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PREFACE 

This text is the second of three volumes which will cover between them most of the 
mathematical methods required for a modular A level course in mathematics. 
Specifically, the text is based on the P2 Specification of the Welsh Joint Education 
Committee which was introduced in September 2000. 

It is assumed that the reader will have successfully completed a GCSE course in 
mathematics and will have access to a calculator possessing mathematical functions. 

The text concludes with six revision papers. It is believed that these tests should be 
completed in approximately one hour by students who are ready to sit their A level 
examinations. 
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Solution of Inequalities 

Chapter 1 

Solution of Inequalities 

The solution of equations was considered in PI. There, the concept of inequalities 
arose during consideration of the discriminant of a quadratic function. Here, we take 
a more detailed look at inequalities. 

1.1 Inequalities 
Often in mathematics we are asked to consider relationships such as 

2b + 6 > 4 
or e2 - 2e < 6 
or 2y2 + 3y + 5 ;::: ° and so on. 
The symbol > means greater than, 

< means less than, 
and ;::: means greater than or equal to. 
Note that the sharp end of the arrows > and < always point to the smaller 
number. 
Thus 6 > 5 and 3 < 4. 

Exercises 1.1 
Use < and;::: to write the following statements :­
a) 12 is greater than 9. 
b) 4islessthan7. 
c) x is greater than or equal to y. 
d) m is positive. 
e) p is not negative. 

Relationships involving> and < are called inequalities. When the possibility 
of equality is not allowed (i.e. > and < rather than ;::: or the inequality is said 
to be a strict inequality. 
When inequalities involve letters, e.g. 2z + 6 > 10, our usual interest is to 
find the range of values of the letter (z in above) in order for the inequality to 
be satisfied; in other words, we are interested in solving the inequality. In this 
book we shall consider the solution of linear or quadratic inequalities, for 
example 

6 4a < 3, 
and 2x2+ 9x + 7 ;::: 0. 

We start with linear inequalities. The rules given in PI relating to equations 
can be modified for use with inequalities. 



Solution of Inequalities 

Manipulative rules for use with inequalities 
In the following, a, b, c and d are real numbers. 

(i) If a> b 
then ab> O. 

(ii) If a> b 
then a + c > b + c 
and ad> b d. 

(iii) If ad> bd and d is positive (d> 0) 
then a > b. 

(iv) If ad> bd and d is negative (d < 0) 
then a < b. 

Cv) If a > band d is positive (d> 0) 
d 

then a > bd. 

(vi) If!!.- > band d is negative (d < 0) 
d 

then a < bd. 

(vii) If ab> 0 
then a> 0 

or a < 0 

(viii) If ab < 0 
then a < 0 

or a>O 

b>O 
b<O. 

b>O 
b <0. 

The product of two 
negative numbers or 
two positive numbers 

is positive. 

The product of a 
positive number and 
a negative number 

is negative. 

Rules (iii) - (vi) are particularly important and often lead to errors in 
problems. Essentially, multiplication (or division) throughout an inequality 
results in no change in the direction of the inequality (> leads to 
< leads to <) if the number multiplying or dividing is positive. 
However, if the multiplication or division involves a negative number, the 
direction of the inequality is reversed (i.e. > leads to < and < leads to ». 
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Solution of Inequalities 

Example 1.1 
Solve the inequality (find the range of values of x) 

3x 6 < 4. 

The general strategy is similar to that for linear equations: isolate x on one 
side. 

3x < 4 + 6 
3x < 10. 

10 

(Rule (ii), add 6 to both sides) 
so 

3 
(Rule (iii), division by positive number) x < 

Example 1.2 
Solve 2x 4 ~ 7x - 2. 

Then 
so 

and 

2x 4 -7x ~ 2 
5x - 4 ~ - 2. 

5x ~ - 2 + 4 
5x :::: 2. 

2 

5 

(Rule (ii), subtract 7x from both sides) 

(Rule (ii), add 4 to both sides) 

( Rule (iv), division by negative J 
l number (-5) reverses inequality 

The rules need not be stated as in examples 1.1, 1.2. However, until the reader 
is familiar with them, he/she is advised to justify each step as shown. 
The method of solution of quadratic inequalities also makes use of Rule (viii). 

Example 1.3 
Solve x2 6x + 8 > O. 

The left hand factorises so that 
(x 4)(x 2) > O. 

Then either x 4 > 0 and x 2 > 0 (Rule vii) 
or x - 4 < 0 x - 2 < O. 
Thus either x> 4 and x> 2 i.e. x> 4 
or x < 4 and x < 2 i.e. x < 2. 
Combination of both statements thus gives the solution as x> 4 or x < 2. 

Example 1.4 
Solve x 2 -x 4:S:: x+ 4. 

We move all terms to one side 

x 2 x-4 x-4:S:: 0 

gIVmg x 2 2x-8:s::0. 
The left hand factorises. 

:. (x 4)(x + 2) sO. 

From Rule (viii), one factor is positive, one negative. The possibility of 
equality is allowed for by the word 'inclusive' in the last line below. 

3 



Solution of Inequalities 

x 4 > 0 and x + 2 < 0 

x> 4 and x < -2. 
This is impossible. 

x 4 < 0 and x + 2 > 0 
x<4 andx>- 2 

2sx s 4, 
i.e. x lies between -2 and 4 (inclusive). 

Sometimes the quadratic will not factorise, in 
which case we resort to using completion ofthe square. 

Example 1.5 
Solve x2 + 8x - 18 < O. 

The left hand side does not factorise, and we 
complete the square. 
Then (x + 4)2 16 - 18 < O. 

(x + 4)2 - 34 < 0, 
so (x + 4)2 < 34. 
Now .J34 < x + 4 <.J34 . 

.J34 4 < x < 4. 

The values of x must lie between 
-.J34 - 4 and.J34 4. 

Example 1.6 
Solve x2 4x - 10 2 O. 

Completion of the square gives 
(x 2)2 - 4 - 10 2 0 

so (x-2)2 2 14. 

Then (x -2) 2 or (x - 2) s 
The first gives x 2 2 + .Jl4, 
the second gives x s 2 

:. The solution is x 2 2 + fJ.4 

or x s 2 

Inequalities often occur as part of a bigger problem. 

Example 1.7 

Ignore possibility 
of equality, 
see last line. 

Remember now 
to allow for 

possible equality. 

Find the range of values of d such that the quadratic equation (in x) 
(d + 2)x2 2dx + 1 = 0 has real roots. 

4 



Solution of Inequalities 

Comparing with the standard quadratic, we see that 
a d + 2, b 2d, c l. 

Then (- 2d)2 4(1 )(d + 2) z 0 
so 4d2 - 4(d + 2) z 0 

A quadratic 
a:l +bx+c=O 
has real roots if 

b2
::!! 4ac. 

or d2 (d + 2) z O. (Rule (iii) with division by 4) 
.. d2 d - 2 z O. 
Factorise, (d + l)(d - 2) z O. 
Then d + 1 z 0 and d - 2 z 0 
or d + 1 :;; 0 and d 2:;; O. (Rule vii) 
The first pair of inequalities gives d z 2 
and the second pair of inequalities gives d:;; - 1. 
Thus the quadratic equation has real roots if d :;; - 1 

Exercises 1.2 

or d z 2. 

1. Find the range of values of x satisfying the following linear inequalities 
(i) 6 < 2 + x (ii) 7 > 3 x (iii) 4 - x < 6x 
(iv) 5 - 2x > 3x + 2 (v) 7 - 2x > 5 - 3x 
(vi) 3(x - 1):;; 2 (vii) 3(x + 5) > 2(x - 3) 
(viii) 2(x - 3) 3(x - 1) :;; 4(x + 1) 7(x - 3) 

2. Find the range of values of x satisfying the following :-
(i) x2 + 6x + 5 > 0 (ii) x2 - 9x + 20 < 0 
(iiO x2 + 6x 7 z 0 (iv) x2 + 18x + 72 :;; 0 
(v) 2x2 - 5x + 1 > 0 (vi) - 18x+ 16 < 0 
(vii) 5x2 -2x 16>0 (viii) 5x-l :;;0 
(ix) 3x2 7x + 3 z 0 (x) 4x2+ 5x - 1 :;; 0 

(xi) Xl + X + 3 < 2x + 5 

3. Find the range of values of k such that 
(i) (k+ 1)x2 2x - 3 0 has real roots 
(ii) kx+ 4 0 has no real roots 
(iii) (2k + 1 )x2 + (k+ 2)x + 1 0 has real roots 
(iv) (k + 1)x2 + 3x 2 = 0 has no real roots 
(v) (k+3)x2 +(2k+l)x+(k+l) = 0 has real roots. 

4. Show that the equation (2a - 1)x2 - 2ax + 1 = 0 
has real roots whatever the value of a, as long as a is reaL 

1.2 The Modulus Sign 
The modulus of a real number is a measure of its size irrespective of the sign 
of the number. We denote the modulus by the symbol I I. Then 

I 3 I = 3 but also I 3 I = 3. 

5 



Solution of Inequalities 

Exercises 1.3 
1. Write down the moduli of the following real numbers:-

(i) - 2 (ii) 1 (iii) 0 (iv) 4 - 16 - 12 
The effect of the modulus sign is therefore to assign a positive sign to all 
numbers. The modulus sometimes occurs in inequalities. 

Example 1.8 
Solve the inequality 

Ix 61 < 4. 

4<x 6<4 
so - 4 6 < X < 4 + 6. 

2 < X < 10. 

Example 1.9 
Solve 12x - 71 > 5. 

Then 2x 7 > 5 
or 2x 7 < - 5. 
The first gives 2x >7+5 
so 2x >12 
and X > 6. 
The second gives 2x< 7 - 5 
so 2x < 2 
and x < l. 
The solution is x > 6 or x < 

Exercises 1.4 

1. 

If a number has size less 
than 4 irrespective of 

sign it must be 
between -4 and 4. 

1. Solve the inequalities :-
(i) I x + 7 I < 9 (ii) I 2x - 3 > 6 
(iii) I 5 4x. < 6 (iv) I 3 2x I ~ 2 

2. Solve the equations 
(i) I x 21 5 (ii) I 2x - 3 I = 7 

(iii) I 5 2x1 l3 (iv) I x2 - 12x + 5 I = 3 

(v) I 4y I I 2 

1.3 Interval Notation 
In the previous two sections we expressed solutions to inequalities in the form 
x> x 7, 9::::; x < 12, x > 2 or x::::; - 4, and so on. It is convenient to write 
such solutions in interval form. 
The various cases may be written as follows :­

(i) x> 5 as 5, (0), 

(H) x ~ 5 as [- 5, (0), 

(iii) x < 7 as (- 00, 7), 

6 

'00' signifies numbers 
increasing indefinitely. 
'-ocJ signifies numbers 
decreasing indefinitely. 



Solution of Inequalities 

(iv) x5,7 as (-00,7], 
(v) 95, x < 12 as [9, 12), 

(vi) x< 2 orx;;::: 7 as too, 2) v 00), 

(vii) -8<x<4 as -8, 4). 

The round brackets occur in strict inequalities, the square brackets in 
inequalities which also allow the possibility of equality. 
The v in (- 00, 2) v [7, 00) signifies the union of two intervals, in other words 
all values in either intervaL 

Exercises 1.5 
1. Represent the following in interval fonn:-

(a)x>-3 (b)x5,6 (c) x;;::: 9 (d)x<-4 
(e) 35,x<21 (f)x;;:::9andx<12 
(g) x> 5 and x 5, 20 (h) x;;::: 20 or x 5, 30 

2. Express the solutions to the inequalities in Exercises 1.2, questions 2(i) (iv) 
in interval fonn. 

7 



Factorising and Two Theorems 

Chapter 2 

Factorising and Two Theorems 

In PI we considered the factorisation of quadratic expressions, i.e. of polynomials of 
two. Here we consider factorisation of polynomials of higher degree. 

Factorisation of polynomials may involve division of one polynomial by another. For 
that reason, we start by considering division of polynomials. 

2.1 Division of polynomials 
Let's start by considering an example. 

Example 2.1. 
Divide x3 + 7x2+ 4x - 9 by x + 2. 
The method used is similar to the method 
used when we divide a number by another 
number without the use of a calculator. 
We subtract x + 2 from x3 + 7x2 + 4x 9 
as many times as possible. 
The terms in x3 + 7x2+ 4x - 9 are 
eliminated one by one as follows. 

x 2 + 5x- 6 
x + 2 ) x3 +7x2 + 4x - 9 

~ +2~ l 1 
Subtract 5x2 + 4x 

5x2 + lOx 

Subtract - 6x 9 

- 6x-I2 
Subtract 3 

[ 
[ 
[ 

For numbers, division 
of38 by 6 is achieved by 
taking 6 from 38 six times 

leaving remainder 2. 

To eliminate x 3 we 
multiply x + 2 by x 2 . 

Bring down next term 
and eliminate 5x2 by 

multiplying x + 2 by 5x. 

Bring down next term 
and eliminate -6x by 

multiplying x + 2 by -6. 

-9 -(-12) = - 9 +12 
=3. 

The remainder 3 doesn't contain x so no further elimination is necessary and 
we are finished. 

x3+ 7x2+4x 9 2 3 
Then == x +5x 6+-- (x:tc-2) 

or equivalently 
x3 + 

x+2 x+2 

4x- 9 (x2 + 5x - 6)(x + 2) + 3. 

8 



Factorising and Two Theorems 

The following points should be noted. 
1. The long division procedure involves attempting to eliminate the highest 
power of x at each stage. 
2. The process ends when no further elimination is possible by mUltiplication 
by a power of x or a number. 
3. At each step, the signs in the highest power terms are the@6X-9 
same and therefore elimination is always achieved by - 6x - 12 
subtraction. 3 

Example 2.2 
Divide 8.0 - 24x3 + 4x2 - 9x + 5 by 2x - 3. 
Whilst the first term involves .0 instead of x3 as in example 2.1, the same 
procedure is adopted. 

4x' 6x2 - 7x 15 
2x - 3 ) 8x4 - 24x3 + 4x2 - 9x + 5 

Then 

Or 

8x4 =1~~ + 4~ 1 
-la3 + 18x2 

-14x2 - 9x 

-14x2 + 21x 

-3 Ox + 5 

-30x+45 

-40 

8x 4 24x3+4x2-9x+5 

2x 3 

8x4 
- 24x 3 + 4x 2 -9x+ 5 

~ 
~ 
~ 

40 cannot be 
eliminated 

The procedure may also be used when the bottom expression is of a degree 
higher than one. 

Example 2.3 
Divide 2.0 + 3x3 + 9x2 - 5x + 1 by x2 + 6x + 1. 

x2 + 6x + 1 ) 2x4 + 3x3 + 9x2 - 5x + 1 

2x4 + 12lf + 2x
2 l 1 

-9xl + 7x2 - 5x 

-9x3 - 54x2 - 9x 

61x2 + 4x + 1 

61x2 + 366x + 61 

-36a- 60 

9 

7x2 - (-54x2) 

7i2 + 54i2 61x2 



Factorising and Two Theorems 

This process ends because 362x - 60 is of a degree less than that of 
x2 + 6x + 1 and no further elimination is possible. 

2.0 + 3x3 + 9x2 5x + 1 == (x2 + 6x + 1) (2x2 9x + 61) - 362x 60. 

Sometimes, one polynomial divides another exactly and no remainder is 
obtained. 

Example 2.4 
Show that 2x + 3 divides exactly into + 5x2 - 9x - 18. 

x2 + x - 6 
2x + 3) 2x3 + sx2 - 9x - 18 

~+~ 9l 1 
2x2 + 3x 

-12x 18 
-12x 18 

Then 2x3 + 5x2 9x 18 == (2x + 3)(x2 + x - 6). 

Given that a linear factor divides exactly into another polynomial, the division 
may be carried out by another method. 

Example 2.5 
Given that 3x3 - 1 37x - 18 is divided exactly by 3x - 2, we can write 

3x3 - 17x2 + 37x - 18 = (3x 2)(x2 + ax + 9). 
The expression in the second bracket must be of second degree and must be of 
the form shown in order that the x3 and constant terms match. 
3x3 - 18 == (3x - 2)(x2 + ax + 9) 

~ 
3x3 - 18 

The constant a is unknown but is easily found by consideration of the x2 or x 
terms. 

Thus 
so 

3x3 -17x2+37x 18 = (3x 2)(x2 +ax+9) 

-17x2 2X2 + 3ax2 

- 17 + 2 3a (cancelling x 2). 

a = -5, 
or alternatively, for the x term 

37x == 27x 2ax 
so 10 2a 
and a - 5, as before. 

10 
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"'"--- -----



Factorising and Two Theorems 

Substitution for a in the suggested factorisation gives 
3x3 - l7x2 + 37x - 18 = (3x - 2)(x2 - 5x + 9). 

Example 2.6 
Given that 2x - 5 divides exactly into 2.0 - llx3 + l7x2 - x-I 0, we may 
write 

2.0 - llx3 + l7x2 - x-I 0 == (2x - 5)(x3 + ax2 + bx + 2). 

~ 
2.0 - 10 

The form of the cubic expression on the right hand side is deduced from 
consideration of the terms in .0 (2.0) and the constant term (- 10). The 
constants a and b are determined from consideration of the terms in x3, x2 or x. 
The term inx 

-x == 4x - 5bx 
so - 5x == - 5bx 
or b = 1. 
The term in x2 

17x2 == 2x2 - 5ax2 

so 15x2 == - 5ax2 (2x - 5)(x3 +ax2 + x + 2) 
~ 

and a = - 3. 
Then 2.0 - llx3 + 17x2 - x - 10 ~ (2x - 5)(x3 - 3x2 + x + 2). 
Consideration of the term in x3 gives 

so 
and 

Exercises 2.1 

- llx3 == - 5x3 + 2ax3 

- 6x3 == 2ax3 

a = - 3, as before. 

There is no need for this 
but it is given as a check: 
(2x - 5)(x3 +ax2 + bx + 2) 
~ 

1. Derive the relationship between the polynomials A and B in the form 
Polynomial A == (polynomial B)(polynomial) + remainder 
for the following cases. 

(i) (A) x2 - 3x - 2 (B) x + 3 
(ii) (A) x3 - 3x2 + 4x - 5 (B) x - 5 

(iii) (A) 2x3 - 7x2 + 6x - 3 (B) 2x + 1 
(iv) (A) 12.0 - 8x3 + 2lx2 + 1 (B) 6x + 5 
(v) (A) 12.0 - x3 + 12x2 - 7 (B) 4x2 - 3x + 2 

2. Find the expressions denoted by ? in the following :-
(i) 3x3 + 5x2 - 25x - 7 = (3x - 7)(?) 

(ii) x3 + 2x2 - x - 2 = (x + 2)(?) 
(iii) .0 - 5x3 + 9x2 - 7x + 2 = (x2 - 3x + 2)(?) 

3. Show that x - 5 divides x3 - 4x2 - 17x + 60 exactly and factorise the 
polynomial. 

4. Show that both x - 2 and x - 3 divide .0 - 6x3 - x2 + 54x - 72 exactly and 
factorise the polynomial. 

11 



Factorising and Two Theorems 

2.2 Two theorems 
Question 3, Exercises 2.1 shows that if one factor of a cubic polynomial is 
known the other factors are easily found. Specifically, 

f(x) = x3 4x 17x + 60 
== (x - 5)(x2 + x - 12) 
== (x 5)(x + 4)(x - 3). 

Clearly, the procedure of factorising polynomials of degree higher than two 
depends crucially on our knowing a factor to start the process. Much of this 
section is concerned with finding that important first factor. 
Let's recap on our findings of Section 2.1. When a 
polynomial f(x) is divided by a linear factor x a we have 

f(x) == (x - a) Q(x) + R, 
where Q(x) is a polynomial and the Remainder R is a 
number. 
Q(x) is of degree one less than that of f(x) and the number 
R is, of course, of degree one less than x-a. 

Then, from above, on setting x = a , we have 
j(a) (a a) Q(a) + R 

so that R j{a). 
This result is known as the Remainder Theorem. 

Remainder Theorem 

When a polynomial expression j(x) is divided by the linear 
expression x - a, the resulting remainder is j(a) . 

Example 2.7 
Find the remainder when + 3x + 5 is divided by x + 2 . 

Writing j{x) = x 2 + 3x + 5 and noting that a -2, we have 

remainder = j{-2) (-2Y +3{-2)+5 = 3. 

Example 2.8 
When x 2 + bx + c is divided by x-I, the remainder is -14; when divided by 
x + 1, the remainder is O. Find band c. 

If j{x) 

j(l) 

j{-I) 

l+b+c 
I-b+c 

+bx+c, 

-14, 

O. 
-14, 
O. 

(1) 
(2) 

From (1), (2) we find b = -7, c = -8. 

12 



Factorising and Two Theorems 

From the remainder theorem, we saw that 
j{x) = (x -a)Q(x) + R 

with R = j{a) 

Now when x - a is a factor of j{x), there will be no remainder when j{x) is 
divided by x - a. Then 

R = j{a) = O. 

This result is known as the Factor Theorem. 

Factor Theorem 
If a polynomial expression f(x) is such that f(a) 0, then x a is a factor 
or, in other words, x a divides into f(x) exactly. 

The factor theorem is a useful tool for the factorisation of polynomials. 

Example 2.9 
Factorise 2x3 x2 - 13x 6. 

If f(x) 2x3 - x2 13x - 6, we seek a number to substitute for x which makes 
f(x) equal to zero. 

Now f(O) = 2.(03) - (0)2 13(0) 6 = - 6 "# O. doesn't work 
f(1) = 2 - 1 - 13 6 = - 18 "# O. 

f(-I) 2 1 + 13 6 = 4 "# O. 
f(2) = 2(2)3 (2)2 - 13(2) - 6 

16 - 4 26 - 6 20 "# O. 
f(-2) 2(-2)3 (_2)2 - 13(-2) - 6 

16-4+26-6 = O. 
Since f( -2) 0, x + 2 is a factor. 

Then this factor can be divided out to give 
2x3 x2 - 13x 6 == (x + 2)(2x2 5x 3) 

(x + 2)(x - 3 )(2x + 1), 
on factorising the quadratic expression in the 
usual way (see Pt). 

When the linear factor divides exactly into the 
polynomial it is not necessary to use long 
division to achieve the initial factorisation, as 
we saw earlier. 

