
2
A
% = 200 — mx, d > = -
200-mx = 0.
200
x = —
T
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2
Also a4 <0
dx2
200 .
X = —— corresponds to a maximum.
Vs
Wenote 4 =0whenx=0, x = fl_O_O
Vs

Thus the local maximum corresponds to the overall
maximum.

Maximum area = 2%(200—£x—2@j
T 2
200x 100

s
6366 m2 approx.
The single stationary value is the overall maximum value.

When there is more than one stationary value it is possible that the local
maximum (minimum) value is not the overall maximum (minimum). This
possibility is illustrated in the diagram given below.

4 B

o

end point end point

Over the set of values of x considered there are two stationary values. Whilst the

curve has a local maximum at A, the value of y at B is greater. The overall
maximum is the value of y at B.

Thus, where there is more than one stationary point the local maximum or

minimum value should be compared with the end values.

Example 8. 12

A right circular cylinder is to be made so that the sum of its diameter and height is
2m. Given that the cylinder has maximum volume, find its height and radius.

\__/ given-by

—

V=x’ym’ (1)

Two variables x and y are involved.
It is given that
2x+y=2. (2)
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Substitute for y from (2) into (1)
SV =xt(2-2x)=2x"(1-x)
and we note that
0<x<1.
For a maximum value,

av 0 dv

—=0, <0.
dx dx’

Now il—/— =4x—6x" = x(4 - 6x),
dx
dv

2

=4-12x.
dx

Then a =0 gives
dx

x(4-6x)=0
2
3
2
When x=0,ﬂ5—=4>0
dx

which corresponds to a local minimum.
2
When ng,d y =4—12(gj:—4<0
3 dx2 3
which corresponds to a local maximum.
The local maximum value is

0

=
27
At the end points, x =0 and x = 1
and ¥ =2(0)*(1-0)=0
and V =2(1)’(1-1)=0.

sothat x=0,x=

The local maximum value is greater than the end values and is therefore the

overall maximum.

Thus maximum value = —;—7— m’

2) 2
when the radius = % m, height =2 - 2(5] = 3 m.
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Exercises 8.7

A sector of a circle encloses an area of 36 m2. Find the least possible perimeter of
the sector.

An open cylindrical vessel is to be constructed from a piece of tin of area
64n cm2. Find the radius and height of the tin for maximum volume.

An open box is to be made from a square piece of cardboard of side 24 cm. The
box is formed by cutting out squares of side x cm out of the corners and then
folding up the cardboard to form the sides. Show that the volume V of the box is
givenby ¥ = 4(12 — x)?x. Find the maximum volume.

Assuming the strength of a beam with rectangular cross section is < >
75
y

constant x breadth x (depth)?, what are the dimensions of the
strongest beam that can be sawed out of a round log whose
diameter is 75 cm?

W

A one-man manufacturer of radios finds that he can sell x radios per week at £5
. 1

each where § = (75 — x). The cost of production is £(500 + 15x + gx2). Show

that the maximum profit is obtained when production is 25 radios per week.

A rectangular field ABCD is to be enclosed by a rectangular fence and then
divided into two lots by a fence parallel to the side AB. If the area of the field is

A1 m? show that the minimum length of fencing required is 2,/6 4, m.

A solid rectangular block of wood has a square base. The sum of the height and
any one side of the base is 30cm. Find the maximum volume of the block.

A window is in the shape of a rectangle surmounted by a semi circle whose

diameter is the width of the window. If the perimeter is 4m, find the maximum
area of the window.
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9.1

Integration - The Indefinite Integral

Chapter 9

Integration - The Indefinite Integral

The preceding two chapters have been concerned with the differentiation of
functions. Thus, the polynomial function x3 — 3x2 + 2x + 1 becomes 3x2 — 6x + 2
when differentiated, for example.

Indefinite integration is concerned with the inverse problem : for example,
finding the function which must be differentiated to give x4 + 3, we say that we
seek the integral of x4 + 3.

The indefinite integral

Example 9.1
5

If we differentiate f(x)= % 4 3x+7

!

5
and o(x) = 355—+3x-2
5x*
we obtain f'(x)=—5—+3 = x4+3
5x
and g‘(x)=~?—+3 = x4 +3.

5
Now x# + 3 can be obtained by differentiating 15— +3x + any constant, in other

5
. LX
words, the integral of x4 + 3 is 3 + 3x +any constant.

5
This is written  [x* +3 dv = 15-+ 3x + k. (1)

@iy In(1)" J" is an elongated 'S".

(ii) dx refers to the variable and essentially is short hand for 'the differentiation (and

integration) 1s with respect to x". ' .
We advise you to cultivate the habit of always writing dx (or dy, or whichever
letter is involved) when writing integrals.

(iii) k is any constant. This is often omitted in writing down indefinite integrals. We

shall always write down this so-called arbitrary constant.

(iv) Expressions such as x4 + 3 which are to be integrated are called integrands.

Indefinite integration is thus the process of finding which function has to be
differentiated to produce the integrand.
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Example 9.2
(i) [7x°de = X7+,
because i(x7+k) = 7x,
dx
3
ii ©yaxride = Z—4xt ik
(i1) J‘x x . x

da(x" 1x'%
because —| —+x* +k| = +4x° = x10 4453,
dx !\ 11 11

We sum up the process of indefinite integration, therefore, as finding the
expression which when differentiated gives the integrand :-

Iintegrand dx = expression + &

Letters other
than x may be
used, of course.

or a%(-(expression + k) = integrand.

Exercise 9.1
Complete the following, differentiating your answers to check that they produce

the given integrands :-
(i) e = [ ]+
@ face = [
(iii) jsx“ +6x°dx = [+
The expression | f(x) dx + k is called the indefinite integral of f(x).

As with differentiation, a catalogue of functions and techniques is an essential
requirement for making progress in indefinite integration.