13 

2x2 - 5x 
x + 2 ) 2x3 - x 2 - 13x - 6 

2x
3 

+4x2 ~ 1 
- 5x2 13x 
- 5x2 -lOx 

-3x-6 
- 3x 6 



Factorising and Two Theorems 

Example 2.10 
Given x + 3 is a factor of 2x3 + 3x2 8x + 3, we may write 

2x3 + 3x2 - 8x + 3 == (x+ 3)(2x2 + ax + 1), 
where a is a constant to be determined. The choice of the quadratic in the 
second bracket arises because 
(a) the degree is one less than 3, 
(b) (x + 3)(2x2 + ax + 1) gives the term 2x3 which is present on the left hand side, 
~ 

(c) (x + 3)(2x2 + ax + 1) gives the term 3 which is present on the left hand side. 
~ 

The number a is then found by matching the x or x2 terms on the left hand side 
with those obtained by multiplying out the brackets. 
x term 

and 
or alternatively, 

x 2 term 

- 8x == x + 3ax 
9x == 3ax 
a = - 3 

3x2 ax2 + 6x2 

so 3x2 == ax2 

or a 3 as before. 

(x + 3)(2x2 + at + 1) 
'--.':::=- --............... 

(x+ 3)(2x2 + ax+ 1) 
~ 

Then substitution for this value of a in the initial factorisation gives 
2x3 + 3x2 - 8x + 3 (x + 3)(2x2 3x + 1) 

(x + 3)(2x -1)(x - 1). 

The method used in example 2.10 may be used for higher order polynomials. 

Example 2.11 
Write 3x4 - 8x2 + 9x + 2 as a product of a linear factor and a polynomial of 
degree 3. 

We see that f(-2) = 48 - 32 - 18 + 2 0 so x + 2 is a factor. 
Then 3x4 8x2 + 9x + 2 (x + 2)(3x3 + ax2 + bx + 1), 
where a and b are unknown. As before, the terms 3x3 and 1 
are easily deduced by matching the terms in 3x4 and the 
constant term. The constants a and b may be found by 
matching up terms in x, or x3 . 

J: 
9x == x+ 2bx 

so 8x == 2bx 
and b 4. 

(x + 2)(3x3 - - - - 1) 

~ 
3x4 2 

so 
and 

8x2 == 4x2 + 2ax2 

12x2 == 2ax2 
(x + 2)(3x3 + ax2 + 4x + 1) 
~-----~ 

a = -6. 

Substitution of these values for a and b gives 
3x4 - 8x2 + 9x + 2 (x + 2)(3x3 6x2 + 4x + 1). 

14 



Factorising and Two Theorems 

Exercises 2.2 
1. Find the remainder when the following expressions are divided by the linear 

expressions indicated. 
(i) Xl + X - 2, X + 1 (ii) Xl - 2X2 + 3x + 1, X - 2 

(iii) X4 + Xl - 2, x-I (iv) X4 + Xl - 3x 2 + 1, x + 2 

2. If X4 + 7x 2 
- X + a has remainder 2 when divided by x + 1, find a. 

3. Given that x 3 + bx 2 + cx 2 has remainders 12 and 0 when divided by 
x - 2 and x + 1 respectively, find band c. 

4. Factorise the following expressions. 
(i) x3 - 3x2 + 4 (ii) 
(iii) x4 - x2 + 4x - 4 (iv) 

Answers may involve quadratic factors. 
2x2 + 1 

3x2 -x + 6 

5. Find the value of k if x - 2 is a factor of x3 + 6x2 + kx - 4. 

6. Find the values of a and b if x4 4x3 + 
- 2 and x + 3. 

+ bx + 24 is exactly divisible by x 

7. Given that x - 2 is a factor of f(x) x3 + ax2 - 3x + b, where a and bare 
constants, and fhas a stationary value when x = - 1, find the values of a and b. 
Factorise f(x). 

8. Show that no positive integer n can be found such that x + 4 is a factor of 
x2n + 64. 

9. Find the value of n if x 2 is a factor of x 211 64. 

15 



The binomial expansion for positive integral index 

Chapter 3 

The binomial expansion for positive integral index 

A binomial expression consists of two terms. Thus 2 + x, a + b, 7y + 3, x2 7 and 
8a3 + 2b2 are all binomial expressions. 
Sometimes it is necessary to mUltiply out or expand a power of a binomial. For 
example, 

(a + b)2 ~+~~+~ ~+~+~+~ 
a2 + 2ab + b2, 

(a + b)3 (a + b)2(a + b) :; (a2 + 2ab + b2)(a + b) 

a3 + 3a2b +3ab2 + b3, 

simplifying. 
The multiplication process given above is impractical. Fortunately there are two rules 
for expanding powers: the first uses Pascal's triangle, the second using the concept of 
combinations. 
In this chapter we give only brief consideration to Pascal's triangle and concentrate 
upon the second method. 

3.1 Pascal's triangle 
We note that 

(a+b)O = 1, ~B 
(a +b)l a +b. 

Multiplying both sides repeatedly by (a + b), we find after straight forward but 
tedious calculation that 

(a+b)2 = a2 +2ab+b2, 

(a + b)3 = a3 + 3a2b + 3ab2 + b3, 

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4. 
It is possible to write the coefficient of the terms in the above expansions and 
of others in an arrangement known as Pascal's triangle (we state this without 
proof). 
Binomial expression Coefficients in the expansion 

(a + b)O 1 
(a+b)l 1 1 
(a + b)2 1 2 
(a + b)3 1 3 3 
(a + b)4 4 6 4 
(a + b)5 5 10 10 5 
(a + b)6 6 15 2015 6 1 

This arrangement is known as Pascal's triangle and can be continued to as 
many rows as can be required. 

16 



The binomial expansion for positive integral index 

Again, without proof we note that coefficients in any row of the table 
(excluding the l's) are found by adding the adjacent coefficients in the 
preceding row. For example consider the rows for (a + b)4 and (a + b)S, 
namely 

(a + b)4 
(a + b)S 

" / \ 7 
\ 1 4/ \6 4/ 1 

1 \ 5 / 10 \ 10 / 5 1 
\ I \ / 

\ / \ / 

We give two examples. Thus the 5 in the second row is given by 1 + 4 in the 
first row; and 10 in the second row is given by 6 + 4 in the first row. 
The other numbers 10 and 5 in the second row can be seen to arise in the same 
way. 

Example 3.1 
Check the relationship between the coefficients for (a + b)S and (a + b)6. 

-,.-----7 
'\ 1 5/ q 0 10/ 5 1 

'\ / ~ / 

1 '\ 6/ 15 \ 20 ,,15 6 1 
'\ I '\ / 

\ .. 
For convenience we check two of the coefficients in row 2 as shown. 
The determination of any row of Pascal's triangle enables us to write any 
binomial expansion. 

Example 3.2 
Write down the row of coefficients for (a + b)6 and deduce the corresponding 
row for (a + b)7. Hence expand (a + b)7, 

(a + b)6 
(a + b)7 

Then 

1 7 21 35 35 21 7 1 

(a + b)7 = a7 + 7a6b + 21aSb2 + 35a4b3 + 35a3b4 + 21a2bS + 7ab6 + b7. 

Exercises 3.1 
1. Use Pascal's triangle to expand 

(i) (a+b)S (ii) (a+b)6 (iii) (a+b)8. 

2. Use Pascal's triangle and write a ,b = 2y to expand (1 + 2y)3. 

3. Expand (x + 3y)4. 

4. Expand (1 3yP· 

5. Expand and simplify (i) (1 + J2r (ii) (.J3 + J2) (iii) (1 + Fs) + (1 Fs), 

It is tedious to use Pascal's triangle to expand Ca + b)IS say, because of the 
need to generate rows of coefficients. For that reason we introduce another 
method. To introduce this method we first need to discuss pem1Utations and 
combinations. 

17 



The binomial expansion for positive integral index 

3.2 Permutations 
Let's consider the following example. 

Example 3.3 
Taking the word 'work', how many separate arrangements can be made, taking 
two letters at a time? 
The possible arrangements are conveniently set out as 

wo wr wk 
ow or ok 
rw 
kw 

ro 
ko 

rk 
kr 

Here, every pair in a row has the same first letter and there are four rows in all: 
the first letter can be chosen in four ways. 
Within a row there are three pairs corresponding to the possible three choices 
of the second letter (0, r, k in the first row for example). 
Then the number of listed arrangements of four letters taken two at a time is 

12 4 x 3. 

Definition 
Each of the arrangements which can be made by taking all or some of a 
number of objects is called a permutation. In example 3.3 we considered the 
permutations of four letters taken two at a time. 
Suppose now we required the permutations of four letters taken three at a time. 
Then the first line of the possible arrangements may be taken as 

wor wok wro "'irk wko wkr 
with another three such lines containing 0, r, k as their first letters. Then the 
number of permutations of 4 taken 3 at a time is 

24 = 4 ways of choosing 
first letter 
from four 

ways of choosing 
x3 second from x 2 

remainingtbree 

ways of choosing 
third from 

remaining two 

The general result is that the number of permutations ~t 
k 

.. r l.ac ors 
ta en r at a time IS 

nx(n-l)x(n 2) .... (n r+l) 
= n(n 1)(n-2) .... (n-r+l). 

This number of permutations (n objects taken r at a time) is written npr . 

The number of permutations of n objects taken n at a time is 
nPn n(n l)(n 2) .... (1). 

For brevity n(n l)(n - 2) .... (1) is written as n! 
(so, for example, 4! 4 x 3 x 2 x 1 24). 
With this notation, nPn n! 

and nPr=n(n-l)(n 2) .... (n r+l) 

18 



The binomial expansion for positive integral index 

Exercises 3.2 

( -1)( -2) (_ 1)(n-r)(n-r-1) ... (1) nn n .... nr+ 
(n-r)(n-r-1) ... (1) 

n! 

(n - r)! Here we mUltiply 
in effect by 1. 

1. Write down the number of permutations of 7 objects taken (i) 7 at a time 
(ii) 5 at a time. 

2. How many three digit numbers can be made from the set of integers 
{1 ,2,3,4,5}? 

3. In how many ways can six different books be arranged on a shelf? 

4. How many different arrangements can be made from the word 'module', taking 
3 letters at a time? 

5. Write down the values of SPs and SP2. 

6. 

7. 

8. 

9. 

10. 

Evaluate 6! + 2!. 

8! 
Evaluate 

(4!)2 . 

7 P4 
Evaluate 

4! 

~ ans~er i~ot ~ 

Write in factorial form n(n -l)(n - 2) 
3x2x1 

Show that (n -1)! + n! (n + l)[(n -1)!]. 

3.3 Combinations 
Let's consider again the permutations of the letters of 'work', taken 3 at a time. 
We saw that the number of permutations is 

4P3 = 4 x 3 x 2 = 24. 

Suppose now we wish to know how many sets of 3 can be taken from the 
letters of 'work', counting one set once. 
The number of sets is 4 :-

wor, wok, wrk, ork 

We refer to the number of sets of 4 objects 
taken 3 at a time as the number of 
combinations of four objects taken 3 at a time. 
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The binomial expansion for positive integral index 

Definition 
The number of combinations of n objects taken r at a time is the number of 
sets (order being ignored) of n objects taken r at a time. It is denoted by the 

symbol In). Then from the above situation, (4) = 4. 
\r \3 

Example 3.4 

Find the combination (~J of A, B, C taking two letters at a time. 

The combinations are AB, BC, CA 

so G) 3. 

It is clear that only limited progress is possible if we have to write down all 
possible combinations; for example the UK lottery relates to selection of 6 

numbers from 49 and 13, 983, 816, (
49 '1 .. 
6 ) Even if you could write 

nearly 14 million. 

As it happens, a convenient formula for (nJ 
\r 

exists. 

To derive this formula we first consider an example. 

Example 3.5 

dovvn a selection every 
5 seconds, it would take 
over 2 years to list all 

the cases. 

Consider the following method of finding sP3, the number of permutations of 

5 objects A, B, C, D, E (say), taken 3 at a time. We know this is ~ 60, but 
2! 

never mind. 
First, we consider the selection of 3 objects taken from A, B, C, D, E, counting 
a particular set of 3 just once, e.g. the set A, B, C is counted once and the 

particular order of selection is unimportant. The number of such sets is (5J, 
\3 

by definition. 
Now, for the permutation situation where order is important, each set of 3 such 
as A, B, C will generate six pemmtations (ABC, ACB, BAC, BCA, CAB, 
CBA). Thus each set of 3 objects will generate 3P3 = 3! 3 x 2 x 1 

permutations. 
Then we may regard the total number of permutations of 5 taken 3 at a time as 
being generated by first taking sets of 3 and then rearranging each set of 3 in 
3P3 ways. Thus, 

x 31. 
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The binomial expansion for positive integral index 

[~) 
Sp 

so _ 3 

3! 

5! 

2!3! ' 
--.R = 5 X 4 X 3 X 2 xl = 10 
2!3! 2 X 1 X 3 X 2 xl 

on substituting for 5P3. 

More generally, 

nPr (: J x r! 

so (:J 
n Pr 

r! 

[:) 
n! 

(n-r)!r! 

Example 3.6 

~ 
~ 

Out of 15 men, in how many ways can 11 be chosen? If the men were to form 
a cricket team, find the total number of batting orders that are possible. 

Number of sets of 11 from 15 = [: ~J 
15! 15x14x13xI2x11! 

4!11! 4x3x2x1x11! 

1365. 

Note the 
convenience 
of using 11! 
in expression 

for 15! 

The total number of batting orders is the number of permutations of 15 taken 
15! 

11 at a time = 15Pll = = 54, 486, 432,000 - a lot of batting 
4! 

orders. 

Exercises 3.3 

1. Find the values of (i) 9P8 (ii) 26p 6 (iii) [2:) (iv) G~ J 
2. How many different arrangements can be made by taking six of the letters of 

the word equations? 

3. How many different numbers can be made by selecting 4 digits from the set 
{2, 3, 5, 6, 7, 8}? How many start with 8? 

4. Find the possible values of n if 

[; )=10[ ~) given that n > 4. 

5. A team of 4 senior citizens is to be selected from a group of 20 to compete in a 
national quiz. In how many ways can the team be chosen if 
(a) any four can be chosen, 
(b) the four chosen must include the 'resident brain'? 

6. In the U.K. the national lottery started in 1995, 6 balls being selected from 49. 
In how many ways can a set of 5 be selected, one set being counted just once. 
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The binomial expansion for positive integral index 

3.4 The Binomial Theorem 
In this section the expansion of (x+a)n is considered, where n is a positive 
integer. We start by considering the expansions for (x + a)(x + b), 
(x + a)(x + b)(x + e) and (x + a)(x + b)(x + e)(x + d). 
Now (x + a)(x b) (a + b)x + ab 
and (x + a)(x + b)(x + e) (a + b)x + abJ[x + e] 

x3 + (a + b + e)x2 + (ab + ae + be)x + abe. 
Similarly, 
(x + a)(x + b)(x + e)(x + d) xl +(a + b + e + d)x3+(ab+be+ad+bd+ed+ae)x2 

+ (a be + abd + bed + aed)x + abed. 

Focusing on this last result, we see that the coefficients are as follows :-
xl 1 

sum of the letters one at a time (a + b + e + d), 
x2 sum of the products of the letters two at a time 

i.e. (ab + be + ad + bd + ed + ae), 
x sum of the products of the letters 3 at a time r 

i.e. (abe + abd + bed + aed), and the tenn independent of x is abed. 

Now we know that the number of ways of 

(.) . 4 I .. (4) 4! 1 groupmg etters 1 at a tIme IS 
\ 1 1!3! 

4, 

(ii) grouping 4 letters 2 at a time is (42)\ 4! 
2!2! 

6, 

(iii) grouping 4 letters 3 at a time is 4, 

(iv) grouping 4 letters 4 at a time is (:)=1. 

In the preceding, let b = e = d a. Then 
(x + a)4 = xl + 4ax3 + 6a2x2 + 4a3x + a4 

or (x+a)4 = xl+ i4
\ax3 + f

4
Ja2x2 + (4Ja3x+ 

\1; \2 l3 

From a consideration of these general results we may conj ecture but not prove 
the general results for any positive integer n :-

(x + a)n = xn + (nJaxn- 1 + [n) a2xn-2 + (n I a3xn·-3 + .. + an. 
1 \ 2 3) 
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The binomial expansion for positive integral index 

A more convenient form of the expansion when the various (~), (~J etc. are 

written out in full is available :-

The binomial theorem for positive integer n 

(x + a)n xn + naxn-1 + n(n -1) a2xn- 2 + n(n 1)(n - 2) a3xn- 3 
1.2 1.2.3 

+ n(n 1)(n 2)(n 3) a4xn-4 + ... + an. 
1.2.3.4 

Example 3.7 
Expand (x + a)6. 
In this n 6 and 

(x + a)6 x6 + 6ax5 + 6(6-1) a2x4 + 6(6 -1)(6 - 2) a 3 x3 
1.2 1.2.3 

6(6-1)(6 2)(6 3) 4 2 6(6 1)(6 2)(6-3)(6-4) 5 6 
+ ax+· ax+a 

1.2.3.4 1.2.3.4.5 
= x6 + 6ax5 + 15a2x4 + 20a3x3 + 15a4x 2 + 6a5x + a6. 

Example 3.8 
Expand (2x + 3y)4 . 

We write a 2x, b 3y in the expansion for (a + b)4. Then 

(2x + 3y)4 = (2x)4 + 4(2x)3(3y) + ~(2x)2 (3y)2 + 4.3.2 (2x)(3y)3 + (3y)4 
1.2 1.2.3 

= 16x4 + 96x3y + 216x2y2 + 216xy3 + 81y4. 

Example 3.9 

Expand(a 2x)3. @.e-3 
Here we write b = - 2x. Then 

(a - 2x)3 a3 + 3a2(- 2x) + 3.2 a(- 2x)2 + (- 2~)3 
1.2 

a3 6a2x + 12ax2 8x3. 

Example 3.10 

Find the term in x2 in the expansion of r x + ~J6 
\ x 

It is convenient to write 

( X+~J6 
" X 

and look for the term in 

Now 
( 1 ']6 
1 1+-21 
\ x) 

1 in the expansion of (1 + ~ 1
6 

X ) 

66.5(1\2 
1+-2 +--2 )'+", 

x 1.2 x 

h 
. 1. 1 

T eterm III IS 15'4' 
x 
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Thus the term in x2 in (x + ~ J 6 is 

x6 . 1~ = 15x2. 
x 

Example 3.11 
If the coefficients of the 3rd and 5th terms in the expansion of (1 + X)11 are 
equal, find n given that n > 3. 

The 3rd term is the term in x 2 and is n(n -1) x2. The 5th term is the term in x4 
1.2 

andis n(n-1)(n-2)(n-3)x4. 

1.2.3.4 

Then 
n(n -1) n(n -l)(n - 2)(n - 3) 

1.2 1.2.3.4 
This can be cancelled down to 

(n-2)(n-3) 

3.4 
since n of. 0,1. 

12 n2 -5n+6 

so n2 - 5n - 6 o. 
Factorise: (n+ 1)(n-6) = o. 
Then n + 1 = 0 so n = -1 (impossible) 
or n - 6 = 0 so n = 6 which is the solution. 

Exercises 3.4 

1. Expand (i) (1 + 2z)5 (ii)(x - 2y)4 (iii) (x + ~ y (iv) (2y - z)3 

2. Write down the first three terms of the expansions of 
(i) (1 + x)12 (ii) (1 - 2y)14 (iii) (p + q)16 

( J
l0 ( 1 Jll 

(iv) 1 + % (v) (2 - 3x)8 (vi) x
2 + 7 

3. In the expansion of (2x - y)20 find the term containing y3. 

4. In the expansion of (1 - 2x)10 find the term containing x3. 

5. By substituting x = 0.01 in the binomial expansion of (1 - 2x)8, find (0.98)8 
correct to four decimal places. 

6. By substituting 0.1 for x in the binomial expansion of (1 + to J 8, find the 

value of(1.01)8 correct to four significant figures. 

7. If x is so small that x3 and higher powers are negligible, show that 
(3 - 2x)(1 + 2x)10 ~ 3 + 58x + 500x2. 
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8. Show that if x is small enough for and higher powers of x to be neglected, 
the function (x 2)(1 3x)8 "" 2 - 47x. 

9. Findyif(l 3y)3+(1 +3y)3 = 218. 

10. Write down the coefficients of and x5 in the binomial expansion of 
(1 + ax)l°. Given that the fIrst coefficient above is 8 times the second, fInd the 
value of a. 

11. In the binomial expansion of (3 + x)n, the coeffIcient of is 1.5 times the 
coeffIcient of x3• Find the value of n. 

12. In the binomial expansion of (a + x)8, the coefficient of x 3 is 28 times the 
coeffIcient of x. Find the value of a. 
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Functions 

Chapter 4 

Functions 

In PI we discussed briefly the concept of functions, specifically polynomial 
functions. We described as functions expressions in x which take values in 
response to the allocation of values of x. Thus for example, 
if f(x) = x2 + 2x - 3 
then f(-1) (-1)2 + 2(-1) - 3 4, 

f(O) (0)2 + 2(0) - 3 = 3, 
and so on. 
In this chapter we develop further the idea of function. One way in which we 
develop the idea is to allow expressions other than p~lynomials. 

Example4.1 
1 

f(x) x+ - , 
x 

g(x) = rx+1 
are two possible functions for consideration. Whilst f is often used m 
functions, we also use g and other letters to denote other functions. 

4.1 Functions and processes 
Let's look again at the idea of function 'by means of a block diagram. 

Example 4.2 
Consider f(x) = x2 + 2x - 3. 
This can be represented as follows. 

x function box 

f(x) = x2 +2x-3 

The function box is considered to be a black box, i.e. a device which by some 
means takes an input and generates an output. Then for various inputs 

-3 0 function box 
~ 

input f(x)= x2 +2x-3 

function box o 
~ 

f(x) = x2 + 2x -3 input 
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1. 

2. 

Functions 

Other inputs and outputs are 

2 5 

---=---3 .[_m~~O 
We have introduced the black box to underline the point that a function is 
essentially a process for generating outputs from given inputs. It should be 
noted that the process (as opposed to the output) doesn't depend upon the letter 
used. 
Thus f(x) x2 + 2x - 3 
and f(a) a2 + 2a 3 
are essentially the same process:- given a number, square it, add twice the 
number, and then subtract 3. 

Example 4.3 
Write down two further representations of the process 

g(x) 3x + 4. 
Any other letters may be used :­

g(a) 3a + 4, 
g(b) = 3b+4. 

A second point to be noted is that given an input, then the output is uniquely 
defined. Thus 

f(x) = ~ x + 4 is a function. 
However 

g(x) = ± ~x+4 
is not a function because two possible answers or outputs could be obtained 
from one input, e.g. 

g(S) ± .JS + 4 = ± 3. 

Rule 
A function must gIve one answer for anyone 
"acceptable" input. 
In passing it should be noted that the same output 
may be obtained with different inputs. In example 
4.2 with 

f(x) x2 +2x-3 
we see that f(1 ) ° 
and f(-3) 0, 
i.e. the output 0 can arise with two different inputs. 

Exercises 4.1 

If f(x) = x+2.,writedownf(1),f(2);f(-1)andf(a). 
x 

1 
Is g(x) 2 ± x a possible function process? 

x 
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Functions 

3. Show that for hex) (x + 2)2 + 3, h(O) h(-4). 

4. Are there any values of x which would be unacceptable inputs for 

fir 2 . fi 2 . \x) = ? Hmt: Can you md ? Try It on your calculator. 
(x+l)(x+2) - 0 

4.2 Domains of functions 
In section 4.1 we regarded the function expression as a process to generate 
outputs from given inputs, the rule being that the input should generate one 
output. Here we consider the acceptability, or otherwise, of inputs. 

Example 4.4 
1 

Consider f(x) .[;. and g(x) = -. 
x 

Are we able to find f(-2) and g(O)? Try it on your calculator! 
In fact, it is impossible to find outputs for tht:,se particular inputs and 
processes. 

Example 4.4 indicates that it is often· useful to specify, along with the rule, 

formula or process, the elements upon which the process acts. Thus the 

rule will only act upon values of x which are non-negative; and the 1 rule will 
x 

only act upon non-zero values of x, i.e. when x::;::. O. 
The set of numbers upon which a rule or process is able to act is called the 
domain. 

ExampJe4.5 
What is the largest possible domain for 

(a) f(x) = _1_, (h) g(x) = (x+ 1)2, (c) hex) 
x + 1 

We adopt the convention that, unless otherwise stated, the process or rule will 
act upon all real numbers with possible certain exceptions which are always 
noted. 

Thus (a) f(x) 

(b) g(x) 

(c) hex) 

1 

x+ 1 ' 
(x + 1)2, 

1 

(x::;::. -1) 

(no exceptions, i.e. all values of x are allowed) 

(x> - 2) 

In interval notation the domains are 
(a) (-co, -1) u (-1, co) (b) (-co, co) (c) (-2, co). 

Note that in (c), x -2 is not allowed because division by 0 is not defined. 

Sometimes even when the rule or process would accept all or most numbers, 
we may wish to restrict the domain. 
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Example 4.6 
f(x) x2 + 4x + 5, ° :s; x :s; 5 
g(x) x3 +4. 4:S;x<16 

The domains here are therefore [0, 5] and [4, 16). 

Exercises 4.2 
1. Find the largest possible domain in interval notation of the functions defined 

by the following rules :-

(a) f(x) = (b) f(x) 
x-2 

x+3 

1 
(c) f(x) = -..r; 

(d) f(x) 
1 1 

-;:::==+--
.Jx+2 x 1 

(e) f(x) = .J(x + l)(x -1) 

2 
(t) f(x) 

(x 1)(x+3) 
(g) f(x) = 

(h) f(x) (i) f(x) 

4.3 Ranges of functions 
In the last section we considered the domain of a function, the set of numbers 
upon which the rule acts. We now consider the set of numbers which are 
produced by the process, i.e. the outputs. The set of outputs is called the 
range of the function. 
When asked to find the range by the action of a given function rule upon a 
domain, we often find it useful to use a graphical representation offunctions. 

Example 4.7 
Find the ranges in interval notation when the given function rule acts on the 
elements of the given domain :-
(i) f(x) = 3x - 1 
(ii) f(x) x2 - 1 
(iii) f(x) x2 + 2x + 3 

[0,2] 
(-1,2] 
(-00, (0) 

Ci) We write f(x) = 3x - 1 as y = 3x 1. 
Then y is the output for a particular x. The introduction 0 f y allows us 
to plot inputs (x) and outputs (y) on a graph in the usual way. In this 
case the graph is a straight line as shown. 

5 

4 

3 

2 

1 

The range is , 5]. 
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Here y 1 and for the given domain 
of a table, for instance) to draw the graph. 

y 
3 

2 

1 

-2 

2 x 

,2] , it is easy (by means 

The unshaded circle 
indicates that x = -1 

is not part of the 
domain. 

Here the range is (-1, 3], the endpoints of this interval being the lowest 
and highest points of the graph. It should be noted that finding the 
outputs for the endpoints of the domain would have resulted in (0, 3] 
which is not the range in this case. 

(iii) In this case y = x2 + 2x + 3 = (x + 1)2 + 2, on completing the square. 
The smallest value arises when x -1, this smallest value being 2. 
The range is then [2, co). 

y 

) again this graph 
could have been 
deduced from a 

2 table of values. 

-1 0 x 

Exercises 4.3 
1. Draw the graphs and state the ranges in the following cases :-

(a) f(x) 1 x, domain [-3, 2] (b) f(x) (x _2)2 + 4, domain (0, 4) 

(c) f(x) domain (-1,7] (d) f(x) \, (x> 0) 
x~ 

(e) f(x) domain [-4, 5]. 

2. For each of the following function rules and domains, decide whether there are 
two or more elements in the domain corresponding to a single element of the 
range, [for example for f(x) = x2, all x, f(-2) f(2) = 4 so -2 and 2 in the 
domain correspond to 4 in the range]. 

(a) f(x) 3x+4 [-1,20] 

(c) f(x) + 8x [-5, 1] 

(b) f(x) + 8x [-4,4J 
(Note that x2 + 8x == (x + 4)2 -16.) 

1 
(d) f(x) (x> 0) 

x 
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(e) f(x) 
I 

(x> 0) (t) f(x) (-00, (0) 
x 2 x 2 +2 

(g) f(x) 4x x2 [0,4] ~4-~-2):3 
Summary 
A function involves three components, namely :-

1. a rule or formula (regarded as a process) which gives a single output value for 
a single input value; 

2. a set of input values upon which the rule acts, known as the domain; 
3. a set of output values, known as the range. 

4.4 Inverse functions 
Given a function f, involving the three components mentioned earlier, it is 
sometimes possible to find another function which reverses the effect of f. 
This function would take an output off and find the input from which it came. 
Such a new function is called an inverse function and mayor may not exist. 
Here we consider which functions have inverse functions and show how such 
inverse functions may be found. 

Example 4.8 
Given f(x) = x + 1 (-00, (0), 
can we find a function which reverses the effect of f? 
The process could be represented as a black box. 

x x+l 

So for example 
0 1 

f(x) = x+ 1 

1 2 

etc. 

Given an output, are we able to say what the input was? A little thought 
shows that for this case, a given output arises from an input which is one less. 
Thus the reverse process could be represented as 

1 
I function box I 0 

2 
I function box 

1 

It is clear that a function exists which reverses f(x) 
which subtracts] from the input value. 
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Example 4.9 
Given f(x) = (-00, (0), 
can we find a function which reverses the effect of f? 
The process could be represented as a black box. 

x 

So for example 
-1 1 

1 1 

Given an output, are we able to say what the input was? A little thought 
shows that for an output there may be two inputs, for example in the above, an 
output of 1 could arise from inputs -1 and 1. 
In this case we are unable to find a function which reverses the effect 
of f(x) x2. 

Let's summarise the results of Examples 4.8 and 4.9. 

Function 
f(x) x + 1 

f(x) x2 

An output arises 
from one input only 
There are two inputs 
giving the same output 

Does the inverse function exist? 
Yes 

No 

Functions such as f(x) = x + 1 (any domain), for which only one input gives a 
particular output, are said to be one-one functions. Note that f(x) x2 with 
domain (-ex:;, (0) is not a one-one function (as seen earlier). One-one functions 
arise again in Chapter 12. 
Examples 4.8 and 4.9 illustrate (but do not prove) a general result concerning 
one-one functions and inverse functions. First, we recall the definition of an 
inverse function. 

Definition 
The inverse function f-1 of a function f is a function which takes the outputs 
of f and maps them to the inputs of f, in other words reverses the 
effect of f. 

Rule 
A function f has an inverse function f-1 only if f is a one-one function. 

Example 4.10 
Show that for f(x) 
exists. 

x2 + 4x + 7 with domain (-00, (0), no inverse function 

Suppose we have an output y and attempt to find the corresponding input x. 
Thus let y = x2 4x + 7 and attempt to find x in terms of y. 
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x2 + 4x + 7 - y = O. 
By the quadratic formula, 

-4 ± .,)'---16---4-( 7---y-) 
x = ---'-------

2 

-4 ± 2~4 -7 + Y r::-::; 
= -2±-vy-3. 

2 
For real roots, y ~ 3 so that the range off is [3, CXl). For a giveny in this range, 
there are two values of x. This is illustrated in the graph of y = x2 + 4x + 7. 

~~--.---H~---+X 

-2 0 

Two values correspond 
to this value ofy. 

In this case, therefore, the inverse function doesn't exist. 

Example 4.11 
We note that if the function had been f(x) = x2 + 4x + 7 (same rule as in 
4.10) with a restricted domain (-CXl, -2] the graph would be as shown, and 
there is only one input of a given y, where y ~ 3. 

-2 0 x 

The range of 
fis [3,00). 

Then the inverse function exists and for giveny, 

x = -2-~y-3 
from example 4.10. 
Thus the function f-1 processes y to give 

-2-~y-3. 
In other words, 

f-1(y) = -2-~y-3. 

The two square roots 
are not possible, 
i.e. f is one - one. 

Now any letter may be used in the definition of the rule for f-1 and usually we 
choose the letter to be x. Then in this case 

f-1(x) = - 2-~ 
is the inverse of f(x) = x2 + 4x + 7 when the domain of f is (-CXl, -2]. 
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Given the rule of any function, it is appropriate to state also the domain and 

range of that function. To determine those entities for f-1, we note the 
following diagram, where we have represented the domain and range of f as 
two boxes. 

f 

domain off range off 

Now an examination of the diagram shows that f- 1 takes elements of the right 
box (i.e. the range of 1) and finds corresponding elements in the left hand box 
(the domain of 1). 
In other words, 

range off = domain off-I, 

domain off = range off-I. 
This is, in fact, the relationship between domains and ranges of one-one 
functions and their inverse functions. In the present case, therefore, 

[ [-1 

Domain (-00, -2] 
Range [3, (0) 

Summary 

Domain [3, (0) 
Range (-00, -2] 

(i) When a function f is one-one, its inverse f-1 exists. 

(ii) The domain of f-1 = the range of f. 
(iii) The range of f-l the domain of f. 
(iv) To find the rule for f- 1 we 

(a) attempt to solve y = f(x) for x in terms ofy so that x f-1(y). 
(b) replace y by x to give f-1(x) in the usual notation. 
Note that if two or more values result in (a) it is possible that the original 
function fis not one-one over the given domain (Example 4.10); but it may be 
one-one over a particular restricted domain (Example 4.11 ). 

Example 4.12 
13-x 

Given f(x) = ,1--, 
Vx-5 

state the largest possible domain and the corresponding range. Find f-l(x) and 

state the domain and range for f-1. 
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Since f(x) involves a square root, we must choose x so that the square root of a 
non-negative quantity is being taken, i.e. choose x so that 

3-x 

x-5 
2:: O. Note x = 5 

is not allowed 

then we require 3 - x 2:: ° and x 5 > ° (i) 
or 3 - x sO and x 5 < ° (ii) 
(i) leads to x s 3 and x > 5 which cannot occur together. 
(ii) leads to x 2:: 3 and x < 5 which can be combined into the one statement 
3Sx < 5, so that the largest possible domain of f(x) is [3, 5). 
For the corresponding range, we note that when x = 3, f(x) 0 and as x ~ 5, 
f(x) -+ 00. Hence the range off is [0, 00). 
To find f-l(x), let 

y = f(x) 

Then yl 3 x 

x-5 
so that (x-5)yl = 3 x 
and x(yl +1) = 3+5yl. 

. . x 

so that f-l(y) 

Changing from y to x, we have 

f-I(X) 3+5x2 

x 2 + 1 . 

Only one value of x 
for a given value of 
y, i.e. f is one - one . 

The domain of f- l = range of fwhich is [0, 00) and the range of f-l = domain 
of fwhich is [3,5). 

Exercises 4.4 
1. For each of the following functions, by drawing rough graphs or otherwise, 

decide whether f is a one-one function :-
(a) f(x) = 4x + 3 
(b) f(x) = 2x2 + I 
(c) f(x) = x2 + 6x 
(d) f(x) = xl + 6x 

(e) f(x) = ~x2 +4 
(f) f(x) = (x + 2)2 

1 
(g) f(x) = -

x 
1 

(h) f(x) = -2=----
x +2x+3 

domain [-1,5] 
domain [-3,3] 
domain [-3, 3] 
domain [-5,5] 

domain (-00, 00) 
domain (-00, 00) 

domain (0, 00) 

domain (-00, 00) 

2. For all functions which are one-one in question 1, find their inverse functions 
(give the three components). 
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3. Find the inverses of the following one-one functions, stating the rule, domain 
and range in each case :-

4. 

5. 

1 
(a) f(x) = 1 + - domain (0, co) 

x 
(b) f(x) = (x+2)2+3 
(c) f(x) = (x + l)(x + 5) 

(d) f(x) = .Jx+2 
1 

(e) f(x) = ~ 
"x+2 

(f) f(x) = .Jr-( x-+-3c--) (-x -----'--1) 

domain (0 , co) 
domain (-3, co) 
domain [ -2, co) 

domain (-2, co) 

domain [1 , co) 

1 
Find the largest possible domain for the function f(x) = --, and find the 

x+ 1 

inverse of f, stating the domain and range of f-1. 

Given f(x) 

range. 

-21- with domain (-co, 0), find f-1, stating the domain and 
x +1 

6. Find the largest possible domain of f(x) = 2x - 1 , giving the corresponding 
x+3 

range. Find f-1(x). 

7. Allowing non-negative values only, find the greatest possible domain for the 

function f given by f(x) = ~ 4 - x 2 
. Find (i) the range of f, 

(ii) the rule for f-1, i.e. f-1(x). 

4.5 Sketching inverse functions 
In section 4.3 we demonstrated how a function can be represented as a graph. 
For example, if f(x) = x2+ I with domain [0, co) we write y = x2+ 1 and obtain 
the graph 

y 

1 

o 

" 2 y=x + 1 

x 

For convenience, 
we have used a 

restricted domain 
to obtain a one­

one function. 

This function has range [1 , co). It is easy to show that the inverse function is 

f-1(x) = ~ with domain [1, co) and range [0, co). 

To draw this graph of f-1 we adjust the graph of f so that the input axis is 

horizontal and the output axis is vertical. Then the graph of f-1 is 
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x 

The new axes 
Ox, Oy are the 

previous Oy, Ox 
axes respectively. 

In fact, the graph of f-1 is easily obtained by reflecting the graph of f in the 
line y = x. 

y 

f 
/ 

/ 

/ 

/ 

/ 

Technique 

/ /y=x 
/ 

/ 

/ 

11 

x 

If the line y = x is a 
mirror and pins are 

placed upright on the 
graph offwe'll see 

pins behind the 
mirror situated on 

the graph of 11 

To find the reflection P' of any point P in the line y = x we drop a 
perpendicular PM from P to the line y = x and continue PM to P' where 
MP' = PM. P' is then the reflection of P in the line. 

Rule 

/ 
/ 

/ 
/ 

The graph of f- 1can be found from the graph of f by reflecting the latter in the 
line y =x. 

Exercises 4.5 
1. Given f(x) = 3x + 2, (all x), find f-1, and draw the graphs of f and f-1 on the 

same diagram. 

2. Given f(x) = x2 [0, 00), find f-1. Draw the graph of f- 1 by reflecting the 
graph of f in the line y = x. 
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3. Given the following graphs of functions, draw the graphs of the corresponding 
inverse functions. 

/ 
y 

/ 

// y=x / y X 
/ 

/ / 

/ 2 / 

/ / 

/ / 
/ 

/ 
/ 

x /'0 x 
/ 

/ / 

/ / 

(a) (b) 

y //y Y / X / Y X 
/ / 

/ / 
/ / 

/ / 
/ / 

1 ~/ 

/ 

x /1) 1. 3 x 
/ 

/ -1 

(c) (d) 

4.6 Composition of functions 
In this section we discuss a method of combining functions to obtain new 
functions. Let's consider the following example. 

Example 4.13 
Let f(x) = xl with domain (-00, (0), 

g(x) = 2x with domain (-00, (0), 
In the block diagram representation:-

x 

x 

mworas, 
square it 

g(x) 2x 
m words, 
double it 

2x 

Let's consider the following function which is a combination of f and g. 

lfwe call this new function or composite function h then hex) 4xl, 
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If the fbox preceded the g box as shown, the input x would result in an output 
of2x2. 

x f 
square it 

x2 g 
double it 

2X2 

Thus if we call the effect of combining f and g here a function k then 
k(x) = 2x2. 

Definition 
The result of performing a function ffirst and then g is a function gf 
where gf(x) = g(f(x)). 
The order should be noted: gf means that the 
function f is performed first. 

If :f{x) = x2
, ~(x) = 2x, 

gf(x) = g(x) = 2x2
• 

Similarly, the function resulting from performing g first and then f is a 
function fg where fg(x) = f(g(x)). 
The process of combining functions in this way is called composition of 
functions. 
It is not essential to draw the block diagrams when carrying out composition 
of functions. 

Example 4.14 
If f(x) = 3x - 2 

g(x) = x2 + 1 (domains -co, co) 
find fg(x) and gf(x). 

Now fg(x) means f(g(x)) which we find by 
replacing x by g(x) in the expression for f(x). 

f(g(x)) = f(x2 + 1) = 3(x2 + 1) - 2 
= 3x2 + 3 - 2 = 3x2 + 1. 

Remember that the letter x 
used in the definition of the 

functions is unimportant. 
For instance g means 

'square it and add one'. 

f means 'multiply it by 
3 and then subtract 2'. 

Similarly, gf(x) means g(f(x)) which we find by replacing x by f(x) in the 
expression for g(x). 

g(f(x)) = g(3x - 2) = (3x - 2)2 + 1 

= 9x2 - 12x + 5. 

g means 'square 
it and add I' 

It is tempting to assume that given two functions f and g we may always be 
able to form the functions fg and gf. This is not the case: sometimes we are 
unable to form one or the other. 

Example 4.15 
Consider the functions 

f(x) = -rx, 
g(x) = x + 2. 

Then fg(x) = f(g(x)) 

and gf(x) = g(f(x)) 

We note however that 

domain (0, co) 
domain ( -co, co) 

-Jx+2, 
-rx + 2. 

f(g(x)) = -J x + 2 is not defined for x < -2 and such values of x are 
allowed for in the domain of g, the first function to act. This may be better 
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understood by referring to the block diagram and considering the processing 
of ~5, for example. 

-5 g 
add 2 ----3-----11 take sqtare root 1 no output 

'---------' 

In contrast, there is no difficulty in forming gf(x) , where the function facts 
first. The domain for f is (0, co), i.e. the set of non-negative numbers and the 
square root process is able to deal with such numbers. 

Positive 
number 

! f I 
• take square root 

square root I g I sguare+
2

root 
found add 2 

l..-____ ....J 

An obvious question poses itself here : in general terms, why does fg exist and 
gf not exist? 
A little thought leads to the following conclusion: gf doesn't exist because 
some of the outputs of the first function (t) were unacceptable inputs for the 
second function (g); in contrast, fg could be formed because all the outputs of 
the first function (g) were acceptable inputs for the second function (t). 
Now we recall that the set of inputs and outputs for a function are called the 
domain and range, respectively. Then summarising the above discussion, we 
conclude that fg exists if the range (set of outputs) of the first function (g) is 
contained in the domain (set of inputs) of the second function f. 

Rule 
The composition of two functions exists if the range of the 
first function is contained in the domain of the second 
function. 

Example 4.16 
Given functions f and g, where 

f(x) = x~5 (~co,co) 

1 
g(x) = - (0, co) 

x 
determine whether fg and / or gf exist. 

fg For g(x) = ~ with domain (0, co), the range is also (0, co). Now this 
x 

range is contained in the domain of f (i.e. in (-- co, co» so that can be 
formed. 

Then fg(x) = f(g(x» = 5. 
x 

We note that the domain of fg is the domain of the first function g. 
gf For f(x) = x ~ 5 with domain (-co, co), the range is also 
range of f contains the value 0 which is unacceptable as an 

1 
g(x) = -. Thus gf cannot be formed. 

x 
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Chapter 5 

Functions and Graphs: a further look 

Functions whose ranges and domains are sets of real numbers can be represented by 
graphs. Graphs give useful insights into the behaviour of functions, enabling the 
identification oflocation of maximum and minimum values, for example. 
Up until now, graphs have been produced as a result of drawing 
up tables of y = f(x) against x and then plotting the values of x 
and y. Whilst this technique has proved useful it is sometimes 
misleading, specifically in relation to the behaviour of the graph 
function between the plotted points. 
In this chapter, we introduce the technique of sketching graphs 
of functions, where we place less emphasis on plotting points 
and more on the features of graphs. Our approach is to consider 
the graphs of some basic functions and investigate how these 
can be used to give other graphs. 

5.1 Graphs of basic functions 

y~x 
o • plotted points 
~ 

In this section, unless stated otherwise, all "functions are defined for all values 
of x 

The simplest graphs are straight lines which are derived from linear equations. 

Example 5.t Straight lines 
Let's consider the function defined by 

f(x) 3x + 1 
or y 3x + l. 

Linear equations of this type were considered in Pt where it was pointed out 
that such equations give rise to straight line graphs. The graph in question is 
shown: 

--------++~------------. x 
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Exercises 4.6 
1. If f(x) = X2 + 2 domain 00) 

and g(x) = 3x - 2, domain 00) 
write down the rules for the functions and and give the domains and 
ranges in both cases. 

2. Given g(x) = 3x + 1 domain 00) 
f(x) = 2x - 4, domain 00) 

find the rules for the functions fg and gf and give the domains and ranges in 
both cases. 

3. Given f(x) = 2x + 1 domain (0,00) 
g(x) = x-I, domain 00) 

determine which of fg and gf exist, giving the domain and range in that case. 