Techniques and rules
Example 9.3

To find J‘cx” dx, where ¢ and » are constants, we seek the

function to be differentiated to give cx™.
Now differentiation reduces powers of x by one so to find

the definite integral of ¢x” we explore the differentiation of
oxhtl

Now since %(cx”ﬂ) = (n+ 1)ex”

too big by
factor of n +1
n+1
( ) ex = exh. divide out the
n+l factor n +1

d c n+l
we note that —| ——x =
dx

n+1
and thus
for powers of x
c W add one to the
RuleI J‘CX” dx= ——x"" +k (nz-1) power and divide
n+l by the new power
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N.B. The proviso n # — 1 is to avoid division by zero. This case will be
considered in P2.

Example 9.4
3 8
@) [3x7ax = —%—Jrk.
N 4 ., 4x—3+1
. = = +k Add one to the
@) I x’ dx I el 3+1 power and divide
) by the new power,
= 4x k= =2x% 4k noting —3+1 =-2.
-2
= ——27 +k
x
241 2
2 5x? S5x?
2 = k = k 1 =2
(ii1) JSx dx %+1 + % 55" %
9
2
= 109x +k.

When integrating a constant, we can use the previous ¢ (anything)’=1
result with 7 = 0 since cx0 = c.

cx0+1
Then chx = +k
1
=cxt+k
SO
Rule 11 chx =cx+k
Example 9.5

Jodx = 6x+k,
de = x+k, since J.dxisthesameas '[ldx.

We recall that when differentiating a sum of a finite number of functions, we were
able to differentiate term by term. Since integration reverses differentiation we
may integrate term by term.
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Example 9.6

3 2 —2+1
'[x2+3x+2+i7dx SR IE L +k For each term
x* 3 2 -2+1 add one to the
x3 xz -1 power and divide
= 4+ 42x+2 4k by the new power,
3 2 - Rule I.
3 2
x> 3
=2 422 iox—— 4k
3 X

Generally,

Rule Il | [f00)+g(x)+h(x)+....dx=[f(x)dx+ [ g(x)dr = [h(x)dx +.....k

where we note that we need only write one arbitrary constant.
Finally we note that the request 'integrate y? with respect to ' is equivalent to

find ? in
yas =[]+ [&]
3

The answer is _y3_’ of course, by rule 1.

Exercises 9.2
The following make use of rules, I, Il and III. In some of the later questions you
will find it necessary to rewrite some of the expressions before integrating.
Integrate the following with respect to the appropriate letter, omitting the constant
of integration .

. 2
(i) x8 (i) x3 (i) - 6 (iv) — ) Vx

3
3

(vi) —}0 (vii) —-95- (viii) L (ix) (x) 4-6x—x3
x x

NS

A
2

Y

(xi) P (xii) 1L (xiii) x(x + 1)

2
1
Xiv S
x2 2 2Jx ( )(y sz
1

Vx (ovi) Vx(Vr 1) (i) —17+2x%+3x7
X

X

it [y 2y -3) g DR
Jx

X+

(xv)

(xx) le (xxi)  y"(n#-1).
y
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10.1

More Integration - The Definite Integral

Chapter 10

More Integration — The Definite Integral

In this chapter, we give further consideration to integration and introduce an
important application of the process, namely the evaluation of areas under curves.
The evaluation of such areas involves the concept of the definite integral.

To set the scene, let's return briefly to the concept of indefinite integration. When
finding an indefinite integral, we included an arbitrary constant of integration.
Under certain circumstances we are able to assign particular values to the constant
of integration.

Finding the constant of integration

Example 10.1
Given that % = x,and y =2 whenx =1, find y.

Now y, when differentiated, gives x so by the definition of indefinite integral,
2

y = hdx = 3“-2—+k. (1)

The constant £ is arbitrary at this stage. However since y =2 when x = 1, we may
substitute these values in (1) to obtain

2 = —1-+k.
2
ko=2-L1 =2
2 2
Substitution for £ in (1) then gives
2
x 3 1
=+ = —(x2+3).
y 55 2( )

Example 10.2

Given f'(x)= !

X

and f{9) = 4,find f{x)

2l
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Now f'(x) is the derived function of f{x). To find f{x) we seek the expression

which when differentiated gives —1—
X

Then f(x)= _[Vl_;dx+k =2x +k. (1) Rule

Section, 9.2.

Now f{9) = 4. Substitution of x =9 in (1)

gives 4= 249 +k.
k=4-2J9=4-2x3)=-2.

Substitution for & in (1) gives

fx)=2Jx-2.

Exercises 10.1
Find y or f(x) in the following cases.

dy )
1. — = x3, giveny =23 when x = 2.
I g y
dy .
2. a=3x2+2x+1, giveny = 0 when x =2,

3. f'x) = 2x+-—1—2—, given f(1) = 0.
X

4. F(x)=3x +—12-+ 2, given f(1)=6.
X

The area under a curve
We consider the curve F'G given by the equation y = f(x) as shown.

Yy A S Q
P R G The curve is a
4 general one and
F D | has been given the
¥ Y particular shape
| for convenience
c [ of drawing.
> L alnlilg > X
0 C M N
x

In the figure, CD is a fixed y coordinate corresponding to the value x = ¢ and MP
is a variable coordinate y.
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Now if we suppose M to change position then
the shaded area CDPM will change, 1.€. the
value of the shaded area depends upon
OM = x. Thus if 4 is the shaded area we
show the dependence of this shaded area by
writing A4 as A(x). For the special case y
when the graph is that of y = x (i.e. f(x) = x),
A(x) = $(x2 = c2), for example.

For the special case
y=x,CDPMisa
trapezium whose

area is3(CD + PM)CM

=L (c+x)(x—c) = L)

2 1222
s0 A(x) = 5(x'=").

If N is a point close to M so that MN = 6x
(i.e. ON = x + 8x) the area CDON may be
written as A(x) + 084(x) so that area
MPQON = 6A(x).

[In passing, note that for the trapezium

Alx) = %(x2 —c2), A(x) + 34(x) = %((x + 8x)2 — ¢2)

and dA(x) = %((x+6x)2_02)-%(x2_02)
2
= XC%C‘F@’_ ]
2

Completing the rectangles MNRP and MNQS, we see that
area MNRP < 8A(x) < area MNQS,

noting that 8A(x) is the area under the arc PQ.

Thus MP. dx <08A(x) <NQ. dx.

Division by &x gives

oA (x) 0
MP < < NO. Area of rectangle is
. base x height and the
Now as &x — 0, MP remains ﬁxgd and NQ approaches base for both rectangles
MP as a limit (since y = f(x) is continuous), and we obtain is of length 5x.
. oA
lim 22D _ yp
&—0
d4

dx

dA(x .

[For the trapezium under the line y = x,

2
0A(x) = xdx+ (&)
JA(x) a
SO _— = x+ —
X 2
fim 2 ypin this case. ]
&0 dx
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d4(x)
Generally, — = f(x
y o (x)
and Alx) = J‘f (x)d(x) by the definition of integration.

The arbitrary constant may be found by noting that when M and
C coincide the shaded area has value zero, 1.e. 4 = 0 when
x=c.

Let F(x) be a function which is obtained when f(x) is
integrated. If fx)=x,
Then Ax) = Fx)+k (1) then F(x) =%
P
C M

A(©) = 0.

Substitution of x = ¢ in (1) gives
A(c) = 0 = F(c) + £
k = —F(o).

Fory=x, A(x) = Xtk
2

and k= -

2 2 2

Substitution for & in (1) then gives Thus A(x) '-5—- _g—

A(x) = F(x)-F(c). =?1(J\72 — ¢ as before.

If we require the area between the points C and
D where OD = d, this is A(d) given by

A(d) = F(d)-F(co),
where Fex) = [f(x)d(x).

For the case of y = x, the area between x =,

x =d 1s as shown in the bubble.
2

X and
2

Here f(x) = x, F(x)

A(d) = F(d) - F(c) %(dz—c%.

Example 10.3
Find the area under the curve y = x2 between the lines x = 2, x = 3 and the x-axis.

Here f(x) = x2 and )

ere f(x) = x4 an ; y p=x
F(x) = J‘xzdx = %—

o 2 3 °

|

Required area = F(3) — F(2)

3 3
= g.,_._z_, — g = 6_1_ Leave the answer
3 3 3 3 as an exact fraction
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Example 10.4
Find the area between the curve y = x3 + x, the lines x = 1, x = 2 and the x-axis.
Here fx) = x3+x

4 2
and F(x) = J‘f (x)dx = LI We don't require
4 2 an arbitrary
Required area = F(2) — F(1) constant here
2t 27 1 17
o [ I — + Pu—
4 2 ( 4 2 j
21
4 4

The area between y = f(x), x = ¢, x = d and the x-axis can be represented as

d
[f(x)dx = (F(x)),_, - (F(x)),_,

which can be written as
d F'(x) =f(x)
Jf(x)dx = [F(0)]. Q

Example 10.5

3
Evaluate (i) [2x+ x’dx
1

2 1
(11) £&+fdx

3 - 37° 2
[2x+x°dx = P f(x) = 2x + x
1 3 1
3 3
= 32+3~— el
3 3
~ 1811 =29 2
18 13 3 or 163.

9 -

?\/;vL%dx = |:2X% +2\/;}

4
3

3
=2(9)2 + 2\@{2(4)5 + 2\/1}

=54+ 6-16-2(2) = 40.
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d
Integrals such as [f(x)dx are known as definite integrals because the answer

c

doesn't involve any arbitrary or unknown constants.

Example 10.6

Represent the area between the curve y = x3 and the lines x = 2, x = 3 and the
x-axis as a defininte integral. Evaluate this definite integral.

The part of the curve lies above the x-axis so that the

3
area will be given by [x>dx.
2

Evaluation of this definite integral gives

0
fx3dx = fj. 3 = i_i
2 4 1, 4 4

A word of caution is appropriate concerning the use of definite integrals to
evaluate areas. The use of a sketch is recommended, the following example
showing the difficulty that may arise.

Example 10.7
Use definite integration to evaluate the area between the curve y = x3 between the

lines x = — 2, x = 2 and the x-axis.

2
Without a sketch, we write the area as x> dx
-2

472 4 4
which becomes F——} = 2———( 2) =4-4 = 0.
-2

4 4 4

The surprising result is understood when we consider a sketch of y = x3, between

x=—-2,x=2.
Y4 3

2
The definite integral [x’dx gives the algebraic sum of the shaded areas. The
-2
shaded area on the left 1s evaluated as a negative number because the curve is
below the x-axis; the area on the right is evaluated as a positive number because
the curve is above the x-axis. The 'positive' and 'negative' areas cancel each other

over the range.
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The 'megative' area is given by
ro, 0

0 4 4 94
[¥de = |2 AN o) MY
5 4 4 4
- -2
The 'positive' area is evaluated as
P o472 4 4
jx3dx - | :_%__9_:4_
o 40 4 4

To obtain the total shaded area we require

2 0
[ Pdx — [X’dx = 4-(-4)
0 -2

When areas lie below
the x-axis we can
arrange for them to
give positive answers
by introducing a
minus sign.

= 8
or alternatively by symmetry in this case :-
2
the required area = 2 x [x’dx
0

2x4 = 8.

The lesson to be learnt from example 10.7 is an obvious one : when finding areas
by definite integrals draw a sketch of the situation.
Sketches are also useful when we are asked to evaluate more complicated areas.

Example 10.8

Sketch the curve y = x2 and the straight line y = 2x + 3. Find the points of
intersection 4 and B of the line and the curve, where the x-coordinate of 4 is less
than the x-coordinate of B. Evaluate the area between the chord 4B and the curve.

YV a
y =2x+3

0

The coordinates of the points of intersection 4 and B satisfy both
y =x2 and y = 2x + 3.
Equating the y-coordinates, we obtain
x2 = 2x+3
Le. x2-2%x-3 = 0.

This factorises to give
or use the .
x+t1)x-3) =0 quadratic formula
) x=~-1o0orx = 3.
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When x = -1, y = (-1)2 =1,

x=3, y =32=09,
As it happens, the value of y is not required
in this example.
The area between the chord and curve is
shown shaded.