4. Functions f, g and h are defined as follows :-

5. 

f(x) = x2+ 3 domain [0, 4] 
g(x) = .,) x - 4 domain (4, 20J 

hex) = 4 domain (1, 15J 
x 

State which of the following composite functions can be formed and which 
cannot, giving your reasons in each case. 
(a) gf (b) fg (c) fh (d) hf (e) gh (t) hg 

Given f-l(x) = - 3 + .,)9 + x when f(x) + 6x [-3, 3J, show that f-1f(x) =x. 
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Other examples are y 5x+2,y 3,andx -1. 

y y y 

y=3 
x=-l 

------~~-----+x 

3 
------+0--------+ X __ +-'l'----+~---+ x o 

y=-5x+2 

Example 5.2 The modulus function 
This function is written as 

f(x) + 

or y + 
The value of y is never negative, and is positive except when x = O. The 
function is often written as 

f(x) I x I 
or y I x I, 
where the modulus notation I I is interpreted as the 'absolute value' (ignoring 
the sign) of a number. Thus 

I 3 I 3 and 1-5 I = 5. 
The graph of y I x I is shown below. 

y 

---~~----+ x 

Another, possibly less familiar, way of writing the modulus function is shown 
in the bubble. This form is useful when using the modulus function in the 
branch of mathematics known as Calculus. 

Example 5.3 Quadratic functions 
Quadratic functions of x involve terms in x2 but no higher powers of x. 
Examples are f(x) X2, g(x) = x2 - 2x + 1, hex) = -3x2 + 5, 
or in terms of y, 

y y x2 2x + 1, y = -3x2 + 5. 
Graphs of quadratic functions in x involve curves known as parabolas. 

2 y=x 

------~'""-----_+x o 
(a) 

y 
2 y=x -2x+l 
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All parabolas have a common feature in that they possess a single turning 
point. For the cases considered here (other forms are possible) : as we move 
our eyes to the right, graphs (a) and (b) change from moving down the page to 
moving up the i.e. the functions change from being decreasing functions 
to increasing functions. In contrast, graph (c) changes from moving up the 
page to moving down the page, i.e. the function changes from being an 
increasing function to a decreasing function. 
Finally, it is noted that the shapes of all the graphs are similar, (c) being an (a), 
(b) type graph turned upside down. 

Example 5.4 Cubic functions 
Here the polynomial function involves terms in xJ but no higher powers of x. 
In contrast to quadratic functions where the basic shape ('cup' in (a), (b), 'cap' 
in (c)) is fixed, cubic functions can exhibit various shapes. Consider the 
graphs of (a) y (b) y = x3 + X (c) Y x3 x as shown below. 

y y 

----::>....r-:::.....----x ---~----x ~--~--~-x 

(a) y x3 (b) y = x 3 + X (c) y = x3 - X 

All the graphs pass through (0,0) although the graph (a) is flat at that point 
whereas (b) and (c) are not. 
In (c) there are two turning points of the type occurring with quadratic 
functions. 

Example 5.5 Trigonometric functions 
These type of functions were introduced in PI. For completeness the graphs 
of sin x, cos x and tan x are displayed here. 

y y 

y smx y cos x 
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y tan x 

Example 5.6 The reciprocal function 

We consider f(x) 
1 

x 
1 

or y 
x 

The function is undefined for x O. As x approaches 0 through positive 
values of x e.g. (x = 1, 0.1, 0.01, 0.001 etc) y takes increasingly large positive 
values (1, 10, 100,1000 etc), and as x approaches 0 through negative values 
(-1, -0.1, -0.01,-0.001) y takes increasingly large negative values , -10, 
-100, -1000 etc). As x takes large values (positive or negative) y takes small 
(positive or negative) values. The graph is as shown below. 

y 

The function is seen to be discontinuous at x = O. In passing, it should be 

1 (11 (1~ noted for f(x) -, f - -). = -2, and f -. = 2 but it cannot be deduced 
x 2 \2) 

h e{ c .[11 t at l\X) 0 1.or some x III - 2 ' . 

Example 5.7 The exponential fnnction 
We consider functions such as 

f(x) 2x, g(x) 
(IV 
! -3 I ' hex) 45x

-
1 

\ J 

or y = 2x, y = (l}', y= 

where x occurs in the exponent. Such functions occur frequently in 
mathematics and must therefore be included in our catalogue of basic 
functions. 
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Here, we draw up a table of values (in spite of the reservations expressed 

I 
earlier), and plot the graphs of y = 2x and y = 

-I::----I:--rrl--li===t2=='3~+ x 

One common feature of the graphs is that y > 0 for all points on both graphs, 
i.e. the graphs are above the x-axis. The graphs differ in that (a) is an 
increasing function (the graph climbs to the right) and (b) is a decreasing 
function (the graph falls to the right). Other features of the graphs are listed 
below. 

(a) (b) 
(i) y when x= 0 y when x = 0 

(ii) Y -t 00 as x -t 00 y-tO as x-too 

(iii) y-tO as x-t-oo y-too as x-t-oo 

(iv) the graph becomes steeper the graph becomes steeper 
to the right to the left. 
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Functions and Graphs: a further look 

A little thought shows that the contrasting features occur 

for y = aX according to whether a is greater than or less 
than 1. 

Example 5.8 The log function 
Let's return briefly to the exponential function. To fix 

ideas, we consider f(x) 1 OX. 
The function is one-one and therefore its inverse function 

f-1 exists and in fact is defined by f- 1(x) = log10 x. 

-- Yj /Y=IO' 
4---=-J-> 

The graph of log1oX is easily plotted by first using the log10 button to calculate 

values, or by reflecting the graph of y = lOX in the line y = x. 

y 
y=lO'" ;' 

;' 

;' 

;' 

;' 

;' 

;' 

;' 

;' 

1 ;' ;' 
;' 1 x 

/ 
;' 

Y = loglo X ;' 

;' 

/ 
/ 

From the graph of y 10g10 x the following features are apparent :­

(a) 10glO1 = 0, 

(b) 10gJOx ~ - 00 asx ~ 0, 

(c) log10 X ~ 00 as x ~ 00 

and 10g1O x has domain (0, (0). 

Exercises 5.1 
1 The following graphs relate to the following :-

(i) y x2 + 2x + S (H) y = 2x + 1 
(iii) Y x3 + 1 (iv) y = -x2 + 2x + 1 

(v) Y x3 - x + 1 (vi) y = (1.3)X + 1 

(vii) y = x3 + x + I (viii) y = (0.2)X 

(ix) y = 10gl0 X (x) y l + 1 

(xi) y I x - 11 

(xiii) y = 1 
-x+ 1. 
S 

x 
1 

(xii) y = 

By first considering the shape of some of the graphs in Examples 5.1-5.8, 
group the equations and graphs as ((i),B)for example (this is not necessarily 

the correct resultt). 

47 



Functions and Graphs: afurther look 

A y 
B Y 

1 
1 

0 
x 0 x 

C y D Y 

1 1 -2 
x x 0 

E Y F Y 

x x 

G4 ~ - - - - - - ,-1 - - - -

10 
~ x • x 

I y 
J Y 

1 
1 

0 
x 0 5 x 

K y 

L~~ 
x x 

0 

M Y 

~ 1-----

0 x 

2 Sketch the graphs of y = 3 x and y loglO x. Hence show that there is only 
one value of x satisfying 

x + loglO x - 3 0 
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Functions and Graphs: a further look 

3 Show by sketching appropriate graphs that the equation e" + x - 2 = 0 has 
only one root and that is positive. 

4 Sketch the graphs of y = sin x and y x - 2 and show that sin x - x + 2 0 
has only one rooL 

5.2 Effects of transformations on the graph of y = f(x) 

In this section we consider the effects of a number of processes on the graph 
of y == f(x). These processes and others are known collectively as 
transformations of the xv plane. Specifically, we consider the transformations 
known as translations and scalings. 

1. Translation 
This relates to situations where every point moves 
by the same amount. There are two cases 
considered, namely 
(i) a movement or translation of all points in the 

.l}' plane, through the same distance parallel 
to the x axis, 

(ii) a movement or translation of all points in the 
xy plane parallel to the y direction. 

(i) Translation in x direction 
For a reason which will become apparent, it is 
convenient to suppose that all points move a 
distance -a in the x direction, where a may be 
positive or negative. 
Geometrically, the effect of the translation -a in the x direction is to move the 
curve y f(x) bodily in the x direction, as shown. In the diagram a is taken 
to be positive. 

\ 1 original 
~curve 

Given that the original curve has equation y 
the new curve? 

j(x), what is the equation of 

Now the effect of the translation 
(x, y) ---Jio. (x-a, y) is to form new co-ordinates X, Y given by 

X x Q, 

Y = y. 
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Functions and Graphs: a further look 

Then x = X + a and y = y. 
Substitution for x, y in y = f (x) gives 

Y =f(X+a). 
Now let's drop the capital letters because this relation is equally valid with 
other letters. Then we obtain. 

y = f(x +a) 

Note the possibly surprising result: 
a translation of -a in the x direction changes x to x + a in f (x). That was the 
reason for our choice of -Q in the x-translation. 

Rule I 

A translation of -a in the x direction converts the curve y = f (x) into 
x + a , referred to the ori inal axes. 

Example 5.9 

Draw the graphs of y = and y = (x + 3 y. The graphs are as shown. 

y y 

------~~--~~ro~-------+x 

Now f(x) x2
, f(x + 3) = (x + 3y so that a 3. The second graph is obtained 

from the first by a translation of -3 along the x-axis. 

Example 5.10 
Given y f(x) has the graph shown, sketch the graph of y = f(x 2). 

y 

(-2,3) 

y=f(x) 

----T---------~~------~------~.x 

(1,-4) 

50 



Functions and Graphs: afurther look 

Here a -2 and the new graph is obtained by moving the original graph 
through -(-2) 2 along the x direction. The stationary points (-2, 3) , (1, -4) 
are translated to (0, 3) and (3, -4) respectively. The transfonned graph is 
therefore as shown. 

y 

(0,3) 

----~--~----~--------~--~x 

(3,-4) 

(ii) Translation in y direction 
Geometrically the effect of the translation a in the y direction is to move the 
curve y = f (x) a distance a in the y direction (note we do not use -a here). 

y Vnew 
Wriginal 

----------------o~----------------.·x 

Then the transfonnation (x, y) ----DIo. (x, y + a) defines new coordinates 
X, Y given by 

X= x, 
Y = y+a. 

Then x X, y= Y -a. 
Substitution for x and y in y = f(x) gives 

Y a = f(X) 

or Y f(X)+a. 

Dropping the capitals, we have 
y f{x)+a. 

Rule II 

! A translation of a in the y direction converts the curve y = f(x) into 

+ a , referred to the axes. 

51 



Functions and Graphs: a further look 

Example 5.11 
Draw the graphs of y = Ixl and y = Ixl + 2. 

Here f(x) Ixland a = 2. The graphs are as shown, where the original graph 

of y Ixl has been moved a distance of2 in the y direction. 

y 

--------------~~---------------x 

Example 5.12 
Given that the graph of y = f{x) is as shown, find the graph of y = f{x)- 4. 

Y 

(-1,4) 

------r-------~----~~------------_7--~X 

(4,-4) 

The new graph is found by moving the graph of y f{x) through -A along 

the y direction. The original stationary points change to (-1, 0) and (4, -8). 

y 

(4,-8) 
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Functions and Graphs: afurther look 

2. Scaling 

(i) 

This relates to situations where distances are multiplied by a constant factor. 
As with translations, we consider scalings in the x and y directions separately. 

For a reason which will become apparent, it is convenient to suppose that there 

is a scaling of 1 in the x direction, i.e. all distances are multiplied by 1 
a a 

The geometrical effect on a graph is shown below. 

original 

y 

(-1,4) 

y 

(-~,4) 

~~--~+-~-------+--·x 

(2,4) (~,4) 

In particular, the x-coordinates of the stationary points of the original curve 

have been multiplied by 1 . To find the equation of the new graph we proceed 
a 

as previously. 

The transformation (x,y) -+ (~X,y) 
\a 

defines new coordinates X, Y given by 
1 

X = x, Y y. 
a 

Then x = a X, y Y 
and y = f{x) becomes after substitution for x andy:-

Y = f{aX). 

On dropping the capitals, we have 
y = f{ax). 

Note again a possibly surprising result: a scaling of ~ in the x direction 
a 

changes x to ax in f{x). 

Rule III 

A scaling of 1 in the x direction converts the curve y = f{x) into 
a 

y = f{ax). 
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Example 5.13 
The graph ofy = x 2 + 2 is as shown. 

y 

( -2,6) 

(1,3) 

2 
------~o~-------+x 

Then a scaling of 3 in the x direction gives the following graph, the effect on 
the points (-2,6) and (1,3) of the original graph being indicated. 

y 

(-6,6) 

(3,3) 
2 

------~O~-------+x 

. . 1 h 1 Notmg that the scalmg = 3, we ave a = -. 
a 3 

Now f{x} x2 + 2 so that 

f{ax} = f(*x)=(*xr + 2 = ~ + 2. 

Thus the equation of the transformed graph 
1 2 

IS Y = -x + 2 
9 

or 9y 
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Functions and Graphs: afurther look 

Example 5.14 

Given that y = j(x) has the graph shown, sketch the graph of y f(2x). 

y 

(-1,2) 

------~------.d--~--------------_,~--~.x 

(4,-3) 

Here a = 2 and the transformation is an x scaling of ~. The transfonned 
2 

graph is as shown, the original stationary points being transformed into 
1 

(-2,2) and (2, -3) 

ii) Scaling in the y direction 

y 

( -t,2) 

(2,-3) 

It is supposed that there is a scaling of a in the y direction, i.e. all distances in 
that direction are multiplied by a. 
The geometrical effect on a graph is shown below. 

(-1,2) y ( -1,2a) 

~--------~--------~--~x 

(2,-3) (2,-3a) 

In particular, the y coordinates of the stationary points have been multiplied by 
a. To find the equation of the new graph we proceed as before. 
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Functions and Graphs: a further look 

The transfonnation (x, y) -. (x, ay) 
defines new coordinates (X,y) given by 

X = x, Y ay. 
Y 

Then x X, y so that y f{x) 
a 

becomes Y = f{X) 
a 

or Y = af(X). 
Changing the capital letters, we have 

y af(x). 

Rule IV 

Example 5.15 
The graph ofy = x 2 + 2 is as shown. 

y 

(-3,11) 

(2,6) 

2 
·~----~O~-------+x 

A scaling of 4 in the y direction gives the following graph, the effect on the 
intercept on the x-axis being indicated. 

8 

------~o~-------·x 

Noting that the scaling in the y direction is a = 4 and f{x) = x 2 + 2 , we see 

that the equation is 

y 4 f{x) 

or y 
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Functions and Graphs: afurther look 

Example 5.16 
Given that y = f(x) has the graph shown, find the graph arising as a result of 

a scaling of .!. in the y direction being applied. 
2 

Y 
(-1,4) 

--~---------+----~------------~~--.x 

o 

(3, -2) 

The transformed graph is as shown. 

y 

(-1, 2) 

----~------_+----~~------_7~------.x 
o 

(3, -1) 

The stationary points (-1, 4) and (3, -2) have been transformed into (-1, 2) 
and (3, -1) respectively. 

Exercises 5.2 

y 

--------+----r------~~ __ x 
-1 0 

G, -2) 

The sketch shows the graph of y = f(x). The curve passes through (-1, 0) 

and (3, 0), and has a minimum point at( ~ ,-2). 
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Functions and Graphs: a further look 

Sketch, on separate diagrams, the graphs of 
(a) y= f(x+2) (b) y f(x)+2 (c) y f(3x) 

2. Sketch the graph of y 1 and the graph resulting from the translation 
x 

(x, y) -----fIo- (x -1, y) followed by the scaling (x, y) -----fIo- (x, 2y). What is the 

equation of the graph resulting from these transformations? 

3. Sketch the graph of y Ixl. What x and y translations transform y = Ixl into 

y 21 -4? Sketch the second graph. 

4 Sketch the graphs of y cos x and y = sin x. Show that y = cos x and 

y sin(x + ~) have the same graph. 

5 Use the graph of y = sin x to sketch the graph of y 5 sin 3x + 4. 

6 Sketch the graph of y = 3x . 

Use this graph to sketch the graph of y = 2 x 3x + 5. 

7 (
1 )2X+1 1 ( 1 )2X 

Given that y = '2 + 4 can be written as y = '2 '2 + 4 , sketch its graph 

starting from the graph of y 

8 Sketch the graphs of 
(i) y loglo x (ii) Y = 3 10glO X (iii) y 3 loglo (x) + 5 

(iv) Y = 3 loglo (2x) + 5. 
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Cartesian Coordinate Geometry of the Circle 

Chapter 6 

Cartesian Coordinate Geometry of the Circle 

In P1, the properties of straight lines were investigated by algebraic methods. Here 
we make a start in applying algebra to the study of curves. 

6.1 Locus of a point 
The locus of a point is the path of the point when it moves under certain 
conditions. The locus or path may often be described by equations in 
coordinate geometry. 

Example 6.1 
A point P(x, y) moves such that it is always equidistant from the points A(5, I) 
and B(3, - 1). Find the equation ofthe locus of P. 

Expressed geometrically, the condition satisfied by 
the point Pis AP BP. 
Now Ap2 (x - 5)2 + (y - 1)2, 

Bp2 (x - 3)2 + (y + 1)2. 
Then AP = BP is equivalent to 

AP2 Bp2 
which leads to 

(x-5)2+(y 1)2 = (x-3)2+(y+l)2. 

:. x2 -1 Ox + 25 + y2 2y + 1 = x2 - 6x + 9 + y2 + 2y + 1 
so that 4x + 4y 16 = 0 
or x + y 4 = O. 
We recognise this as the equation of a straight line. 
In fact, the equation describes the line passing through 
the mid point of AB which is perpendicular to AB. 

y 

A 

-----+--------~-------+ x 
o 

B '-

Because of the close connection between the locus and the equation satisfied 
by points lying on the locus, we refer to the equation itself as the locus. 
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Cartesian Coordinate Geometry of the Circle 

Example 6.2 
Find the locus of a point P whose distance from the point A(I, - 2) is twice the 
distance from the origin O. 

Let P(x, y) be the point on the locus. 
Then since PA 2PO, 

PA2 4P02 

so that (x 1)2 + (y + 2)2 = 4(x2 + y2). 
2x + 1 + y2 + 4y + 4 = 4x2 + 4y2 

glVlng + 3y2 + 2x - 4y - 5 = 0. 

Example 6.3 
Find the locus of a point P such that PA is perpendicular to PB where A is 
(0,1) and B is (0, 1). 

Let P(x, y) be a point on the locus. 

gradient of PA is 

The gradient of PB is 

-1 y-l 

x-O 
+1 

x 
y+ 1 

x ° x 
Since the lines are perpendicular, the product of their gradients is 

Then - 1 x + 1 = - 1. 
x x 

y2 - 1 = -x2 

or x2 + y2 = 1. 

Example 6.4 

1. 

Again, you are not 
expected to recognise 

this curve. 

Find the locus of a point which moves so that its distance from the point 
A(I, 2) is 2. 

Let P(x, y) be a point on the locus. 
Then PA 2 
so that PA2 = 4. 

(x - 1)2 + (y - 2)2 = 4 

so that x2 2x + 1 + y2 - 4y + 4 = 4. 
x2 + y2 2x 4y + 1 = 0. 

Exercises 6.1 
1. Find the locus of a point which moves so that its distance from the 

point A(2, 0) is three times its distance from the origin O. 
2. A point P(x, y) moves so that its distance from the origin is 5. Find the 

equation of the locus of the point. 
3. Write down the distance of the point (x, y) from the line y = - 1. Find the 

locus of a point which is equidistant from the origin 0 and the line y 1. 
4. A is the point (-1, 2) and B is the point (1, -2). A point P moves so that AP 

and PB are perpendicular. Find the locus of P. 
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s. Find the locus of a point which moves so that it is equidistant from the point 
(a, 0) and the line x = - a. 

6. Find the locus of a point which moves so that its distance from the point (a, 0) 

is three times its distance from the line x = - a. 

6.2 The Circle 
A circle is the locus of a point which moves in a plane 
so that its distance from a fixed point in the plane is 
constant. The fixed point is called the centre and the 
constant distance the radius. 

Example 6.S 

Q radiUS 

----=+ centre 

Find the equation of the circle having centre C(1, -2) and radius 3. 

Let P(x, y) be a point on the circle. 
Then CP = 3 
gIves cp2 = 9 
so that (x - 1)2 + (y + 2)2 9. 
... x2 - 2x + 1 + y2 + 4y + 4 = 9 
giving x2 + y2 - 2x + 4y - 4 = o. 

Example 6.6 
Find the equation of the circle having centre C(2, 1) which passes through the 
point A(1, 2). 

Whilst the radius of the circle is not given, it can be calculated by using the 
points A and C. Thus, when P(x, y) is on the circle, 

CP2 = CA2 

so that (x-2)2+(y-1)2 = (1-2)2+(2-1)2. 
(x-2)2+(y-1)2 = 2 

or x2 + y2 - 4x - 2y + 3 = O. 

The standard equation of a circle 
In PI, it was pointed out that to represent a straight line an 
equation must be of first degree in x and y (when x and y 
appear, at least). Is it possible to make a similar statement in 
relation to the equation of a circle? To answer this question, 
let's derive the standard equation of a circle. 
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The most general equation of a circle is 
(x - a)2 + (y - b)2 r2 

which reduces to 

x2 + y2 - 2ax - 2by + a2 + b2 r2 = O. 
This suggests that every equation of the form 

x2 + y2 + 2gx + 2fy + c = 0 
represents a circle. 
This equation may be put in the form 

(x + g)2 + (y + f)2 g2 + f2 - c 

so that (-g, -j) is the centre and 

is the radius of the circle. 
In summary, the general equation of a circle is 

x2 + y2 + 2gx + 2fy + c = 0 

with centre (- g, - j) and radius ~'-g-::-2-+-f-2:-_-c. 

Example 6.7 

~ 
~P(X,y 

The coefficients of 
x2 and y2 are equal and 
there is no tenn in xy. 

Determine which of the following equations represent circles. Where the 
equation describes a circle state its centre and radius. 
(a)3x+y 5 0 (b)y2 4x (c)x2+y2+4x 2y+1=0 
(d) x2 +y2+3xy 4y+3=0 (e) +3y2=5 

(f) 3y2 + x2 - y 2 (g) 2x2 + 2y2 - 6x - 5y 0 
(h) 3x2 + 3y2 + 6x - 5 0 (i) 2x2 - 2y2 5 

(a) A straight line. 
(b) Curve but not a circle. 
(c) Circle with centre (- 2, 1), radius 2. 
(d) Curve but not a circle (presence ofxy). 

(e) Circle with centre (0, 0), radius jI. 
(f) Curve but not a circle (coefficients of x2 and y2 are unequal) 

(g) Circle with centre (~,~), radius $I . 
244 

(h) Circle with centre (- 1, 0), radius If. 
(i) Curve but not a circle (coefficients of x2 and y2 are unequal). 