The equation y = %
as here or y = 2x+3
can be used to find
the y values.

Shaded area = Area under chord — area under curve

3 3
[2x+3dx— [x*dx
-1 -1

ot ]

3243 x3—((-1)2+3(-1)) - {2_[(”1)3 ]}

all areas are
above the x-axis
so are regarded
as positive

Il

3 3

9+9-1+3-9-1
3 use brackets to
10 2 avoid errors in signs
3

Example 10.9

Sketch the curve y = — x2 + 4x. The line y = 3 intersects the curve in points 4 and
B, where the x-coordinate of 4 is less than the x-coordinate of B. The curve

intersects the x-axis at the origin O and the point C.
Find the area between the arc OA, chord 4B, the arc BC and the x-axis.

Y4 y=-x"+4x
r'd
/A B\y=3
log 2 c

The curve has a maximum point at x = 2 and intersects the x-axis at points where

y =0, 1.e. when

-x2+4x = 0.
x(—x+4) =0.
Thus, x =0 or4.

x = 4 corresponds to the point C.

The line y = 3 intersects the curve when
3 = —x2+4x.

x2—4x+3 =0

SO (x=3)x-1) = 0.

Thus x =1 (point 4)

or x 3 (point B).
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Y A
A B
The required area
m @ |6 = area (1) + area (2) + area (3).
14»——-—-—2—>3 C > X
3 1
Area(l) = j—x2+4xdx:{—-—+2x2}
0 0
3 3
_ W 2(1)? —[——+2.02j
2
_1 +2 =1-.
3
Area (2) = Area of rectangle of base 2, height 3
=2x3=0.
4 x3 4
Area (3) = [-x’+ 4xdx={—?+2x2
4 3

_ @ R ON 2| _ 42
= 2 [ : +2.(3)] 12

1z+6+13 = 91.
3 3 3

The required area

Exercises 10.2

N.B. You are advised to draw sketches when finding areas.

Find the area enclosed between the curve y = x2 — 5x + 4 and the x-axis.

Find the area enclosed by the line y = 7 and the curve y = x2+ 3.

Find the area enclosed by the curve y = — 2x + x2, the lines x = 0, x =3 and the x-

axis.
4

Show that [a’x — x3dx:%~.
0

a 2
Show that j(f—\/;)zdx:%.
0
I
Evaluate jx2<l+x2)dx.
0

Find the area enclosed by the x-axis and that part of the curve y = 8x — 12 — x2 for
which y is positive.

Calculate the area of the segment of the curve y = 24/x (x 2 0) cut off by the line
y=x.

Find the area of the segment of the curve y = x?—2x + 2 cut off by the line y = 5.
Find the area of the curve y = x(x —2) cut off by the line y = x.
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Revision Paper 1

1.  Given that the equation
x? =B+ 2k)x+2k+11=0
has real roots, show that
4k + 4k —35>0.

Given further that the roots are equal, find the possible values of %, and the
associated values of x.

2. (a) Sketch the graph of y = cos x for values of x between 0° and 360°.
(b) Find the values of x between 0° and 360° satisfying
4sin® x+8cosx—7=0.

: . .1 .
3. The third term of a geometric series is " and the fifth term 1s —16—

(a) Find the possible values of the common ratio.
(b) Find the sum to infinity of the series with the positive common ratio.

4.  Aisthepoint (1, 3), C is the point (3, 7) and D is the midpoint of AC. Show that
the line through D perpendicular to AC is given by
2y+x—-12=0.
The line meets the x-axis at B. Find the area of triangle ABC.

5. A Two points A and B are located on a circle of centre O and
radius r such that AOB = @, as shown.
Given that the shaded area is one third of the area of the circle,
19 0 show that
30-3sind-27=0.
B

By drawing sketches of the graphs y = & — Z‘f—, y =sind, show

that & lies between g and 7.

6 The curve y = x2 + 6 and the line y = 5x intersect at the points 4 and B, where the

x-coordinate of 4 is less than the x — coordinate of B.
(a) Sketch the curve and the line.
(b) Find the coordinates of A4 and B.

(c) The line through B parallel to the y-axis meets the x-axis at C, and O is the origin.
Find the area enclosed by the line OA4, the arc 4B, the line BC and the x-axis.

7 An open rectangular tank is 2 metres wide, x metres long and y metres in height.

Write down in terms of x and y the area 4 in square metres of thin sheet metal to be
used in its construction.

The volume of the tank is 6 cubic metres.

(a) Show that 4 = 2x + 12 + 6.

X
(b) Find the length and depth of the tank if the least area of sheet metal is to be used.
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(2)
(b)
(©)

(@)
(b)

(2)

(b)

(2)
(b)

Revision Papers

Revision Paper 2

A, B, C are the points (1, 3), (=1, 5), (3, 7), respectively. The midpoints of AB
and BC are E and F respectively.

Find the coordinates of £ and F.
Show that EF is parallel to AC.

Show that EF = —;—AC.

State the set of values of y between 0° and 360° for which sin y <0.
Find the pairs of values of x and y between 0° and 360° satisfying

. 1
2cosx+3siny =—g
. 5
3cosx—2smy=g.
2%)?
Find [1520 gy
Jx

Find and determine the nature of the stationary values of the function given by
f(x)=x>-12x+15.
Sketch the graph of y =x* —12x+15 and deduce the number of real roots of the

equation
x* —12x+15=0.

The first term of an arithmetic series is a and the common ratio is d. Show that the
sum of the first # terms is given by

S, =—n2—[2a+(n—1)d]
The first term of an arithmetic series is 4 and the common difference is —2. The

sum of the first » terms is —1116. Find a.

Sketch the curve y = x* —4x+3.
Find the arca enclosed by the x-axis, the curve y =x* —4x+3 and the lines x =0

and x = 2.

A circle of centre O is of radius 3 cm. The

tangents to the circle from a point 4 meets the
circle at points B and C as shown. The length
4 of OA is 5 cm. Find the shaded area correct
to two decimal places.
O
o
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Revision Papers

Revision Paper 3

Simplify [

«/§+2]
J5-1)

Express 1—x—x? in the form b—(x+a)* and find the maximum value of the
expression. Sketch the graph of y =1 —x —x%.

The vertices of a quadrilateral ABCD are A(4,0), B(14,11), C(0,6), and D (-10, -5).
Show

that AC and BD are perpendicular,

the midpoints of AC and BD coincide,

BD =4AC.

A cylinder is such that the sum of its diameter and height is 18 cm.

Express the volume of the cylinder in terms of r, the base radius of the cylinder
measured in centimetres.

Find the greatest possible volume of the cylinder.

. d
Given that y = 3x + —53— - -—65— + 4, find the value of Y when x = 4.

- X dx

x2

The curve C given by y = x(2 — x) intersects the x-axis at the origin O and another
point A.

Sketch the curve C.

The straight line y = x intersects C at O and at another point B. Find the area
enclosed by the line OB, the arc B4 and the x-axis.

A chord AB of length 4cm divides a circle of radius 4cm into two segments.
Find the area of each segment.
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Revision Papers

Revision Paper 4

Sketch the graph of y = tan x for values of x between 0° and 360°.
Using your sketch, or otherwise, find all values of x satisfying

8tan?x+ 10tanx -3 = 0.
Given that f(x)=3x> —4x+7, find the value of f(x+7)— f(x).
Deduce that

f'(x)=6x—4.

The vertices of a triangle are 4(2, 4), B(=8, 2) and C(4, — 6). The points P and @)
are the mid points of 4B and AC respectively. The line through P perpendicular
to AB meets the line through Q perpendicular to AC at k.
Show that the equation of PR is y + 5x + 12 = 0 and find the equation of OR.
Find the coordinates of R.
Show that BR = CR.

A girl sits her GCSE examinations in nine subjects. An enthusiastic, possibly
unthinking parent suggests that he will reward the girl for examination success as

follows :-
the first pass will gain 10 p,
the second pass will gain 20 p,
the third pass will gain 40 p,
up until the ninth pass, the reward for every pass being twice as much as that for
the previous pass.
Given that the girl passed in the nine subjects, find
the reward gained for the ninth pass,
the total reward gained by the girl, expressing your answer in pounds and pence.

Find and determine the nature of the stationary values of the function f given by

5 4
fy = 3% 9340
5 4

Sketch the curve y = ~ 4 2x° +2.

Given that real values of x and y exist that satisfy the equations
y=mx+5,
x*+y? —4x-2y+3=0,
show that
m* +8m+720.

Sketch the curve y = —x? + 3x between the origin 0 and the point A, where x = 3.

The line y = 2 cuts the curve in points B and C, where the x — coordinate of B is
less than that of C. Find the area of OBCA.

152

(a)
(b)

(@)

(b)

Revision Papers

Revision Paper 5

. . . 1 .
The first term of a geometric series is /3 and the common ratio is ——= . Find the

V3

sum to infinity of the series in the form a + be , where a, b and ¢ are rational
numbers.

Find all values of x between 0°and 360° satisfying 12 cos” x — 5sin x — 10 = 0.

A is the point (3,5), C is the point (5, 1), and D is the midpoint of AC. The line
through D perpendicular to AC intersects the y-axis at B.

Find the equation of BD.

Show that the line through D parallel to 4B passes through the midpoint of BC.

Find the value of k(k # 1) such that the quadratic function
k(x+1)? —(x=2)(x-3)
is equal to zero for only one value of x.

0 10

Given that the perimeter of a sector of a circle of centre 0 and radius 10cm is 25¢cm,
find the area of the sector.

>

“0 AWB X
The curve y = x° —3x” +2x intersects the x-axis at the origin 0 and two other
points A and B. Evaluate the total shaded area.

A farmer wishes to enclose a rectangular area within a large field. A straight hedge
on one side of the field acts as one boundary, the remaining three boundaries being
constructed from fencing. The length of fencing available is 100 metres. A length
x metres of the hedge is used.

Show that the area enclosed, Am’, is given by
2
A = 50x -
2

Find the maximum value of 4.
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Revision Paper 6

A triangle ABC has A at the point (7,9), B at (3,5), C at (5,1); E and F are the
midpoints of AB and AC, respectively.

(a) Show that EF is parallel to BC.

(b) EF meets the x and y axes at the points P and Q respectively. Find the area of
triangle OPQ), where 0 is the origin.

2 (a) Find all values of x between 0°and 360° satisfying

3(sin” x—cos’® x) =1+cos x.
(b) Find all values of & between 0°and 180°satisfying
tan 46 =/3 .
The first term of an arithmetic series is — 2, and the eleventh term is equal to four
times the fourth term.

(a) Find the common difference.
(b) The product of the nth term and the (n + 1)st term is 3190. Find ».

Given that

dx =6,

3

]6& 2a?
+

o 4 x*

find the value of a.

Given that

f(x)=

find f(x).
By completing the square, or otherwise, for f'(x) deduce that fis an increasing
function.

4x

3
3 —6x* +15x+3,

>X

0

The diagram shows the curve y = x> —3x+8 and the line y = x +5. Evaluate the
shaded area.

The total cost of running a ship per hour (in thousands of pounds) is given by

S3

2000
where s is the speed in kilometres/hour.
(a) Write down the time for a voyage of 2000 km assuming the ship travels at a
constant speed of s kilometres/hour.
(b) Write down the cost of a 2000 km voyage in terms of s.
(c) Find the value of s which minimises the cost of a 2000 km voyage.

C =8+
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x) (p-=7p+9)

() G+ +1)
(iv) (x=2)4x+1) (v) (x—=35)4x+5)
(vi)) (v —=2)3y+1)  (viii) 2y -T7)4y - 1)
x) (x+3)(7x—4)

(i) (x —4)(4x+1)
(vi) Bx—=2)2x+1)
(ix) 2x—3)(5x+3)
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Answers

Chapter 2
Exercises 2.1

(i) identity (ii) equation (iii) equation (iv) identity (v) identity
(vi) equation (vii) equation (viii) identity

Exercises 2.2

1.
2.
5.