Exercises 6.2 
1 Find the equations of the circles with the following centres and radii (plural of 

radius). 

(a) (0,1); 3 (b) 1,2); 15 (c) (2,3); 4 

(d) (- 1, - 1);.fi (e) (4, 1) ; 15 
2. Find the centres and radii of the following circles :-

(a) x2 + y2 + 4x + 2y + 4 = 0 (b) x2 + y2 2x - 4y - 4 0 
(c) + y2 - 3y = 12 (d) x2 + y2 - 4x 0 
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(e) 4x2 + 4y2 8x-7y 2 (f) 4x2 + 4y2 9 

3. Find the equation of the circle with centre (2, 1) which passes through the 
point (2, 1). 

4. Find the equation fthe circle which passes through the points (0, 4), (0, 9) and 
(6,0). (Let the equation be + y2 + 2gx + 2fY + cO). 

5. Find the equation of the circle which has the line joining A(I, 2) and B(-I, 3) 
as a diameter. 
(The mid-point ofa diameter is the centre of the circle). 

6. A circle of centre 0 has equation 

x 2 + y2 + 2gx + 2fY + c = O. 

The point P (et, ~) lies outside the circle. 

(a) Write down the coordinates of 0 and the radius of the circle. 
(b) Find an expression for OP. 
(c) A tangent to the circle from P intersects the circle at T. Show that 

PT2 =et 2 +~2 +2get+2f13+c. 

The equation of a tangent to a circle 
The equation of a tangent to any curve at a point can be found by calculus. 
Here, we shall not use calculus but instead exploit the particular geometry of 
the circle. In particular, let's recall that a tangent to a circle is perpendicular to 
the radius at the point. 

Example 6.8 

point 
~tangent 

Verify that the point (3, 5) lies on the circle 
x2 + y2 4x - 6y + 8 0 

and find the equation of the tangent at this point. 

If the point lies on the circle, its coordinates must satisfy the equation. 
Substitution of x = 3, y 5 in the equation gives 
left hand side = 32 + 52 - 4(3) 6(5) + 8 

9+25-12 30+8 
o = right hand side. 

:. The point (3,5) lies on the circle. 
The centre of the circle is (2, 3) so that the gradient of the radius to the point 
(3, 5) is 

5-3 

3-2 
2, 
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and therefore the gradient of the tangent is - ..!... 
2 

Thus the equation of the tangent is 

so that 

1 
y-5 = 

2 
2y- 10 

2y + x 13 

Example 6.9 

3). 

x+3 
O. 

(a) Find the equation of the circle passing through the origin 0 and the 
points A( 1, 0) and B(O, 1). 

(b) Find the equation ofthe tangents to the circle at Band P(1, 1). 
(c) The tangents at Band P meet at Q. Prove that the length PQ is equal 

to the radius of the circle. 

(a) Let the equation of the circle be 

or 

(b) 

+ y2 + 2gx + 2jj; + c O. 
Since the circle passes through (0, 0), we have 

02 + 02 + 2g(0) + 2fiO) + c O. 
c O. 

Similarly, since A(1, 0) and B(O, 1) on the circle :-
12 + 02 + 2g(1) + 2f(0) = 0, 
02 + 12 + 2g(0) + 2f(1) 0, 

which reduce to 1 + 2g 0 
1 + 2f O. 

1 . 1 
g = - 2' f 2 

The equation of the circle is therefore 

+ y2 + 2 ( - ..!..)x + 2 ( - 1 + c = 0 
\ 2 \ 

x2 + y2 x Y = O. 

The gradient of the radius at B(O,l) is 
1 Centre is at (-g,-j) 

-1. 
o 

The gradient of the tangent at B is therefore given by 
gradient x 1 = - 1 

so that gradient = 1. 
The equation of the tangent at B is therefore given by 

y 1 = l(x-O) 
or y x-I =0. (1) 
Similarly, the gradient of the radius at P(l, 1) is 

1 
1 = 1. 

1 "2 
The gradient of the tangent at P is therefore -1. 
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The equation of the tangent at P(l, 1) is then 
y 1 = - l(x 1) 

or y + x - 2 O. (2) 

(c) The coordinates of Q, the point of intersection of the tangents, satisfy 
equations (1 ) and (2). 

y - x 1 = 0, (1) 
y+ x - 2 O. (2) 

Addition of(l) and (2) gives 
2y- 3 0 

3 
y = . 

2 
Substitution for y in (1) gives 

3 
x-I 0 

2 

giving 
1 

x = 
2 

:. Q is (~, f). 
Then PQ2 

(1 ~ +(1 f)2 =±+± = 2 
1 .J2 

PQ -.J2 2 so 

From the equation of the circle, 
x2 + y2 - x - y = 0 

the centre is (~,~) and the radius is 
\2 2 

(
(\2 (IY 
2) + 2) -0 

.J2 
2 

Checking in (2), 
}+ ~ -2 = 0 

:. The length PQ is equal to the radius of the circle. 

Exercises 6.3 
1. Verify that the given points lie on the circles and find the equations of the 

tangents at the points. 
(a) (2,2); + y2 = 8 
(b) (1, 1) ; x2 + y2 + 4x + 2y = 8 
(c) (3,-1); x2+y2+2x+4y-12 0 
(d) (1,-1); 2x2 +2y2+5x+8y-l O. 

2. The tangent to the circle x2 + y2 4x - 2y 8 = 0 at the point (-1, 3) meets 
the x-axis at A. Find the distance of A from the centre ofthe circle. 

3. Find the equations of the tangents to the circle + y2 - 4x + 6y + 5 0 at the 
points where it meets the y-axis. 
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4. The tangent to the circle x2 + y2 - 2x + 4y - 15 = 0 at the point (-1, 2) meets 
the x and y axes at A and B, respectively. Find the coordinates of A and B. 
Deduce the area of triangle AOB, where 0 is the origin. 

5. (a) Find the equations of the tangents to the circle x2 y2 - 8y 8 0 at the 
points A( - 2, 2) and B(2, 2). 
(b) Show that these tangents to the circle intersect at the origin O. Show that 
ACBO is a square, where C is the centre of the circle. 

The condition for a line to be a tangent to the circle 
When a line intersects a circle there are two 
possibilities :-
(a) the line meets the circle in two points, fonning a 
chord of the circle, 
(b) the line is a tangent to the circle, touching the 
circle or meeting it at two coincident points. 
The points of intersection are found by solving simultaneous equations. 

Example 6.10 
Find the points of intersection A and B of the line 

y x+2 =0 
and the circle 

x2 + y2 2x + 2y - 6 0 
and find the length of the chord AB. 

Let's solve the simultaneous equations. 
From the equation of the straight line, 

y = x- 2. 
Substitution into the equation of the circle gives 

+ (x - 2)2 - 2x + 2(x - 2) 6 0 
which reduces to 

- 4x - 6 O. 
x2 - 2x 3 = O. 

(x - 3)(x + 1) = O. 
Thus x = 3, 1. 
Substitution of these values of x into 

y x 2 
gives y 1, - 3. 
Then A is (3, 1), B(- 1, 3). 
Thus AB2 = (3 + 1)2 + (1 +3)2 

= 32 
so that AB = 4J2. 
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Example 6.11 
Prove that the line y x + 3 = 0 is a tangent to the circle 

x2 +y2_2x-4y-3 = O. 

Our strategy here is to show that the line intersects the circle in one point (or 
two coincident points). 
Substitution of y x - 3 into the equation of the circle gives 

x2 + (x - 3)2 - 2x - 4(x - 3) 3 O. 

so that 
Then 

2x2 - 12x + 18 0 
x2 - 6x+ 9 = O. 

(x-3)2 0 
so that x = 3 (twice). 
The point of intersection is (3, 0). 

Example 6.12 

or use the 
quadratic formula 

Find the relation between m and c if y = mx + c is a tangent to the circle 
x2 + y2 a2. 

Substitution of y mx + c into the equation gives 
x2+(mx+c)2= a2. 

x2(l + m2) + 2mcx + c2 - a2 O. 
The conditions for this quadratic equation to contain two equal roots is 

or 

Exercises 6.4 

(2mc)2 = 4(1 + m2)(c2 - a2). 

m2c2 c2 a2 + m2c2 - m2a2. 
= a2(1 + m2) 

c ±a~(1 + m2
) . 

Don't remember the 
result: remember the 

condition for equal roots. 

1. The line y = x + 3 intersects the circle x2 + y2 - 4x - 2y + 3 0 at the points 
A and B. Given the point C(3, 2) show that AC and BC are perpendicular. Is 
C on the circle? 

2. Find the length of the chord made by the intersection of the line x + y = 4 with 
the circle x2 + y2 = 25. Hint: retain the surds. 

3. Find the point at which the line x 4y 3 = 0 touches the circle 
x2 + y2 4x 8y + 3 = O. 

4. Find the values of m if y mx is a tangent to the circle x2 + y2 10x + 16 0 
and hence find the equations from the origin to the circle. 

S (a) Find a relation between m and c if the line y = mx + c passes through the 
point (1,2). 

(b) Find a relation between m and c if the line y mx + c is a tangent to the 
circle x2 + y2 = 4. 

(c) Use the results of (a) and (b) to find the equations of the tangents from the 
point (1, 2) to the circle defined in (a). 

6 Find the equations of the tangents of gradient t to the circle x2 + y2 4. 
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The intersection of two circles 
Two circles mayor may not intersect. If they intersect they may intersect in 
one or two points. 

00 
No intersection 

cD 
Two points of 
intersection 

Touching circles, one 
point of intersection 

When the circles intersect in two points, they have a common chord; when 
circles intersect in one point, they have a common tangent. 
It is easy to check whether circles intersect and, if they do, the number of 
points of intersection. In the following, the circles have centres Cl, C2 and 

radii rl and r2' 

(a) No intersection 

In this case, the distance Cl C2 > rl + r2' 

(b) Two points of intersection 

The distance between 
the centres is greater than 

the sum of radii. 

The distance between 
the centres is less than 

the sum of radii. 

(c) One point of intersection (circles touching externally) 
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(d) One point of intersection (circles touching internally) 

The distance between 
the centres = difference 

of the two radii. 

Example 6.13 
Investigate whether the following pairs of circles intersect. 
state the number of points of intersection. 
(a) x2 + y2 4x - 2y + 1 0; x2 + y2 + 4x - 6y - 12 0 
(b) + y2 + 2x = 0; x2 + y2 - 6x 4y + 9 = 0 
(c) x2 +y2=16; 5x2 +5y2_18x-24y+40 0 

(d) + y2 + 4x - 4y + 4 0; x2 + y2 - 2x - 4y + 4 = 0 

(a) For the first circle, the centre is (2, 1) and the radius is 

~22+12_1 =2. 

For the second circle, the centre is (-2,3) and the radius is 

~( _2)2 + 32 + 12 = J25 = 5. 

The distance between the centres is 

~(-2-2)2 +(3-1)2 = ~42 +22 Eo. 

Where they do, 

Now the sum of the radii > distance between centres so that the circles 
intersect in two points. 

~ 
(b) For the first circle, the centre is (- 1, 0) and the radius is 

~ ( -1) 2 + 02 
- 0 1. 

For the second circle, the centre is (3, 2) and the radius is 

~32 + 22 - 9 = J4 = 2. 

The distance between the centres is Eo. 
Now the sum of the radii < distance between centres so that the circles do not 
intersect. 

~ 
(c) For the first circle, the centre is (0;0) and the radius is 

~02 +02 -(-16) =4. 

For the second circle, the centre is (2., 121 
\5 5) 

fD19Y (1-2)2 
and the radius is V ls) + l "5 8 = 1. 

( 9 )2 (12 )2 The distance between the centres is " S 0 +"5 0 3. 
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Now the distance between the centres = difference of the radii so that the 
circles touch internally. 

~ 
(d) For the first circle, the centre is (- 2, 2) an the radius is 

~(_2)2 +(2)2 -4 =2. 

For the second circle, the centre is (1, 2) and the radius is ~12 + 22 - 4 = l. 

The distance between the centres is ~( -2 _1)2 + (2 - 2)2 = 3. 

Now the distance between the centres = the sum of the radii so that the circles 
touch externally. 

Orthogonal Circles 
If the tangents to two circles at their points of intersection are perpendicular, 
the circles are said to be orthogonal. 

In this case, if the radii are rl and r2 and Cl C2 = d is the distance between the 

centres, it follows by Pythagoras' Theorem that 

d2 = r12+ri. 

Example 6.14 
Show that the circles 

x2 + y2 - 2x + 2y - 9 0 
x2 + y2 + 12x - 3 0 

are orthogonal. 

F or the first circle, the centre is (1, - 1) and the radius is m. 
For the second circle, the centre is (- 6,0) and the radius ism. 
The distance between the centres is 

~ ( -6 - 1) 2 + (0 - ( - I ) 2 =.J50 . 
Then the sum of the squares of radii is 

(m)2 + (m)2 = 11 + 39 = 50, 
which is the square of the distance between the centres. 
Thus, the circles are orthogonal. 

When the circles intersect, it is straightforward, in principle at least, to find the 
points of intersection. 

Example 6.15 
Find the points of intersection of the circles 

x2 +y2 = 1, (1) 
x2 + y2 + 2x - 4y + 3 = O. (2) 

We have to solve these equations simultaneously. 
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Subtracting (1) from (2), we have 
2x 4y+4 = 0 

or x 2y+2 = O. (3) 
(3) describes the common chord of the circles. To find the points of 
intersection of the circles, we find where the common chord intersects one of 
them. 
We substitute from (3) into (1) for x. 
From (3), x = 2y 2. 
Then (1) becomes, 

so that 
(2y 2)2 + y2 = 1 
5y2 - 8y+ 3 0 

(5y-3)(y-I) 0 

Y II 
5 ' 

or use the 
quadratic fonnula 

3 3 4 ~ Wheny= - x = 2 x - 2 -- using (3) 
5' 5 5' 

y=l, x 2xl-2 O. 

The points of intersection are therefore ( - i, lj\ , and (0, 1). 
\ 5 5 

Exercises 6.5 
1. Show, without finding the points of intersection, that the circles 

x2 + y2 = 4 and x2 + y2 - 4x 2y - 4 = 0 intersect in two points. 
2. Show that the circles 

x2 + y2 + 10x - 4y 3 = 0 and x2 + y2 - 2x 6y + 5 = 0 are 
orthogonal. 

3. Show that the circles 
5x2 + 5y2 6x 8y = 0 
x2 + y2 - 6x 8y + 16 = 0 

touch each other. 
4. The circles 

x2 + y2 6x 8y + 9 0, 
x2 + y2 9, 

intersect at two points. 
Find the coordinates of the point where the common chord intersects the line 
joining the centres. 

5. Prove that the circles 
x2 + y2 + x + 3y 0, 

and x2 + y2 - 2x - 6y = 0 
touch each other. Find the coordinates of the point of contact and the equation 
of the common tangent at that point. 

6. The circles 
x2 + y2 a2 

and x2 + y2 10x - 24y + 105 0 
touch externally at a point. Given that a > 0, find the value of a. 
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Chapter 7 

More Differentiation 

Differentiation was introduced in PI. There, a first principles approach was used to 
differentiate polynomial functions. 
This chapter has two main aims. First, it develops some techniques of differentiation 
to supplement the first principles approach. 
Secondly, it considers the differentiation of some additional functions. 
Note that in this chapter we abuse notation by referring to f(x) as a function. 

7.1 Differentiating composite functions (function ofa function rule) 
It is essential, before considering the differentiation of composite functions, to 
recognise composite functions when they occur. 

Example 7.1 
IdentifY the composite functions in the following. 
(i) (x + 2)2 (ii) sin 3x (iii) x(x + 2) 

(iv) COS(X2 + 2) (v) x sin x 
2 

(vi) _x_ 
x+2 

(vii) x2x (viii).J]."+; (ix) 3<+5 

Here we attempt to put each function in the form f(g(x» where f and g are 
functions to be identified. 
(i) Composite. (x + 2)2 may be considered as f(g(x» where g(x) x + 2 and 

f(x) 
(ii) Composite. Sin 3x may be considered as f(g(x» where 

g(x) 3x and f( x) sin x. Note that sin 3x 
\: is not sin x 3x 

(iii) Not composite. x(x + 2) is not of the form f(g(x» but is 
of the form f(x) x g(x) where f(x) = x, g(x) = x + 2. 

(iv) Composite. COS(X2 + 2) is of the form f(g(x» where cos(x' + 2) is not 
cos x(x + 2) 

g(x) = + 2 and f(x) cos x. 
(v) Not composite. x x is the product off(x) =x, g(x) = sin x. 

(vi) Not composite. --is the quotient of f(x) = x2 

x+2 
and g(x) x + 2. 

(vii) Not composite. Product of f(x) = x, g(x) = 2X • 

(viii) Composite with g(x) x + 1, f(x) = fx. 
(ix) Composite with g(x) 3x, f(x) x + 5 . 
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Exercises 7.1 
Identify the following as composite or non-composite functions. In the case of 
the composite functions, identify the inner and outer functions (g(x) and f(x) 
respectively). 

(i) xsin3x (ii)~x3+2x+l (iii) tan(5x + 7) 

(iv) (X2 + 3)(x2 + 5) (v) (x2 + 3 )5/3 (vi) 
x 

sin4x 
(vii) (x + 3)2 + 5 (viii) 6x + 7 (ix) (x + 3)cosx 

We obtain insight into the differentiation of composite functions by the 
following examples. 

Example 7.2 
Differentiate the following by first multiplying out the brackets. For 
convenience we label all the functions as k(x). 
(i) k(x) = (3x + 2)2 (ii) k(x) (X2 + J)2 (iii) k(x) = (7x2 2)2. 

(i) Now k(x) 9x2 + 12x+ 4 ~~bY;-a2+;;b+0 
so k'(x) = 18x+ 12 

= 6(3x + 2) 2.3(3x + 2). The reason for factorising 
will become clear. 

(ii) Now k(x) .0 + 2x2+ 1 
so k'(x) 4x3+ 4x 4x(x2 + 1) = 2.2x(X2 + 1). 

(iii) Now k(x) = 49.0 28x2 + 4 
so k'(x) 196x3 56x 

28x(7x2 2) = 2.l4x(7x2 2). 

We summarise the results below. 

Function 
(3x + 2)2 
(X2 + 1)2 
(7X2 - 2)2 

In each case, 

Derived Function 
2(3x + 2).3 
2(x2 + I).2x 
2 (7x2 2).14x 

k(x) = (expression)2 

The reason for 
the reordering of 
the factors will 

soon be apparent. 

and k'(x) 2(expression) x derivative of expression 

2 [E x 2x 
14x i 

The general rule suggested by the above examples is valid. 

73 



More Differentiation 

Exercises 7.2 
Check that the rule 
'if k(x) (expression)2, then k'(x) = 2(expression) x derivative of expression' 
holds in the following cases. 
(i) k(x) = (2x 3)2 (ii) k(x) = (3X2+ 4)2 (iii) k(x) = (x3 + x)2. 

A similar rule applies for different powers of the expression. 

Exercises 7.3 
Check that if 

then 
for (i) 

(ii) 
(iii) 

k(x) (expression)3 
k'(x) = 3( expression)2 x derivative of expressl"On 
k(x) = (x + 1)3 -----3---3--2~-----

(x + 1) x + 3x + 3x + 1 
k(x) = (2x 1)3 (2x 1)3=8.i 12x2 +6x-l 
k(x) (x2+ 1)3 (i + 1)3 = x6 + 3x4 + 3x2 + 1 

The generalisation of the results considered in exercises 7.2 and 7.3 is the 
following :-

Rule (I) 
If k(x) (expression)n 
then k'(x) n( expression)n-l x derivative of expression. 
This result applies in fact if n is a positive, negative integer or rational 
number. 

Example 7.3 
Use rule I to write down the derivatives of 

(i) (Sx+ 6)9 (ii) (2x - 1)~1 (iii) (2x3 + x2 - 4)-3/2 

(i) If k(x) (Sx+ 6)9 
then k'(x) = 9(Sx+ 6)9~1 x (5) ) ~~ 

= 4S(Sx + 6)8, 
where for convenience we group factors finally. 

(ii) For (2x - 1)-1, expression 2x - 1 and n = - 1. 

(Hi) 

Then derivative is - 1(2x 1)-H x (2) ( ~rivat~ve Of~ _ ~ 
= - (2x 1 )-2 x 2 

Expression 

Derivative 

2 

-1Y' 
3 

n= -
2 

3 = - -(2x3 + x2 - 4)-3/2-1 x (6x2 + 2x) 
2 

= - 3x(3x + 1)(2x3 + x2 - 4)-512 

-3x(3x + 1) 
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Exercises 7.4 
Use Rule I to write down the derived functions in the following cases :-
(i) (9x 2)4 (ii) (3x2 -I- 2)-1 (iii) (x2 T 3x -1- 4)2 

(iv) (2x 1)1/2 (v) (x? + 4x3)3 (vi) 1 
x+l 

(vii) (x2 1 
4x + 2)-5/2 (viii) 

(3x + 2) 

(xi) 

Rule 1 may be rewritten as follows :-

let y = (g(x»n 
so that y = f(g(x», 

where f(x) = xn. 
dy 

dx 
Then n(g(x»n-l g'(x) 

can be written as 

= f'(g(x» g'(x). 
dx 

Thus Rule (I') 

If y = f(g(x» 

f '(g(x» x g'(x) then 
dx 

(ix) (x+~ y 
\ x) 

(xii) (7x- 4 l x 

g(x) was called 
'expression' 
previously 

f{x) = x" 
f'(x) = nx;,,-I 

f'(g(x» = n(g(x»lt-I 

The significance of 
this rewriting will 

become apparent later. 

l' is a general rule whatever the functions f and g. The rule, of course, 
concerns the differentiation of composite functions and is often referred to as 
the function of a function rule. We shall obtain practice in the use of this 
rule with other functions later. 
For the moment, we confine the discussion here to giving a proof of (1'), 
followed by some further examples. The proof of I' is non examinable. 

Let y = f(g(x». 
If U = g(x) then 

y = feu). 
If <5 x is a small increase in x and DU, DY are corresponding small increases in u 
and y, respectively, then 

= 0; x &t 
at &t at 

Then as at --+ 0, 
dy 

dx 
1im lim( c5Y x ou 1 
",-.0 dx ",-.0 du dx ) 

1· l' &t Im Im-
at-70 du &-70 dx 
dy du 
-x 
du dx 
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f'(u) X g'(x) 
f'(g(x)) X g'(x). 

6~ 
~ 

This establishes Rule I'. 