() y =22 (i) a=-35 (i) x=21
15525m2 3. 15 4. 70 at £5.50, 50 at £2.50
5km 6. £12 7. 23

Exercises 2.3

1.
2.

3.
4.

()-1,7 (i) 1,12 (i) —;—,8 (iv) =4, =5 (V) _g, 4 (i) _%,_6

(1) 3.56, —0.56 (i) —4.56, —0.44  (iii) 2.85,-0.35

(iv) 0.67 (twice) (v) 0.60 (twice) (vi) no real solutions

(@ ) (b) (i) (c) (D) @ @ (0 @O
=1,x=1 (twice) 6. 32

Exercises 2.4

(1) -2, 3 (minimum) (i1) -2,11 (maximum)
313 . . 3 45 ..
-, —-—, —— (minimum
(ii1) > (maximum) (iv) 1 1 ( )
1 55 .. . 3 25 .
-, — =, — (maximum
v) 73 (minimum) (vi) 2’ 16 ( )
.. 1 37 : . :
(vii) 5 —4-(max1mum) (viii) 1, I (maximum)
(ix) 0,4 (minimum) (x) 0, 9 (maximum)

Exercises 2.5

1.
2.

7.

() x=3,y=1 (i) x=2,y=-2 (i) a=8,b=3
a=6,b=4 3. 12,20 4. %,—

15
5, 199 ¢ 1>

3°3 2

[SRIEN

232 104 3 17 16

2 . L]

3 3 55

Exercises 2.6

1.

(i) x=6,y=—4orx=-5,y=7 (i) a=5,b=-20ora=-26,b=-33

7 69
(i) x=2,y=260rx=13,y=4 (iv) a=2, b——lora———l—I,b=—~ﬁ
15 171 116 6
=_ =2 = =—4,y=-6 = =
vy x=4,y=-3orx 14,y v (vi) x y orx= T , V= 3
. 6 4
vi)) x=—4,y==-20rx=—,y=——
(vii) y X= YTy
L1 .
(1) 5 (i) —17 (iii) 9, - 1
(1) No (ii) No (iii) Yes

156

Answers

Chapter 3

Exercise 3.1
15

Exercises 3.2

1. 5, 8, n; divergent I ; convergent, limit =0
327 pn-l
3. 47 No 4. No, convergent, limit =10 5. Oscillatory
6. Yes 7. Divergent 8. No 9. Oscillatory
10.  x* (i) Convergent, limit=0 (i1) Convergent, limit=0 (iii) Divergent
(iv) Oscillatory (v) Convergent, limit =0
11. 1, Yes
Exercises 3.3
1. (1 0 (i) 1 (1) 0 (iv) 1 v) 0
(vi) no limit (vii) O (viii) no limit (ix) 1

2. (a) Yes, limit=0 (b) Yes, limit=1 (c) No
(e) Yes, limit=0 () Yes, limit=1 (g) No
Exercises 3.4

(d) Yes, limit=1
(h) Yes, limit=1

@ 1 oo( r+] ® 7
p
L Y 2.y 3. ) — 4. 32
r=1t r=1 r=12 r=I1
20 ©
5. 2r—1 6. r+
ey e 3 -
Exercises 3.5
1. No 2. Yes 3. Divergent 4. Yes
__r-l—_?__ Z r+2 . 29 Yes 8. 1 : 0
r(r+1)(r+3)° rzlr(r+1)(r+3) n(n+1)
. 2(1)"
9. 2n + 1 ; neither converge 10. 33 ; both converge
Exercises 3.6
1. 22 2. a-3b,a-5b; a-7b 3. 27 4. 12th
5. 2500 6. 2; 2n—-6 7. 8n—7 8. 15
9. £2010; £102000 10. £1665 11. No 12. 14; 4
1
13. 3l —1— 148 — 14. 8; -3, -410 15. 3525
2°10° 2

Exercises 3.7

1. (a) 54; 162 (b) % 515— (c) —40.5; 60.75  (d) 0.0002; 0.00002
2. 64 3. —% 4. 2.48832 5. 2.737152

6. £8857.81 to nearest penny 7. £2146835.06, to nearestpenny 8. 1; 4
9. 13 i% 10. 6 13% 1. J2-1; 527
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Exercises 3.8

' : 2 n
1. (@) 3m-1 (i) 31.25{1—@) } i) 48— (15| v 5[1—(0.1) ]

.3 oy 2 oy 2
2. (i1) 31.25 (iv) % 3. (1) > (11) — (i11) PYY
xn [1_( x)n
4. 17.531 (3 dec. places) 5. (1) —— x (11) e
2 n n
(i) — (lj J1) vy =2 (9) “1| 6. 15.77 (2 dec. places)
l-a|\a (b-2)|\2
4 42 419 335 '
i) — 1) — — — 10. £1000000
7. 45 8. (i) 5 (i1) % (111) 390 (iv) 1998
11 1 1
. -—,—; 13— 12, +—
11 4°3 2 2
Chapter 4
Exercises 4.1
1. (a5 (b) /5 ) /5 d 5 (e) 22

3. (i) V41 (i) S (i) /34

Exercises 4.2

1.  (a) @3} (b) (o%} () (1%} (d) (---2} (e) (-3, —4)

2. (5,814 3.(-5-1) 4 (2,6); 5 6. 10 7. 8
Exercises 4.3
) 1 | (iv) I ™) 11
. 1 1 ) - 1
1. (1) (11) 5 (111) 2 5

Exercises 4.4

1. (a) Parallel (b) Perpendicular  (c) Perpendicular (d) Parallel
2. a=1,b=0 3.8 4.-2;30 5.32 7.1
Exercises 4.5

1. All except (c) and (e) represent straight lines.

Exercises 4.6

2;3 d)l'—i ((3)—3—'—Z
1. (@) 2;0 by -1;1 (c) —-2; ( 573 20 1
7 1

2. (@ y=2x (b) y=-5x (C)y=~2—x (d)y=—§x (e) y=0
3. (a 2y=x+3 (b) y=3x+5 (c) y=4x+1 (d) 2y+x+2=0
4. (a) y—x—-1=0 (b) y=3 () 2y+x-2=0 (d) y—3x-5=0
5. (a y=3x+6 (b) yz——;—x+2 (c) 2y=x+8 (d)3y—-2x-18=0
6. (@) y=—x+2 (b) y=2x+1 (c) 4y=3x+6

(d) 5y-3x-7=0 (e) 7y—4x=0 7. 2,3); y=x+1

8. y=—x+3; y=—x+4 9. 3y-5x—6=0; 3y—x-14=0
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Exercises 4.7
1. (a), (c), (e) and () 3. (@) Yes (b) No (c¢) Yes (d) Yes (e) No

4. (@ -6 ()1 (c)-j- () 18 (e)—% 5.2,-3; 43

Exercises 4.8

1. <a)(?1“%j (b) (—11-13] C© CLD69) (@ (~1,1j

55 8 3°9
(& (0,0); [-1-2 30,05 (1,3)
2 4 . > 3 >
4, (O,—éj 0, 2); (g ——2-3—) 5. a=—2,b=2;é
3 5 5 23
6. A1, =7); B(S,-1); C(7,1); D(6,0) 7.y-2x+3=0, 4y+x-21=0
8. 3y+x-5=0; 3r
Chapter 5
Exercise 5.1
) i .. T . 27 T
1. 1) 45°; — (i) 60°; — (i) 40°; — iv) 30°; —
1) 2 (i1) 3 (111) 5 (iv) o
T 4n
v) 90°; — (vi) 48°; —
(v) 5 (vi) 15

In Questions 2 and 3 answers are given correct to two decimal places.
: V4 37 137 167
2. 1) 0.63] — 1) 0.94 1) 2.73 3.35
(1) (Sj (i) [10) (ii1) (15) (iv) (15}
(v) 5.03 (8?7[) (vi) 2.09

3. (1) 67.5° (1) 25.71° (i) 57.30°  (iv) 42.97°
Exercises 5.2

w T . 4T el 3T . ST
1. 1) — 1) —— 1) — -
(1) 1 (i1) 3 (iii) 5 (iv)
. = @2 G S () 1-3-’3 .0 Do
2 4 3 P
4, 28.5cm 5. 8,1.5 6. 25
Exerciges 5.3
1 12 3 7 348 242
L. @ =5 =< i) — o —=——
2713’5 2575 3 3
2 @ L123 iy 22, 18
' B5a 378 8

Answers in Questons 3, 4 and 5 are given correct to four decimal places.

3. (1) 0.5922 (i) 0.8948  (ii1)) 0.2795 (iv) 0.7314 (v) 0.6540

4. (1) 44.9995°; 0.7854 (i) 63.4349°; 1.1071  (iii) 23.6376°; 0.4126
5. (1) 54.4623° (ii) 36.8699° (iil) 69.6359°
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Answers Answers
. , 1 . .
Exercises 5.4 - . 4. 7: 5. (1) acosd (i1) tan &
1. 200 2. 15° 3. 45° 4. — 5. — .2 : .
6 48 6. (1) bsin & (11) tan &
[e] ﬂ' [s]
6. 2.25° 1. 20 8. 55 Chapter 7
Exercises 7.1
Chapter 6 1. () 56 (i _10 )0 (V) -6 (V) ——  (vi) + i) - >
Exercises 6.1 g ) 11 () 0 () ™) 1000 ) it 7
1. (i) positive (i) negative (iii) positive (iv) positive (v) positive Exercises 7.2
(vi) negative (vii) positive (viii) negative(ix) negative (X) positive ! 1. 12.61 2. 12+34, 12 3. 24 4. 4x+3 5. 14x-3
2. (i) —cos 76° (ii) sin 66°  (iii) —sin 10° (iv) tan 3°6' (v) —sin 15° 6. 3x? ~2x 7. (1) 9x* (i)  4x (ii)) 6
(vi) —cos 68° (vii) —tan 86.9°  (viil) — cos 45° (ix) tan 80° (iv)  9x*+4x+6 (iv)  =(i) + (i) + (iii)
3. 1; 0; undefined; 0; —1; 0; —1; O0; undefined; 0; 1; O Exercises 7.3
4. (i) second (i) third 5. —tan®  6.tan© 7. —tan 0 2. 3x* 3. 1 4. 0 6. 15x% +6x+2
Exercises 6.2 ' _ 7. @ 6 (i) 4 (i) 9x®  (iv)  9x7+4x+6
Where necessary answers are given correct to four decimal places. (iv) = (iii) + (i) + (D)
1 (@) 9 (b) 30 (c) 6.5 (d) V3 ~1.7321 (e) 3.8567 Exercises 7.4
(f) 16.0869 (g) 3.4641 § . 12 . . 6 .
2. 1.9603 3.8 (b)5 (c) 356710 (d) 7.5175 (e) 10 L () 90 @ -— o @ 3Wrx o (v) - (vi) 4x-9
3. @8 ()5S (c) 35.6710 (d) 7.5175  (e) 10 f : x?
4 _gegne_e) 5 lr%&—ﬁn@ (vii) 9x2 +18x (viii) 2x -1 (ix) 1-— (X) 2x+2=2(x+1)
' 2 ' 2 . *
Exercises 6.3 @D-EJ;+2x— -1 @ﬁ)-ié-jg—l%
1. (a) 45°;135° (b) 60° 300° (c) 30°,210° (d) 30° 330° (e)0°; 360° 2 2+x : o X
® (3> 180° 360°  (g) 240°; 300° (h) 180° (i) 135% 315°1 2. @ 6 (i) 9 (iii)—Z (iv) — 14 v) _% (vi) 6
T 37 : . .. :
9% Mo @O0 (V3 W3 -y | 3.0 () (-4,20) (i) (0,2) (i) @ 12) (v) (- 11,80)
. 3 1 1 (3 3
(vi) % (vii) % (viii) —g v) (5,3];(—5,—3j (vi) [T,—BﬁJ;[-g,Bﬁj
7 Trx 137
Rl .. [4 256
4. 187187 18 (vi1) (33“5;{}(“2f"2)
5. (1) 90° (i) 15°; 75° (i)  75° |
6. (a) 30°, 150°, 210°, 330° (b)  30°, 150°, 210°, 330° 4. -1 5 3 6. —4,4 7. 0,2; > 8. (0,6),(2,2)
(©) 90°, 210°, 330° (d) 30°, 150°, 210°, 330°
(e)  0° 135°, 180°, 315°, 360° (f)  60° 90°, 270° 300° Chapter 8
] g Exercises 8.1
(g) 0°, 180°, 199.47°, 340.53°, 360° (correct to two decimal places) V ' 3 3 B
(h)  60° 90°, 120°, 240°, 270°, 300° (i) 0% 60° 180°, 300° 360° L O @x>7 0 x<5 () @ x>Torx<-2 (b) ~2<x<I
Exercises 6.4 . 3 3
Answers are given correct to two decimal places, wherever necessary. () (@) x>1 (b) O<x<l (iv) (@) x<—5 @)x>—5
1. El)) ;212067 gli)3 . 30°,90°,150° (ii1) 0°,90°,180°,360 V) (a) x> % (b) x <3\/5 (vi) (@) x>3orx<-3 (b) —3<x<3
v .67°,313.33° 5 3 . ... . 3
5 . 2. (1) 5 (a -2,1 @1 1 @Gv)y —= (v) 2 (vi) 0, +3
2O S ) _J3 0 5 G V3 2
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Answers : Answers
Exercises 8.2 ,‘, 3 s
1. (i) B minimum, D maximum
(i)  F, Jminimum; G, L maximum; H stationary point of inflexion A 3