If 

then 

y = f(g(x)) 
dy 
- = f'(g(x)) g'(x). 
dx 

The method of proof given above suggests another method of representing the 
differentiation of composite functions. 

Example 7.4 
3 1 

(i) If y = (X3 + 3x2 + 1)"2 we may write y = u 2 where 

(ii) 

u = x3 + 3x2 + 1. 

Then dy dy x du 
dx du dx 

~ ~ 
3 1 2 
-u 2 x (3x + 6x) 
2 
9 I 

"2x(x + 2)(x3 + 3x2 + 1)2, 

on factorising and restoring the function u = x3 + 3x2 + 1. 

If 
( 

4 2 2 )-+ 
y = x +6x -~ 

1 4 2 2 
then y = u- 2 where u = x + 6x 

Now 

and 

Thus 

x 
dy 1 1 1 1 

= - -U- 2 - 1 = - -u- 2 

du 2 2 

du = 4x3 +12x-2(-1)x-1- 1 
dx 

2 
= 4x3 + 12x + -2 . 

x 

(from Pt) 

dy 

dx 
1 (4 2 2 )-+ (3 2 ) -"2 x +6x -~ x 4x +12x+ x 2 

( 
3 1 )( 4 2 2 )-+ - 2x +6x+7 x +6x -~ , 

on restoring the function u = x4 + 6x 2 
- ~ and dividing by 2. 

x 

Exercises 7.S 

Find dy in the following cases :­
dx 

( 
1 )12 5 

(i)y=x-4 (ii)y= x+~ (iii)y=(3x2 +5x-61)"2 
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(iv) y 
1 

(v) v = --"---;:---
, 7x9_3x6+2x+1 

(vi) y = (vii) y 
1 

We now leave differentiation of the composite function briefly and consider 
the differentiation of the so-called exponential function. 

7.2 The function f(x) eX and its derived function 
Functions such as 2x, (tY were discussed in Chapter 5. 

special cases of the general function f(x) = aX where a> O. 

To differentiate f(x) = aX we may proceed as follows. 

We let y aX and r5 x, r5 y be corresponding small 
increments in x and y respectively. 

The functions are 

This is nOIl 

examinable. 

Then f'(x) dy = 1im 0
1

• ~d fi d' PI 
dx ~ ~~_~ 

Now y = oX 

and 

Then 

so 

and 

y + r5y 

r5y 

0; 
~ 

dy 

dx 

We note that lim 
~~O 

same limit. 

and lim 
h~O 
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Alternatively, 
f(x) = a' 

f(x + h) a·+h 

f'(x) liro a"h_ a'. 
h-+O h 

so f'(x) liro a'(~-l) 
h-+O 

= d lim (a"-I) 
h-+O h 

are expressions for the 
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(ah 1) 
-"----'- will be considered here. 

h 

The value of the limit is dependent on a. To make progress, we consider the 

graph of y = aX where a 2': 1. The graph is as shown. 

y 

• y a 
All the curves of 
the form y = a r 

A 
pass through the 

point (0, 1). 

0 x 

The points A(O, 1) and B(h, ah) are shown on the graph. 
The slope ofthe chord AB is then 

difference a h 1 a h 

difference of x Ish 0 h 
As h 0 0, the slope of the chord tends to the slope of the tangent at A. In 
other words, 

h 

1 f A 1
· a-I 

s ope 0 tangent at . lm 
h-tO h 

We investigate this limit for various values of a by means of a calculator. The 

yX button on the calculator should be used. The results are quoted correct to 2 
decimal places. 

Values 
a h -1 

of --
h 

a aX h 0.1 ! h 0.01 h = 0.001 Atmroximate 
limit 

1 IX = 1 0 0 0 0 

2 2x 0.72 0.70 0.69 0.69 

3 3x 1.16 1.10 1.10 1.10 

4 4x 1.49 1.40 1.39 1.39 

In passing it should be noted that when a = 1, ah = 1 h = 1 for all values of h 
so 

o 
- = O. 
1 

11 

The last column in the table gives approximate values of lim Cl 
h-tO h 

various values of a. 
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Recalling that if f(x) = aX, we see that since 

a h -1 
f'(x) = aXlim --, 

h-,;O h 

the approximate derivatives for IX, 2x , 3\ 4x are as shown in the following 
table. 

f(x) f'(x) a roximately) 

IX 0 Except for 1 x the 

2x 0.69 x 2x derivatives are the 
original functions 

3x 1.l0 x 3x multiplied by 

4x 1.39 x 4x (different) non-zero 

Table 1 

In the table, the coefficients are given correct to 2 decimal places. The values 
of the coefficients for other values of a can be found by means of a calculator. 

Exercises 7.6 

Show that Hm 2.7
h 

1 ~ 0.99, 
h-,;O h 

and hence write down an approximate derivative for f(x) = 2.7X. 
h 

2 Show that Hm 2.72 1 ~ 1.001 
h-,;O h 

and hence write down an approximate derivative for f(x) = 2.72x. 

We deduce from Table 1 and the solutions of Exercises 7.6 that 

. a ll -l 
hm -- 1 for some value of a between 2 and 3. In fact from the 
h-,;O h 
solutions to Exercises 7.6 this value of a is between 2.7 and 2.72. This 
number is called e in mathematics and has approximate value 2.718282, 
correct to 6 decimal places. 

The significance of e is that if f(x) = eX 

then f'(x) = 1 x eX = eX. 
This is a remarkable result and bears repeating :-

the derived function off(x) = eX 

1S f'(x) = eX, the same function. 

Rule (ll) I If f(x) = eX 
then f'(x) = eX. 

The function eX is of fundamental importance in mathematics due to the fact 
that it is unaltered by differentiation. 

Being a function, eX can be used in the same way as other functions. In 
particular, it can be involved in the composition of functions. 
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Example 7.5 

Differentiate the functions (i) 

(i) The function is f(g(x)) where g(x) = 2x + 1 and f(x) = eX. 
Then its derivative f'(g(x)) x g'(x) 

Alternatively, 

y 

Then 
dy 

dx 

.,j, I.!: 

e2x+1 x 2 
= 2e2x+l. 

eU where U = 2x + 1. 
dy du 
-x 
du dx 

= eU x 2 
= 2e2x+1. 

Note that if 
d ( X) x ch: e = e 

(ii) The function is f(g(x)) where g(x) + 4x + 2 and 'f(x) eX. 
Then the derivative is f'(g(x)) x g'(x) 

I.!: I.!: 

= ex2+4x+2 x (2x + 4) 

(2x+ 4)ex2+4x+2. 

OT if y eU where U = x2 + 4x + 2, 

then 
dy dy du = -x 
dx du dx 

= eU x (2x + 4) 

= (2x + 4)ex2+4x+2. 

It is useful to streamline the differentiation of functions such as eg(x). 

If y = eg(x) 

then y = eU where U g(x). 

Thus dy dy x du 
dx du dx 

= eU x g'(x) 

= eg(x) x g'(x). 
Rule (Ill) 

If y = eg(x) 

then dy eg(x) g'(x). 
dx 

The result, therefore, of differentiating e{ expression) is 

eexpression x derivative of expression. 
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Exercises 7.7 
The following examples make use of Rule Ill. 
Find the derived functions of 

(i) e3x 

(v) e-X 

(ii) eX 
2 

(vi) e-4x 

3 
(iii) eX +2 

(vii) ex3
-X+l 

7.3 Loge X and its derived function 

(iv) 

The function f(x) = eX has derived function f '(x) = eX. This derived function is 
positive for all values of x and the function f(x) is therefore an increasing 

function. The graph of f(x) = eX is as shown. 

y 

~ x 

1 y=e 

-----ro~---------+ X 

The function f is one-one and has an inverse f 
-1 

We define the inverse off (given by 

f(x) = eX) to be f-l(x) = In x or loge x. 

This inverse function is called the logarithmic 
function to base e. 

The graphs off(x) = eX and f-l(x) = Inx are 
shown below. 

f(x) = eX 
/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

inverse of 

f(x) = 10 x was 

Cl (x) = log 10 X , 

the logarithmic 
function to base 10. 

The graph of f -1 is the reflection of the graph of f in the line y = x. 

Now, by definition, the action off (or f-l) reverses the effect off- l (or f). 

Thus ff-l(x) = x 

or f -1 f(x) = x. 

Since f(x) eX and f-l(x) = Inx, wehave:-

Rule (rV) 

eln(x) = x, (1) 

In(eX) = x. (2) 
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The logarithmic function has a number of other properties which will not be 
discussed here. We confine our discussion to the differentiation of In x. 
The result (1) in Rule IV, taken with Rule III above, may be used to find the 
derived function of In x. 
Suppose g(x) = In x. Then (1) above may be written as 

eg(x) = x. (3) 

Differentiate both sides of (3) with respect to x. 
The right hand side, i.e., x, becomes 1 when differentiated. What about the 

differentiation of eg(x)? 

By rule Ill, eg(x) becomes eg(x) x g'(x) when differentiated. 

Thus if eg(x) = x 

then eg(x) x g'(x) = 1 

so g'(x) 

Recalling form (3) that eg(x) = x, 

we have g'(x) 
1 

x 
Thus Rule (V) ,---______ -, 

If 
c~ 
~ 

The function In x may be composed with other functions e.g. In(3x2 + 2), 

3 In(x + 2), In( e3X + x2 5) and so on. 
Such functions may be differentiated using Rule 1'. 

Example 7.6 
Differentiate the following functions: 

(i) In 2x (ii) In x2 (iii) In (x + J 

(i) Now In 2x f(g(x», 

where f(x) = Inx, f'(x) 
x 

and 

g(x) 

f'(g(x» 

= 2x, g'(x) 
1 1 

g(x) 

Y = In 2x, 
2x 

2 

Then if 
dy 

dx 

1 
f'(g(x» g'(x) = - x 2 

2x 
Alternatively, 
if y 
then 

Thus, 

y 

dx 

In2x, 
In u where u = 2x. 
dy du 

= -x 
du dx 

1 x 2 
u 

1 x 2 
2x 

82 

x 

x 

(iv) (In x)2 (v) In( +) 

It is no coincidence 
that In 2x and In x 

have the same 
derivative 



More Differentiation 

(ii) Using the alternative approach, 

y In u where u =x2 

and dy x du 
dx du dx 

1 1 2 
= -x2x = -x 2x 

u x 2 x 

(iii) 
I 

y = In u where u = x -
x 

and 
dy du 

= -x 
dx du dx 

x I (1 I x + 2 differentiated gives 
( 1)( -I-I) _ 1 
- -x -"l 

(iv) 

(v) 

U x 

1+ 

x 
on multiplying top and bottom by x2. 

y 

Then 

u2 where u In x. 
dy du 

= -x 
dx du dx 

1 
2u x-

x 
2 

= -lnx. 
x 

I 
y = In u where u = -. 

x 
dy du 

= -x 
dx du dx 

1 1 
-x--
u x 2 

1 I 
x--

I x 2 

x 

1 
2(lnx) x -

x 

x 

du ( ) _1_1 
= -lrx 

dx 

Differentiation of functions of the form In(g(x» may be streamlined. 
If y In(g(x) 
so y = In u where u g(x). 

Then 
dy dy du 

= -x 
dx du dx 

1 
- X g'(x) 
u 

g'(x) 

g(x) 
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Rule (VI) 
Thus if 

y In(g(x)) 
dy _ g'(x) 
----
dx g(x) 

Then we may differentiate In(x2 + 3x + 4) immediately to obtain 

2x + 3 (g' (x) I. 
+3x +4 g(x)) 

Exercises 7.8 
The following exercises make use of Rules I VI. You may assume that 
where necessary sums of terms may be differentiated term by ternl. 

1. Write down by means of Rule VI the derived functions of the following 
(i) In (5x) (ii) In (6x + 5) (iii) In (x2 + x) 

(iv) In (v) In (9x2 + 4x + 3) (vi) In I +~lJ 

(vii) In (x7 + 1) 
(x) In «x2 + x)3) 

(viii) lnx 2 

(xi) In (e2x) 

(ix) In «x + 1 )2) 
(xii) In (&+5) 

2. Differentiate 
2 (i) e In(x + I) (ii) (Inx)3 

3. Find the derived functions of 

(iii) e
lnx3 

f(x) = In (x3), g(x) In (x4), hex) = In (x7) 

and show that h'(x) f'(x) + g'(x). 

4. Show that iff(x) In (xn) then f'(x) 
n 

x 

5. Show that ifk(x) In(x9), m(x) = In(x6), n(x) In(x3) 

then n'(x) = k'(x) m'(x). 

6. Show that iff(x) In (eX) then f'(x) = 1. 
Which other function has derived function I? 
How do you reconcile the results? (Hint: see Rule IV, (2» 

7. Show that iff(x) elnx then f'(x) = 1. 
Explain the result. 
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7.4 

More Differentiation 

More techniques of differentiation 
In Pt it was pointed out that a function consisting of the algebraic sum of 
multiples of powers of x and constants may be differentiated term by term. 
In fact, sums of any type of functions may be differentiated term by term. 
Thus, if 

m(x) x4 + 9x3 + eX + In x 

then m'(x) 
1 

+eX +-. 
x 

Term by term differentiation is justified as follows. 

For convenience we 
consider the sum of 
three functions. The 
proof carries over to 

Suppose y f(x) + g(x) + hex). (1) any finite sum. 

Let DX, Dy be corresponding small increments in x 
and y respectively. 
Then y + Dy f(x + DX)+ g(x + DX)+ hex + DX) . (2) 
Subtract (1) from (2) and group terms in f, g, h on the right hand side. 
.. ay f(x f(x) + g(x + DX) g(x) + hex + DX) - hex) 

and 
g(x + DX) - g(x) hex +Dx) - hex) 

~--~--~~+ +~--~~~~ 

Dx Dx Dx 

Thus 
dx 

lim 
&~O 

g(x + &) g(x) hex + &) - hex) 
~---"--~+ + ~------'--'--"-

& & 

f'(x) + g'(x) + h'(x), 
assuming that the limit of a sum of terms is the sum of the separate limits. 

Rule (VII) ,--_____________ -----, 

Thus the derived function of f(x) + g(x) + hex) 
is f'(x) + g'(x) + h'(x), 
a result which generalises to the sum of any 
finite number of functions. 

We are therefore justified in differentiating 

eX + In(x2 + 1) + + 3x + 5 
~ ~ ~ ~ ~ 

as eX+ 
2x 

+2x+3(+O) 

Exercises 7.9 
Differentiate the following functions :-

(i) lnx + eX (ii) In (x2 + 1) +x2 + 1 (iii) e3x + x4 +2 

(iv) In(x2 +x)+ +2 (v) In(eX+x) 
2 

(vi) In (eX + x) 

(vii) In 2) + (x 5)2 (viii) In (ex + ~ + 21 
x ) 

(ix) In (eX + e-X) 

(x) (xi) (eX -x+ 2)4 
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(i) 

(ii) 

(iii) 

More Differentiation 

Whilst the techniques introduced so far have been useful, there are problems 
which cannot be treated by these techniques. For example, how do we 
differentiate, 

(i) or (ii) x7 In (x2 +1)? 

Now we are able to differentiate x3, eX, x7, In (x2 +1) as separate c~ 
terms but does this enable us to differentiate (i) and (ii)? In fact, ~ 
it does, but we require another rule. 

We note that x3eX and x7 In (x2 +1) are neither sums of 
functions nor compositions of functions. In fact they are 
both of the form f(x) x g(x), i.e. products off unctions. 
The appropriate rule for differentiating such cases is, not 
surprisingly, known as the Product Rule. 
The rule is 
Rule (VIII)r----:-__________ -, 

d 
dx (f(x)g(x)) g(x)f'(x) + f(x)g'(x). 

Thus to differentiate a product of two functions : we 
differentiate the first and leave the second alone, then 
differentiate the second and leave the first alone, and add 
the two components so obtained. 

Example 7.7 

Differentiate (i) x3eX (ii) x7 in x (iii) x2 (x + 1 )20 

so 

f(x) 
f'(x) 

d 
so 

dx 

f(x) x3, g(x) = e-\ 
flex) 3x2, g'(x) = e-\ 

eX.3x2 + x3.e-X 

= x2eX(3 + x), on takin~ out common factors. 

f{x) 

f'(x) 

In x) 

x7 , g(x) = lnx, 

7x6 , 
1 

g'(x) = -, 
x 
1 

(In x). 7.x6 + x7. -

7x6 lnx +.x6 
= x6(71nx + 1). 

x 

x2 , g(x) (x +1)20, 
20(x + 1)19, 2x, g'(x) 

(x +1)20) = (x+1)20.2x+x2.20(x+ 1)19 

= x(x + 1)19 [2(x +1) + 20x] 
= x(x + 1)19 [22x + 2] 
= 2x(x + 1)19 [llx + 1]. 
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More Differentiation 

For completeness, we give the proof of Rule VIII and give an alternative fonn 
of the rule. 
Let y 
or y 
where u 
Now let &-, 

respectively. 

f(x)g(x) 
uv, (1) 
f(x), v == g(x). 

t5u, bV, 0; be corresponding small 

Then y + 0; (u + t5u )(v + bV). (2) 

Subtracting (1) from (2), we obtain 
0; (u+ t5u)(v+bV) uv 

&­

When &-~O, 

and 

Then 

ubV + vt5u + t5u bV. 
& t5u t5u& 

u-+v-+ 
&- &- &-

t5u du 

&- dx 
bV dv 

&­
DuDv 

DX 

~ 

dx 

~ O. 

lm u-+v-+ 

increments in x and y 

dx 
lim (0;'\ 
&~O &-) 

I, (bV t5u 
&~O &- &- &-

dv du 
u-+v-

dx dx' 

where u 
dv du 

f(x), dx = g'(x), v g(x), dx = f '(x). 

Thus Rule VIII ma be written as 
d du dv 

-(uv) = v- + u- (a) 
dx dx dx 

or as given previously, 

dy (f(x)g(x)) = g(x)f'(x) + f(x)g'(x), (b) 
dx 

The fonn VIII (a) is usually the more popular fonn with students and is often 
remembered as 

d(uv) vdu + udv 
or in words 

, dee uv equals v dee u plus u dee v " 
Either fonn may be used in practice, of course. 

Example 7.8 

Differentiate 
(i) u 

du 
2x, 

dx 

(i) x2(2x + 1)3 (ii) (x2 + 1) In x (iii) e2X In (3x4 + x + 1), 
v = (2x+l)3, 

dv 
- = 3(2x+ 1)2,2 
dx 

= 6(2x + 1)2, 
[Note in passing the use of the function of a function rule to 
differentiate (2x + 1)3 or (expression)3]. 
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Then the result is 
(2x + 1)3.2x + x2.6(2x + 1)2 = 2x(2x + 1 )2[2x + 1 + 3x] (factorising) 

= 2x(2x + 1)2(5x + 1) 
or 2x(5x+ 1)(2x+ 1)2. 

(ii) f(x) + 1 , g(x) In x, 

f'(x) 2x, 

The result is 

1 
g'(x) = -. 

x 

1 1 
In (x). 2x + (x2 + 1).- = 2x Inx + -(x2 + 1) 

(iii) u 

du _ 2 2X -- e 
dx ' 

The result is 

x x 
1 

x(2Inx+1)+ . 
x 

v = In(3x4 + x + 1) 

dv 12x3 + 1 

dx +x+l 

In(3x4 + x + 1).2e2X + 
3x 4 +x+l 

e2x 21n(3x4 +x+l)+ 4 . [ 
1 + 1 J 

3x +x+ 1 

Use Rules III and 
VI to differentiate 
e2< and In(3x

4
+X+l) 

One further technique must be considered : the quotient rule. The quotient 
rule is concerned with the differentiation of functions such as 

(i) _x_ (ii) In( x
3 

+ 4) 
x 2 + 1 3x + 1 

i.e. the functions of the form 

or (~) 
g(x) \ V . 

We state and use the quotient rule before proving it. 

Rule (IX) 

If y 
g(x) 

then 
g(x)f'(x) - g'(x)f(x) (a) 

(g(x»2 

alternatively, if y = ~ 
v 

du dv 
v- u 

dx dx 

v2 
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(i) 

(ii) 

lviore Differentiation 

The u, v fonn of Rule IX is agaiu the more favoured fonn of the rule and is 
remembered as 

d(~ I = vdu-udv 
v; 

or in words, Idee u upon v equals v dee u minus u dee v all over v squared'. 
Rule IX in either fonn is known as the quotient rule. 

Example 7.9 
Use the quotient rule to differentiate 

(i) x (H) x
3

-1 (iii) In(x
3

+4) 
x 3 + 1 3x+ 1 

u = x, v = + 1, 

du = 1 
dx ' 

dv 
- = 2x. 
dx 

The result is 

l-x.2x x 2 + 1 2x2 

(x 2 + 

u x3 - 1, 
du 

= 3x2, 
dx 
The result is 

v 
dv 

dx 

1 x 2 

(x 2 +1)2' 

(x) +1).3x2 (x) -1).3x 2 

(x 3 + 1)2 

3x5 + 3x2 - 3x 5 + 3x 2 

(x 3 + 
6x 2 

, Waming : common errors are 
(a) getting the tenns on the top 

in reverse order or 
(b) writing the top as 

du dv 
v-· +u-

dx dx 

Use brackets and 
note the change of 

sign when the brackets 
are removed. 

(iii) u = In(x3 + 4), v 3x+ 1, 

du 3x 2 dv 

dx x 3 +4' dx 
3. 

The result is 

(3x+ 

no significant simplification being possible. 

We defer the proof of Rule IX until the following exercises have been worked. 

89 



More Differentiation 

Exercises 7.10 
Use the quotient rule to differentiate the following :-

(i) x 1 (ii) ~ (iii) eX (iv) 5 3x 
x + 1 lnx x + 2 5 + 3x 

(V) 
x +1 

( 
.) e

X
-l 

VI --
eX + 1 

( .. ) lnx vu 
x Z 2x + 1 

(viii) --z--- (ix) eX e -x 

+e-x x +3 

The adage 'practice makes perfect' is an apt description of differentiation. For 
that reason some additional miscellaneous exercises are given here. The 
various rules are brought together to assist the reader. 

l' 

IT 

HI 
IV 

v 

VI 

VII 

VIII 

IX 

.1: 
dy 
dx 

f(g(x» f'(g(x» x g'(x) 

eX eX 
eg(x) eg(x) x g'(x) 

elnx x 1 

In(eX) x I 

lnx 
1 

x 

1n(g(x)) 
g'(x) 

g(x) 

f(x) + g(x) + hex) f'(x) + g'(x) + h'(x) 

du dv 
uv } v-+u 

f(x)g(x) dx dx 
g(x)f' (x) + f(x)g' (x) 

du dv 
v--u 

u dx .dx 
V v2 

or 
f(x) g(x)f'(x) - f(x)g'(x) 

g(x) (g(x»2 

aX (a > 0) aX Ina 

The differentiation ofax is the subject of question 8 in the next exercise. 