(iii)) O, S stationary points of inflexion; Q minimum
Exercises 8.3

(1,2) minimum

(3,18) maximum

(-4,-107) minimum; (1,18) maximum 1 5 > x
(0,0) stationary point of inflexion; (3,-27) minimum \
(0,2) stationary point of inflexion; (1,1) maximum

(0,0) minimum
. (0,0) stationary point of inflexion
. (0,0) maximum
xercises 8.5 5 y 6 y

1
2
3
4
5
. : . . 3027, ..
6. (0,0) stationary point of inflexion; (5 -~ —1—6~) minimum
7
8
9
E

16 . 16 .
1. —1,—3— maximum ; 3,——3— minimum
2. -1, Ej maximum ; —4,—z minimum %
6 3 X 5
. . 0 _—
3. (0, 0) maximum ; (-2, — 16) minimum ; (2, —~ 16) mimnimum . 4
4, (- 1, = 4) minimum ; (1, 4) maximum \/
5, (0, 0) minimum ; (- 4, 32) maximum
6. (- 1, 2) minimum ; (1, 6) maximum
7. <~ NE) ,6) minimum ; (ﬁ ,6) minimum
8. (2, 8) minimum ; (- 2, — 8) maximum
Exercises 8.6 Exercises 8.7
1. 24m 2. 4.62cm; 4.62cm (2 decimal places)
y y
1 2
3. 1024cm’ 4. Depth = 61.24cm, breadth = 43.30cm (2 decimal places)
7. 4000cm”* 8. 1.12m’ (2 decimal places)
o] 6
3 X
5 X Chapter 9
\ f Exercises 9.1
(1) x’ (i1) x* (iii))  x’ +x°
Exercises 9.2
9
X 3 3 . 3 2 2
1) — 1) —x? 1) — 6x v) —— v) —x?
()9 ()5 (ii1) ()2x2 ()3
-1 .9 ) , x*
Vi) — (i) — i) 2Vx  (x) = (%) 4x-3xP -
9x 4x 5,2 4
Y
2 3 2 5
X 1 . 12 o XTX Y 1
X1y ——— xii) —x? ++/x X)) —+-—  (xiv) —+2y———-
()2x()3 ()32()5y3y3
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o 3x?
Xvl) —+
(xv1) 5

(xv) x+2~/x
3
2 =

(xviii) y* -gyz -6y

n+l

(xx1)
n+l

Chapter 10

Exercises 10.1

4
X
1. EEINE
=

L f)=v
X

Exercises 10.2
1

1. 4— 2. 10—
2

8. 2—2— 9. 102
3 3

Answers

3
2x?

7 El 3
(xix) =x2 +—x2 —2x?
7 5

y:x3 +x2 +x_14

3

4, y:2x5--1-+2x+3
X
2 8
2— 6 —
3 3 15
10. 4-1—
2
164

-1 s 3
(xvil) —+—x* +4x*
3x 5

(xx)

1
y——
Y

10

Abscissa
Angle
general
special
Arbitrary constant
Arc
length of
Area
of a parallelogram
of a sector
of a triangle
under a curve
Arithmetic progression

Cartesian coordinates
Chord

Convergent

Curve sketching

Definite integration
Degree
Derivative

second
Derived function
Differentiation

of polynomials
Discriminant
Divergent

Equation
linear
quadratic
of a straight line

General angle
trigonometric ratios of

48

79
75
136

70

85
70
&3
141
39

48
98
31
127

140
26
101
119
101
101
100
19
31

12
14
15
58

79

Index

INDEX
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Geometric progression
Gradient
of a curve

Identity
Increment
Increasing function
Indefinite integral
Indices

rules of
Infinite sequence
Inflexion

point of
Integral

definite

indefinite
Integration

42
53
98

12
103
112
136

1
30

115

145
136

as the reverse of differentiation 136

Intersection

Limit

‘Maximum value

Minimum value

Ordinate

Point of inflexion
Polynomial

Quadrant

Radian
Rationalise

.Roots of a quadratic equation

nature of

66, 91

31

21,114
21,114

48

115

79

69

19



Sector

area of
Sequence
Series
Sine wave
Stationary point
Surd

Tangent
Triangle
area of
Trigonometric equations
identity
ratios

70
30
35
88
114

98

83
91
93
79

Index
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