Exercises 7.11 
1. Differentiate the following with respect to the appropriate variable. 

1 .. ... x4 1 
(i) x3 3x2 + x + 2 + (ll) X In x (lll) 4 

x x + 1 
(iv) (xZ + 1)15 (v) ~ (vi) e-4X 

90 



(vii) x(ln x)2 

(x) 
eX + 

( "') 1 Xlll x +-
x 

More Differentiation 

(viii) -== 

(xi) x(I - x) 

( 

1 \ 
(xiv) x+-Ilnx 

XJ 

(ix) (eX + 1) In(eX + 1) 

(xii) x(I x)IO 

( ) 
lnx 

. xv -?­

x- + 1 

2. Find the slope of the tangent to the curve given by y = 2x at the point (1, 1). 
x+ 1 

(The slope of the tangent is the value of dy at the point in question, see Pl)o 
dx 

3. 

4. 

2x+l d2y 
Show that if y = -- then -2-

x+ 1 dy 

2 

(x+ 

Find the slope of the tangent to the curve given by y 
at the point (1, e2). 

5. Find the maximum and minimum values of the function f given by 
x 

f(x) = --. 
x 2 + 1 

6. Find the maximum and minimum values of the function f given by 
1 

f(x) x + -- (x'# 2). 
x-2 

7. Find the coordinates of the maximum and minimum points of the curve given 

by y x2e-x . 

8. From Rule IV, it may be seen that e1n a a (a > 0) and thus aX 
Use these results to show that 

d 
-(aX ) = aX In a (a > 0). 
dx 

9. Differentiate the following with respect to X. 

(i) 2x (ii) x3x (iii) - (Iv) 3x In(3x + I) (v) 3xeX. 
x 

Postscript to Section 7.4 (non-examinable) 

e(ln a)x. 

For completeness, we give the proof of the quotient rule (Rule IX) here, 
du dv 

v--u 
dy dx 

v dx 

u 
then we show that if y 
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We prove the rule by means of the product rule as follows. 

Given 
u 

y =-, 
v 

we obtain yv u. 
Differentiating both sides with respect to x. 

d du 
-(yv) = -. 
dx dx 

Now yv is a product and the product rule may be used to differentiate it as 
follows: keep the second (v) fixed and differentiate the first (y), then keep the 
first fixed and differentiate the second, and add the results. 

so 

Thus 

or 

dy dv du 
v-+y-

dx dx 
dy 

v-
dx 
dy 
dx 
dy 
dx 

dx 
du 
dx 
1 du 
v dx 

dv 

y dv 

v dx 
1 du u dv 

v dx v 2 dx 
du dv 

v--u 

du dv 
v u 

dx dx 

v 2 

(on dividing through by v). 

In terms of f(x) and g(x) : -

~(f(X») 
dx g(x) 

g(x)f'(x) f(x)g'(x) 

(g(x»2 
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Differentiation of Trigonometric Functions 

Chapter 8 

Differentiation of Trigonometric Functions 

This chapter is mainly concerned with the differentiation of sin x, cos x, tan x, sec x, 
co sec x, cot x, 

8.1 Differentiation revisited 
Differentiation was introduced in PI, The derivative or derived function of the 
function f(x) was defined as 

f'(x) limf(x+h)-f(x) 
h->O h 

l ' f(x+8x) f(x) h fl,x) , or Im ,were Y \ 
dx 8x~O 8x 

8.2 Differentiation of trigonometric functions 
To differentiate sin x from first principles we would need to find 

I
' sin(x+8x)-sinx 
Im--'-------'---

0,-+0 8x 
or alternatively 

I
' sin(x+h)-sinx 
Im , 

h-'>O h 

Here, we do not pursue this first principles approach but settle for stating the 
result. 

Differentiation of tan x may be achieved by using the 
derived functions of sin x and cos x and the quotient 
rule (Chapter 7), 
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Let y 

Then 

Differentiation o/Trigonometric Functions 

tan x 

dx 

smx 

cosx 

u 
(say). 

v 

col x+sin2 x 

x 

sec2 x, sec x 
cosx 

~ 
~ 

We now differentiate sec x You are not expected to have any other 
cosx 

knowledge of sec x at this stage. 

To differentiate sec x, let's observe that sec x 
cosx 

(cos x)-I. 

Then 
d 
-(secx) 
cL-r 

Exercise 8.1 
Write cosec x = (sin X)-l 

~« cosx)-l) 
dx 

(~1)(cosx)-1-1 d (cosx) 
dx 

- (cos 
sinx 

sin x) 

sec x tan x, since tan x 

and deduce that the derived function of cosec x is 
cosx 

~ cosec x cot x, where cot x = 
smx 

sin x 

cosx 

The derived function of cosec x is cosec x cot x. 
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Differentiation of Trigonometric Functions 

Finally, let's differentiate cot x by noting that 
1 

cotx= (tanx)-l. 

Then 

tan x 
d d 

-(cotx) = -«tan x)-l) 
dx dx 

d 
(-l)(tan x)-l-l_(tan x) 

dx 
,} 

- (tan x)-2 (sec2 x) 
-1 

(tanx) 

2 
2.sec x 

(
COSXJ2 
sinx x cos2 x 

1 

sin2 x 
- cosec2 x. 

The derived function of cot x is - cosec2 x. 

We summarise the above results for convenience. 
Function (f(x)) Derivative (f'(x)) 

smx cosx 
cosx sm x 
tan x x 
sec x sec x tan x 
cosec x - cosec x cot x 
cot x cosec2 x 

In relation to the above table you are expected to 
a) know the first three results, 

You are not expected 
to have any other 
knowledge of cot x. 

b) be ab le to derive the last three resulfs from the first three. 

We may use these results with the rules given in Chapter 7 to differentiate 
more complicated functions. 

Example 8.1 
Let's recall the function of a function (differentiation of a composite function) 
rule, namely that the derivative off(g(x» is f'(g(x» x g'(x) or ify = feu) where 
u = g(x) then 

dy = x du. 
dx du dx 

Use this rule and the results given earlier to differentiate the following. 

(i) cos2 x (ii) sin ( Fx ) (iii) tan (4x2 + 2x + 1) . 
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Differentiation a/Trigonometric Functions 

(i) The function is f(g(x» where f(x) x2, g(x) cos x, 
The derivative is fl(g(X» x g'(X) 

.J" .J" 
fl(X) = 2x 

f'(g(x» = 2 cos x 

(ii) 

(iii) 

Alternatively, y 

and 

2 cos x x sin x) 
2 cos x sin x, 

u2 where u cos x 
du 

x 
dx du dx 

.J" .J" 
2u x sin x) 
2 cos x x x) 

2 cos x sinx. 

The function is f(g(x» where f(x) sin x, g(x) = Fx. 
Then the derivative is fl(g(X» x g'(X) 

.J" .J" 

cosFx(±x 'J 

Alternatively, y sin u where u 

Then dy dy x du' 
dx du dx 

Let y = tan u where u 

so that 
dy 

dx 

1 
cosu x-u 

--';=-'-, as before. 

4x2 + 2x + 1 
dy du 
-x 
du dx 
.J" .J" 

= sec2 u x (8x + 2) 
= 2(4x + 1) sec2(4x2 + 2x + 1). 

Example 8.2 
Use the differentiation of a product rule, namely 

d du dv 
-(uv) = v- + u-
dx dx dx 

to differentiate the following. 
(i) y = (x2 + 3x + 2) sin x 
(iii) y = sin x cos x 

(v) e2X sin x 

(ii) Y x3 tan x 
(iv) y cos2 x (cos x x cosx) 

f'ex) = cos x 
f'{g{x» = cos (fX) 
~ 

(vii) (2x+l)cosec(x3 -x) 

(vi) (x2 + 2)sec 2x 

(viii) eX3 cot 4x (ix) (In x) sin 3x. 
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(i) 

so 

then 

(ii) 

so 

u 
du 
dx 
dy 

dx 

u 
du 
dx 

dx 

Differentiation of Trigonometric Functions 

= x2 + 3x + 2, 

2x+ 3, 

v 
dv 
dx 

smx 

cos x 

= (sinx)(2x + 3) + (x2 + 3x + 2)(cos x) 

= (2x + 3) sinx + (x2+ 3x + 2) cos x. 

x3 , v tan x 

3x 2
, 

dv 
= sec2 x 

dx 

= (tanx)(3x2) + (x3)(sec2 x) 

x 2(3 tan x + x sec2 x). 

(iii) u sin x, v = cos x 
du dv 

so = cosx, = - smx. 
dx dx 

(iv) 

so that 

(v) 

so 

.. 

(vi) 

so that 

(vii) 

so that 

dy = (cos x)(cos x) + (sin x)(- sin x) 
dx 

cos2 x sin2 x. 

u = cosx, 
du 

v = cosx 
dv . 

= - SIn x, = - slnx. 
dx dx 
dy 

dx 
(cos x)( - sin x) + (cos x)(- sin x) 

2 cos x sinx. 

u = e2X, v = Slnx 
du 

2e2X, 
dv 

- cosx. 
dx dx 

~(e2X sin x) 
dx 

(sinx)(2e2X) + (e2X)(cosx) 

= e2X(2 sin x + cos x). 

u x2 + 2, v sec 2x 
du dv 

2x, = (sec 2x tan 2x)2 2 sec 2x tan 2 x. 
dx dx 
d 
-«x2 + 2)sec 2x) = (sec 2x)(2x) + (x2 + 2)(2 sec 2x tan 2x) 
dx 

u 
du 
dx 

2 sec 2x[x + (x2 + 2) tan 2x]. 

(2x + 1), v = cosec(x3 x) 
dv = - cosec(x3 x) cot(x3 - x) x (3x2 - 1) 
dx 

= 2, 
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d 
-«2x + 1) cosec(x3 -x» (cosec(x3 -x)(2) 
dx 

+ (2x + 1)( -cosec(x3 - x)cot(x3 x» x (3x2 - 1) 
= cosec(x3 -x)[2-(2x+ 1)(3x2 1)cot(x3 -x)]. 

(viii) 

so that 

and 

u 
du 

x 3x2 
dx 
dv 

(- cosec2 4x) x 4 = - 4 cosec2 4x. 
dx 

! (ex3 
cot4X) (cot 4x) (3x 2ex3 

)+ (ex)) (- 4 cosec1 4x) 

(ix) 

so that 

u 
du 

lnx, 
1 

[3x2 cot 4x - 4 cosec2 4x]. 

v = sin 3x 
dv 

3 cos 3x. 
dx x' dx 

~((ln x) sin 3x) 
dx 

= (Sin3x>(±) + (lnx)(3 cos 3x) 

1 . 
sm 3x + 3 (In x) cos 3x. 

x 

Example 8.3 
Use the differentiation of a quotient rule, namely 

du dv 
v--u 

d (~1 
dx v J 

to differentiate the following. 

(i) smx (ii) sin x + cosx 
x 2 x 

tan x -1 
(iv) ~-~ 

secx 

(i) u 

so that 
du 
dx 

(v) 
cos2x + sin2x 

smx, v x2 

dv 
= 2x. cos x, 

dx 

2x 
(iii) e 

cos3x 

!(s~x) .(x
l 
)cosx (sinxX2x) 

x 4 

x cos x - 2 sin x 
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(ii) 

so that 

(iii) 

so that 

(iv) 

so that 

Differentiation of Trigonometric Functions 

u 
du 

dx 

sin x + cos x, 

cosx- sIn x, 

v 
dv 

d:x­

x 

l. 

! ( sin x: cos x) = ...:.(_x,,-)(,,-c_o_sx __ s_in~x-,-) ---::-,-(_si_n_x_+_co_s_x-,-)-'C(--=-l) 

u e2x , v 
du 

2e2X, 
dv 

-

dx dx 

d r e
2x 

) 

dx \ cos3x 

u = tan x -1, v 
du dv 

= sec2 x, 
dx dx 

smx 

cos 3x 

- 3 sin 3x. 

(cos 3x )(2e2X 
)- (e2X X -3 sin 3x) 

cos2 3x 

e2x (2 cos3x + 3 sin 3x) 

cos23x 

sec x 

sec x tan x. 

Then ~(tanx -1) 
dx sec x x 

secx(sec2 x tan 2 x+tanx) 

sec2 x 

(v) 

so that 

sec 3 
X - secxtan 2 x + secxtanx 

u ,v cos 2x + sin 2x 
du dv 

= - 2e-2X - = 2 sin 2x + 2 cos 2x. 
dx 'dx 

d [ e~2x ) 

dx cos 2x + sin 2x 

(cos2x + sin2x)( _2e-2x ) (e-2x )( -2sin2x +2cos2x) 

(cos2x+sin2x)2 

(cos2x + sin2x) 
-4e -2x cos2x 

( cos2x + sin 2x) 
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Differentiation a/Trigonometric Functions 

Exercises 8.2 
Differentiate the following. 

(i) 3 sin x (ii) cos 3x (iii) sin 
x 

(iv) tan 
x 

2 4 

(3 ) (v) secl x 
\4 

(vi) cosec 2x (vii) sin 3x + cos 3x (viii) sec x + tan x 

I . x 
(IX) 2cos- (X) xI cos x (xi) 2x2 cos x + (x2 + 1) sin x 

2 

( .. 2 5 . 
Xll) -3 + x sm x 

x 
(xv) x2 cos 2x 

(xviii) 
cosx 

2x+3 

(xxi) 
sinx 

(xxiv) + sin2 x. 

x tan x (xiii) cos3 (x2) 

(xvi) x,Jsinx 

(xix) 
cos x 

(xxii) In (cos x) 

(xiv) .,jtanx 

(xvii) sin2 x + cos2 x 

( ) 
cos2x 

xx --
.Jx 

(xxiii) In( cot x + cosec x) 

8.3 lVlaxima and minima problems involving trigonometric 
functions 
We consider further application of. the techniques introduced in PI to 
investigate stationary values of functions. 
Let's first recall the approaches to be adopted in investigating stationary values 
of a function f(x). 

Method 1 
(a) f '(x) 0, then 
either (b) f'(x) ehanges from + to maximum 
or (c) f'(x) changes from - to +, minimum 
or (d) f '(x) doesn't change sign, stationary 

point of inflexion. 

Method 2 
(a) f '(x) 0, then 
either (b) f "(x) ° for a maximum 
or (e) f "(x) > ° for a minimum 
or (d) f "(x) = 0, no information. 

The second method uses second derivatives to classify stationary values. 
Second derivatives of trigonometric functions are easily found, in principle at 
least. 

Example 8.4 

(i) If y = eX(cos x + sin x), find d 

(ii) Given f(x) I-s~nx findf"(x). 
l+smx 

(i) 
dy 

dx 
(cos x + sin x)(eX) + (eX)(- sin x + cos x) 

= 2eX cosx. 
'2 

Similarly, d; (2 cos x)(eX) + (eX)(- 2 sin x) 
dx 
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(ii) f'(x) 

so f'(x) 

Differentiation of Trigonometric Functions 

2eX(cos x sin x). 

(1 + sinx)z 
-cosx sinxcosx cosx + sinxcosx 

-2cosx 

(l+sinx)z· 

(1 + sin 

For this function let u= 2 cos x, v (1 + sinx)2 

2 sin x, dv 2(1 + sin x)(cos x) . 
dx 

du 
so that 

dx 

fuumc1tiioltll of fuumctioltll 
rule with u2 where 

u=l+smx 

Then f"(x) 
(1 + sin x)2 (2 sin x ) (-2 cosx )2(1 + sinx)( cosx) 

(1 + sinx)4 

(l+sinx~ [2sinx(1+sinx)+4cos2 x] 
(1 + sinx) 

2 sin x + 2 sin 2 x + 4 cos2 x 

(1 + sinx) 

+ sin 2 x + 2 cos2 

(1 + sinx)3 

We use the second derivative test (method 2) to investigate the stationary 
values of a function. 

Example 8.5 
Find the stationary values or turning points on the curve of 

y = sin x + cos x for 0::; x ::; 211:. 

For turning points, 
dx 

o. 

Now 

and 

Then 

gives cosx 

and 

Then x 
11: 

4 ' 

dy 
dx 

dZy 

dx 2 

dy 
dx 

cosx- smx 

= - SIn X cosx. 

o 
sinx = 0 

cosx = smx 
SIn X 

= tan x = L 
cosx 
511: . th 
- In e range 0 to 211:. 
4 
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When x 
n: 

. n: n: 
sm - - cos 

4 4 
corresponding to a maximum point. 
The corresponding maximum value is 

When x 

n: . n: 1 
y cos - + sm-

4 4 
+ 

5n: 
4 

. 5n: 5n: 
- sm- -cos 

4 4 

-r __ 1 J-(- 1 
\12 

12. 

-12 <0, 

Don't approximate 
the surd if not 
asked to do so. 

~ 
~~~gl ~ 

12 > 0, corresponding to a minimum point. 
5n: . 5n: 

y = cos-+sm 
4 4 

1 1 
--12-12 12. 

The stationary or tuming points are therefore 

: ,12) maximum point, 

5; ,-12) minimum peint. 

In the next example, we use the sign test on the first derivative to classify the 
stationary values. 

Example 8.6 
Find the stationary values of 

f(x) tan2 x - 2 tan x 
Jl' 

for 0 sx s . 
2 

For a stationary value, 
f'(x) 

Now 

Then fl(x) 0 gives, 

O. 
f'(x) = (2tanx)(sec2 x) 2sec2 x 

= 2 sec2 x(tan x 1). 

2 sec2 x(tanx 1) = O. 

or 

, 1 
sec- x = --2 - = 0 

tan x 

x = 

cos x 
1. 
n: 

(impossible) 

To differentiate 
tan2 x we could 
write u2 where 

u=tanx. 

4 

To use the sign test on f '(x), let's consider the signs of f '(x) at x = ~,;. (iD 
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Differentiation of Trigonometric Functions 

n 
x 

6 

so that 

x 

n 
cos 

3 

so that 

n J3 n 1 
cos tan - = 

J3 6 2 6 

fl(x) 2x 

[ '7)' 
1) 

}( ~-IJ < O. 

tan n = J3 
2' 3 

fl(x) = 2 x_I -(J3 1) 
(~r \ 

= 8(J3 -1) > O. 

Thus as x passes truough 2:, f 'ex) changes sign from to 
4 

corresponding to a minimum value. 
The corresponding stationary value is 

(

1[\ n n 
f 4") = tan2 4" - 2 tan 4 = 1 - 2 1. 

Thus f(x) has a minimum value of - 1 when x 
4 

fl(x) 2 tan x sec2 x - 2 sec2 x 

L-..._....J1L--..J 

U V 

or use your 
calculator 

~ 

second derivative 
test 

f"(x) 
d d 

sec2x-(2 tan x) + 2 tan x -(sec2 x) 
cLy dx 

2~(sec2 x) 
dx 

2 sec4 x + (2 tan x)(2 sec x x sec x tan x) 
2(2 sec x x sec x tan x) 

["(x) 2 sec4 x + 4 sec2 x tan2 x - 4 sec2 x tan x. 

When x 2: secx = _1_ = _1_ = ../2. 
4 ' I cosx .fi 

f!l(x) = 2(../2)4 + 4(../2 )2(1)2 - 4(../2)2(1) 
8 + 8 - 8 = 8> 0, 

corresponding to a minimum point as before. 
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Differentiation of Trigonometric Functions 

Exercises 8.3 
Find the maximum and minimum values of the following functions 
for 0 sx S 21t. 

(i) cos 2x - x (iO .J3 sin x + cos x (iii) eX(2 cos x + sin x) 
(iv) cos x + sin x cos x. (v) cos2 x + 4 cos x + 6 . 

Prove that the function 8 sec e + 27 cosec e has stationary values when 

tan e 3. If e is acute, calculate the stationary value. 
2 

1t 
Show that the least value of 3 sec x - 2 tan x for 0 < x < is approximately 

2 
2.24. 

4. The turning effect of a ship's rudder is shown theoretically to be k cos e sin2 e, 
where e is the angle which the rudder makes with the keel, and k is a constant. 
For what value ofe is the rudder most effective? 
Note that the values of e of interest lie in the range 90° to 90°. 

5. Find the maximum and minimum values of cos3 x + sin3 x for 0 s x S 1t 
2 
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More Integration 

Chapter 9 

More Integration 

Integration was introduced in PI. There, the process of integration was confined to 
integration of constants and polynomial functions. Here, we extend the list of basic 

functions to be integrated: I , eX, sin x, cos x are considered. 
x 

Secondly, a new rule of integration is introduced whereby certain types of composite 
functions may be integrated. Later, some definite integrals are evaluated. The 
Trapezium Rule which enables the calculation of approximate values of definite 
integrals is considered. 

9.1 Techniques and rules 
Let's start by recalling a rule from PI. 

Rule I 

where c and k are constants. 
The reader may wish to perform a quick revision ofthis rule by working the 
following exercises. Before doing so, we recall that when differentiating a 
finite number of terms, we may differentiate term by term. Since integration 
reverses differentiation, we may integrate term by term. 

Exercises 9.1 
Integrate the following with respect to the appropriate letter, 
ignoring the constants of integration. 

(i) (ii) xX' 

(v) 
1 

x+ 
• • 2 1 ( [2 

(VI) l· Y +-2 
Y J 

C 
... ) 4 
111 -

X4 
Civ) 

It is possible to generalise Rule I to functions of the form (ax + by where a, b 
and n are constants. We consider an example before giving the general result. 

Example 9.1 

Now ~«7x + 5)4) 4(7x + 5)3.7 
dx 

28(7x + 5)3 

or ~(7X+ 5)4) = (7x + ~)3. 
dx 28 

105 



1. 

2. 

More integration 

Thus writing in terms of integrals, we have 

J
(7x + 5)\l.x (7x+5)4 +k. 

28 
Note also that a constant in the integral would not introduce any difficulty. 
Thus 

J3(7x+5)3dx 

The general rule is therefore 

Rule II 

where a, b and c are constants. 

BEWARE 

3(7 x + 5) 4 + k . 

28 

It is stressed that Rule II holds because ax + b is a so-called linear function in 

. I 1 h' I" 3; I b 3 . x, l.e. x occurs on y as x . T IS e Immates - + 2, Lor examp e, ecause IS 
x x 

3x-l. 

Note that 
(ax2 +b )n+! k 

#- + 
(n + 1)2ax 

d (ax2 +b)n+l 
because #- (ax2 +b)n. 

dx (n + 1)2ax 
You are urged strongly not to use such a fallacious result or any similar result 
which does not relate to linear functions. 

Exercises 9.2 
Integrate the following by using Rules I and n. Note that there is no need to 
remove the brackets before integrating. Ignore the constants of integration. 
(i) (x + 1)2 (ii) (2x - 1)3 (iii) (3x + 7)4 

1 I 

(iv) (7x 6r6 (v) (3x+l)2 (vi) (9x-8)-2 

1 31 

(viii).J (ix) (3-2x)2-+(3-2x)2 
l+x 

1 
(vii) 

3 

(2x + 3)2 

(x) (lx+m)S (l,m,s are constants, s#--I). 

Which of the following mat' be evahtated by means of rule II? 

(i) J(2x + 3)+dx (H) J(5x
3 

-1)2dx (iii) J(7 x)4dx 

I 

(iv) J(3+X 2 )2dx. 
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9.2 Integration of I , eX, sin x and cos x 
x 

11 

It was pointed out earlier in PI that Rule I: f ex" dx ~ + k is valid only 
n + 1 

if n ;;t:. -1, since division by zero is undefined. Thus Rule 1 does not assist with 

finding p-dx . 
x 

In Chapter 7, it was shown that 

~(lnx) 1 (f"!x?~3 
dx x 

so that f~x 
x 

lnx + k. 

A difficulty arises that In x is undefined for x < O. In 
mathematics we must consider the integral even when x < O. 
To cope with this requirement we write 

f~x f~x = fd(-x) 
x -x -x 

In (-x) + k. 

Thus f~x = lnx + k 
x 

x>O 

In (-x) + k. x < 0 
These statements may be combined into the single statement 

Rule III IJ~x = lnlxl+k. 
: x 

Rule III may be developed to consider integrals 

dx f dx such as --- and --
3x+ 2 5-7x 

f dx 
These integrals are special cases of the more general, --where a and b 

(lx+b 
are constants. Note that ax + b is a linear function. 

d 1 d 
Now -In(ax+b) --x-(ax+b) 

dx ax+b dx 

Thus f dx 

ax+b 

and more generally, 

Rule IV 

a 

ax+b 
1 

Inlax+bl+k 
a 

We urge you again not to use such a result 
with anything other than linear functions. 
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1. 

Example 9.2 

f~ 3x+2 

f- 6
- dx 

5 7x 

Exercises 9.3 

More Integration 

5 
-lnI3x+21+k. 
3 

6 
= --In/S-7x/+k. 

7 

Integrate the following. 

( ') 2 (") 1 1 - 11 -
x 3x 

(iii) 1 
x+ 1 

(v) 1 (vi) _1_+_1_ 
1 x 3- x 3+2x 

Now we consider the function eX, Since 
d 

-(eX) = eX 
dx 

we have 

Rule V 

Now since 
d 
-(ceax+b) = ceax+ba 
dx 

= ca&x+b 
then 

Rule VI 

(iv) _1_ 
9x+7 

Rule III 

We ask you to note again our earlier comments concerning linear functions: 
do not use Rule VI for non-linear functions, 

We note in passing that the integral ofax (a> 0) will not be considered in the 
following exercises. 

Exercises 9.4 
Use Rule VI to integrate the following, 
(i) e 2x+! (ii) (iii) e -2x 

1 1 ( \~ (v) -4- (vi) e3X + - (vii) eX f 
e x e3x 

(iv) 5-3x e 

(viii) 2e5X 

2. Which of the following may be evaluated using Rule VI? 

(i) e2X- 1 (ii) e-1ox (iii) e9X - 6e-4X 

(iv) e (v) (vi) e71 - 3X 
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It was pointed out in Chapter 8 that 

d (sinx)= cosx 
dx 

so that 

Rule VII 

Also 
d 
-cosx = sinx 
dx 

so that 

Rule VIII 

Then since ~ (sin(ax + b)) = a cos{ax + b) 
dx 

d (cos{ax + b)) -a sin{ax + b) 
dx 

we have the following generalisations of Rules VII, VIII: 

Rule IX 

Rule X 

Exercises 9.5 
Integrate the following by Rules IX and X, omitting the constants of 
integration. 

(i) sin(x+2) (ii) cos5x (iii) sin{9 - 5x) 
(iv)cos(4x-7) 3sin(2x+S) (v) 2 cos{7 x + 1) + Ssin 3x 

2. Which of the following may be evaluated using Rules IX and X? 
(i) sin{3x + 1) (ii) cos(9 SX2) (iii) sin (2X2 + 1) 

(iv) sin(;J (v) co{x\ J (vi) cos(9 7x) 

As in differentiation, 'practice makes perfect'. For this reason some additional 
exercises are given below. For completeness, the rules established in this 
Chapter are first summarised. The arbitrary constants are omitted to avoid 
repetition. 
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function f(x) If(x) dx 

Rule I cxn 
cxn+1 

(n * ~ 1) 
n+l 

Rule II c(ax + b)n 
c(ax+b)n+1 

(n7o~l) 
(n+l)a 

Rule III In I x I 
x 

f~ c 
Rule IV -lnlax+b l 

ax+b x a 

Rule V fexdx eX 

Rule VI f ce ax
+

b dx c ax+b -e 
a 

Rule VII f cosxdx smx 

Rule VIII fsinxdx ~cosx 

Rule IX f cos{ax + b )dx 
1 

sin(ax + b) 
a 

Rule X f sin(ax + b)dx 
1 

cos{ax + b) -
a 

Exercises 9.6 
Integrate the following functions with respect to the appropriate letter, 

(i) ~ (ii) 1 (iii) xi (iv) x + 3 
x x 

(v) .Jx+ 3 

(ix) e5- 9x 

2 3x 
(vi) x --

2 

(x) (3x + 2)10 

( ") 1 vu 
10x~9 

1 
(xi) ---::-

(2x+ 

( ") 2x
3 + 6x

2 + 3 
xu 

[ 

3\ 

(xiii) fx 2x + x ~2 j 
1 

(xv) V; 

3 
(xix) 

2+3y 

(xxiii) sin Sx 

(xvi) (a + bt)2 (xvii) -;=== 

2 

(xx) X - 4 ( ') 1 
XXI r: + 

(xxiv) 3sin( 2y .:::) 
\ 4 

hJt 

S 

(viii) ex+ 3 

(xviii) y(2 Sy2) 

S 
(xxii) ----,-

(13-Sw)3 

(xxv) 4cos3y 6sin(7y+S) (xxvi) 7 sin(3 - 2x) + 2 cos(lO x) 
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More Integration 

9.3 Definite Integrals and the Trapezium Rule 
In this section we return to the topic of definite integration introduced in PI. 

b 

We recall that the definite integral f fxdx may be interpreted as the area under 

the curve y = f(x) between x = a and x = b. 

Example 9.3 

3 1 
Evaluate (i) f~ 

22x+3 

(i) 
3 1 
f---dx 

2 2x +3 

~ 

4 

(ii) fsin 2xdx 

2 

(iii) f e 5
-

3X dx 
I 

Example 9.4 

4 2 

(ii) f sin 2xdx (iii) feHXdx 
o 

[~ln~2x + 30I 
1 1 

In9--ln7 
2 2 
0.126, using the calculator. 

HCOS2Xl: 
1 Tt: 

- cos-
2 2 

2 

[ 
1 5-3XJ2 --e 
3 I 

~ -( - ~ J 
1 1 

::::: 2.340, using the calculator. 
3 3 

Sketch the curve y = cos x - sin x for ° :s; x :s; ~, indicating clearly where the 
2 

curve crosses the x-axis. Hence evaluate the area enclosed by the curve, the 

y-axis and x 0, x = Tt: • 
2 

The curve y = cos x - sin x is a combination of the y = cos x and y = sin x 
curves. 

y 
y 

1 

------+-------n-----+x 
o "2 

------~----------~x 

y = cosx y sinx 
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y 

1 

~ .1/ 
------4-~--~~----r----.x o 

-1 

The required area is shown shaded. The x coordinate of the point A where the 
curve crosses the x-axis is given by 

cos x - sinx O. 
cosx = SIllX. 

SIll X ---- = tan x = 1. 
cosx 

x =2£. 
4 

The total shaded area is 
1t 

4 2 

J(cosx - sin x) dx - J(cosx sin x) d17 
1t 

1t 1t 

[sin x + cos x]t - [sin x + cos x]~ 

sin.?! + cos.?! sin 0 - cos 0 
4 4 

2sin n + 2cos 2£ 2 
4 4 

~+ 2 2=2.fi 2 
.fi 

:::: 0.828 

Exercises 9.7 
3 1 

Evaluate J ( )2 dx. 
o x+4 

-
4 

.n n·n n 
SIll--COS-+SIll-+ cos 

2 2 4 4 

• 11 1t 1 
Sln-=cos-= -. 

4 4 1i 

Find the area enclosed between the curve y = sin x and the x-axis bounded by 

the lines x 0 and x = n. 

3. Evaluate Jk + ~ -x y dx. 
o e 

112 



4. 

More Integration 

I 9 
Evaluate the integrals (a) f---=---d.x 

02 + 3x 

I 9 
(b) f .J2+3xdx . 

o 2 + 3x 

5. Sketch the curve y = eX. Find the area between the curve and the lines x = 1 

andy = 1. 

Sometimes we are unable to evaluate definite integrals by first finding the 
associated indefinite integral; for instance, it is not possible to find the 

indefinite integral f.Jsinxdx. If you think you've found it, differentiate your 

answer and see whether you obtain .Jsinx ! 
b 

To deal with such cases, we recall that a definite integral f f{x)ix is a number 

which represents the area between y = f{x) and x = a, x = b. (It is assumed 

here that y = f{x) does not cross the x-axis.) 

Y 
y=f(x) 

b 

ff(x)dx 

o a b x 

Thus when finding an approximate value of the area, we are finding an 
b 

approximate value of ff{x)ix. 

The approximate value of the area may be found by various methods. Here, 
we consider the Trapezium Rule for finding an approximation. 
The approximation is found by joining the ends of consecutive coordinates 
and treating each trapezium formed as an approximation for the area under the 
corresponding part of the curve. 

Y 

Yo Y2 
--~--~---L----L---______ +x 

o h h 
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More Integration 

If the first three ordinates are Yo ' y" Y2' and h is the distance between 

consecutive ordinates, the areas of the first two trapezia are ~ (Yo + YI)' 

h "2 CVI + Y2)' Supposing there are n trapezia or strips, and therefore 11+ 1 

ordinates, we see that the total area of the trapezia is 

~[(yo + yJ+{YI + Y2)+·······+(vn- 1 + yJ], 

where Y n is the last ordinate. 
b 

Then the area under the curve f j(x}ix is given approximately by 

first 
ordinate 

+ ..... +2YIl_l + yJ. 

1 
last 

ordinate 

This formula is known as the trapezium rule. 

Example 9.5 
Use the trapezium rule with five ordinates to find an approximate value for 

J[ 

f-Jsinxdx . 
J[ 

2 

n n 

We note that there are five ordinates or four strips. Then h = 
n 

4 16 

The approximate value is } 1: [Yo + 2YI + 2Y2 + 2Y3 + yJ where the Y values 

are the values of -J sin x at x .!!. 5n 6n 7n n 
2' 8 ' 8 ' 8' . 

x 
2 

Y 
Factor 

1t 

Then f -J sinxdx 
J[ 

2 

5n 

8 

0.9611865 

6n 

8 

0.8408964 

7n 

8 

0.6186141 

n 

o 
2 2 2 I 

1 x ~[1 + 2(0.9611865 + 0.8408964 + 0.6186141)+ 0] 
2 16 

= 0.57348 ... 
::: 0.5735, rounding to four decimal places. 
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Exercises 9.8 
1. Use the trapezium rule with seven strips to find an approximate value for 

0.7 

fln(l + x)dx. 
o 

2. Use the trapezium rule with five ordinates to find an approximate value for 
08 

fex'dx . 
o 

3. Use the trapezium rule with eleven ordinates to find an approximate value for 

f dx . 
o ~1-x2 

Given that the value of the integral is 2!., find an approximate value for 1t. 
6 

4. Use the trapezium rule with six ordinates to find an approximate value for 
2 

f~l+x3dx . 
I 

5. A function y = j(x) is tabulated for various values of x as shown below. 

x 
y 

1.0 
3.70 

L8 

1.2 
3.82 

1.4 
4.15 

Estimate fydx, using the trapezium rule. 
1.0 
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Laws of Logarithms 

Chapter 10 

Laws of Logarithms 

The exponential and logarithmic (log) functions were considered in Chapters 5 and 
7. There, the graphs and differentiation ofthe functions were discussed. Here we 
develop some laws satisfied by logs. 
We start by recalling some of the ideas arising earlier. 

10.1 Exponential and logarithmic functions : recap 
The most general form of the exponential function is f(x) aX, where a is a 
positive constant. The cases in which a = e and a = 10 are of particular 

interest, the first because of the differentiation of eX, the second because 10 is 
the basis of our everyday number system. 

The graphs of y eX and y lOX are similar : they fall to the left, climb to the 
right, and pass through the point (I, 0). In fact, all graphs of the form y = aX 

(a> 0) pass through the point (0, 1). 

-------------+------------+x o 

The function f(x) aX (a i:- 1) is a one-one function and 
has an inverse function log a x, known as the log 

function. The log is said to be to the base a in this 
case. 

The inverses of f(x) = eX and g(x) = loX together with 
their inverses are shown below. 

" ; 

" " 

y 
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Laws of Logarithms 

The following features of the graphs are important. 

In 1 = 0, log101 = O. 

lnx ~ 00, loglox ~ 00 as x ~ 00. (I) 

lnx ~ 00, 10glOx ~ - 00 as x ~ O. 
In x and 10glO x are not defined for x < O. 

The usual relations between functions and their mverses are 
particularly important for exponential and logarithmic functions. 

Thus when f(x) == eX, f-l(x) = lnx 

and the usual results ff-l(x) = x, 

f-If(x) = x, 

xrlLU 
\]f=I\j 

lead to 

and 
elnx = x , * This important result will be used 

in Section 10.2. 

,-------=lo,( eX) = x ------- ~------" 

with similar results for lax and 10glO x, and indeed for any 

base. 
Putting x 1 in (H) above, we obtain the following important 
results :-

(Ill) 

These results state in effect that eO = 1 and also that logee = 1. ~ 
More generally for a > 0, 

(IV) 

Exercises 10.1 
Simplify the following without use of a calculator. 

(i) loglO(l01.314) (ii) In(e4.92) (iii) In(e-5.61 ) (iv) e1n 3.61 

(v) 1OIoglO(5.l6) (vi) 151ogls1 (vii) log3030 

Write the following in logarithmic notation. 

(i) a eX (ii) b = 10 Y (iii) c = d t (iv) 100 1 

(v) e2 7.389056 (correct to six decimal places) 

(vi) 10231 204.1738 (correct to four decimal places) 
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The derivatives of f(x) = (7" and r1(x) In x were discussed in PI (Chapter 7). 

Then, given 

y = eX, 
dy 

eX' 
dx 

, 

y ef(x) , dx = ef(x) f '(x) ; 

Inx, 
dy 1 

Y 
dx x 

y = Ing(x), : = 
g(x) 

Exercises 10.2 
1. Differentiate the following with respect to x. 

(i) In(x + 1) (ii) In(x2 + 1) (iii) In(3x) (iv) In( 4x2) 

2. By first writing 10 e1n 10, express lax as a power of e and hence show that 

~(lax) lax In 10. 
dx 

3. Show that the following pairs of functions have the same derivatives. You 
may assume x > O. 

(i) In(6x), In x 

(ii) In(~I' Inx 
\ 7 J 

(iii) In(Ax) , Inx 

(iv) In(;) , Inx 

(v) In(x2), 2 In x 

(vi) In(xn) , n In x 

(vii) In(Ax2) , 2 In x 

Before moving to section 10.2, let's consider question 3, exercises 10.2 in a 
little more detail. Specifically, let's look at question 3(i). 

The functions In(6x) and In x have the same derivative (.;) but are different 

functions. Our knowledge of differentiation tells us that they must differ by a 
constant which disappears on differentiation. 

In(6x) In x + constant. 

Similarly for other parts of the question :­
(xl 

In l7 j In x + constant, 

In(x2) = 2 In x + constant, 
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Laws of Logarithms 

In(Ax2)= 2 In x + constant. 

The above relationships are explored in the next section where the laws of logs 
are established. 

10.2 Laws of logs 
It turns out that the laws of logs are a consequence of the laws of indices 
considered in PI. Those laws are 

(addition of indices) bm x bn = bm + n, 

(subtraction of indices) bm -7 bn bm n 

(mUltiplication of indices) (bm)n bmn . 

(i) Log of a product of two numbers 
Consider the product pq. From the properties of the 
exponential and logarithmic functions, 

pq e1npq, (1) 

p elnp, (2) 

q eln q . (3) 

Now pq = elnp x eIn q (using (2), (3)) 
= elnp + In q (addition 

indices) 

so pq elnp + In q (4) 

Comparison of(4) and (1) gives 

In (pq) = In p + In q 
i.e. the log of a product = sum of logs. 

(H) Log of a quotient 

Consider the quotient p. Now, as before, 
q 

"-p 
= eIn q , 

q 

p = elnp , 
q eln q. 

(V) 

(5) 

(6) 

(7) 

of 

Similarly 
loglO (pq) 

loglOP + loglOq 

Then 
p e 1np 

(from (6), (7)) 
q 

= elnp -In q (subtraction of indices) 

so = elnp In q. (8) 
q 
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Comparison of (8) and (5) 

In(p\1 Inp-lnq (VI) lq; 
or the log of a quotient Iog(numerator) 

log( denominator). 

(m) Log of a power 

We consider pn. 

Now, as before, p e1np 

and pn eln(PIl). 

From (9), pn (elnp)n 

en Inp , 
so pn en Inp. 

From (10), pn eln(Pn). 

Comparison of (11) and (10) gives 

In(pll) = II In p 

(9) 

(10) 

(11) 

(10) 

Similarly 

loglO (t) 
loglOP loglO q 

l.e. log( of a power of a given number) (VII) 
= power x log(ofthe given number). 

Example 10.1 
Let's return to question 3, exercises 10.2. 
0) In(6x) = In 6 + In x (Rule V) 

(ii) 1nl ~) = In x -In 7 (Rule VI) 
\7 

(iii) In(Ax) = In A + In x (Rule V) 

(iv) 1nl;) = In x -In B (Rule VI) 

(v) In(x2) = 2 In x 

(vi) In(xn) = II In x 

(vii) In(Ax2) = InA+21nx 

(Rule VII) 

(Rule VII) 

(Rule V followed by Rule VII) 

The constants in (i)-(iv), (vii) will disappear on differentiation leading to the 
results quoted in question 3, exercises 10.2. 

The arguments for the derivation of the Rules V - VII are easily extended to 
situations involving more than two numbers. The following example illustrates 
the case when more than two numbers are involved. 
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Example 10.2 

= 2 In 3 + 3 In 5 - 6 In 11 - 3 In 7 - 7 In 13. 

Example 10.3 
Express the following in terms of In x, In y, In z or 10glO x, log1O y and 10glO z. 

(i) Inxy (ii) lnxyz (iii) 1n ~ (iv) In (v) In ~ (vi) In 1 

(vii) In 
y 

Answers 
(i) lnx + lny 

3 

(viii) In ~ 
e 

y z yz x 

(ix) In x 
ey 

102 

(x) 10g]O Fx (xi) 10g]O 1 

(ii) lnx + lny + 1n z (iii) lnx -lny 
(iv) Inx+lny-Inz 
(vii) 2 In x - In y 

(v) Inx-1ny Inz (vi) -Inx 
(viii) 3 In x 1 (In e = 1) 

(ix) lnx 1 -lny 
1 

(x) 2 -loglOx (Iog1o 102 = 2) 
2 

Logs of products and/or quotients of functions may often be differentiated 
without too much difficulty if the logs are first expanded. 

Example 10.4 

Find if = 1nl /ex +1)(x+2): 
dx y ~ (2x-3) 

Now y 1nl Icx + 1)(x + 2)] 
V (2x-3) 

1 1 1 
- 1n (x + 1) + In(x + 2) - - In(2x - 3). (Rules V, VI, VU) 
2 2 2 

dy 

dx 

Exercises 10.3 

111 ---+ ---
2(x+l) 2(x+2) 2x-3 differentiation of 

each log in turn 

1. Write the following in terms of In a, In b, In x, In y, In z, 10glO x, 10g1o y, 10glO z 

where appropriate. 

3 

(i) In 14 
x 

(ii) In xy"2 

(vi) In (ea) (vii) In 

3 

(iii) In x4y2 (iv) In V; 

(viii) 10glO H (ix) 10glO ~ y; 
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2. Choose the correct options in the following. 

(i) In 2 + In 3 

(H) In 18-ln9 

(iii) In (2? I 
,:, I 

(Iv) In x + In y In z 

1 1 
(v) - In x- -lny+ In e2 

2 3 

(vi) 2 + 3 10g,o x 

Options 

(a) In5 (b) In (%) (c) In6 (d) In 13.) 
\3 

(c) 21n 2 (d) In18 
1n19 

(a) In9 (b) In2 

(a) In27 (b) In 22 
In5 

(c) In27-1n5 (d) 5 
27 

(a) In xyz (b) In(x + y - z) (c) In ~ (d) In xy 

(a) In 2E 

(c) In 2x 

Cb) 1nE In if;; +2 

(d) In e
2 
E 

JY 

xy z 

3. By first simplifying the following by means of rules V VI, find the values 
ofx. 

(i) 1n(x + 1) + 1n(x 1) In 2 (ii)ln(x+l)-ln(x21)=1 

(iii) In 2 + Inx 

4 Given In x + 2 In y In 5 0, express y in terms of x in the form y = Axn, 
giving the values of A and n. 

5. Express In y 2 In(x + 1) 3 In x + In(x2 + 1) + 2 in the form y = [(x). 

6. By first expanding the given log in each case, differentiate the following. You 
need not simplify your answers. 

( 

(i) In 6x2 ( ii) In(x + 1)(x + 2) (Hi) 1· -'-----"-'---'-
n 1\ (3x-5) 

(iv) In «x - 2)3(2x + 5)2) (v) 
1 (x + 1)\3x 2)4 
11 " (2x+ It 

1 
7. . (J§+I) dy Show that 1fy = In --, '7 

. x-I dx 1 
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Solution of Equations 

Chapter 11 

Solution of Equations 

Linear equations such as 
3x + 5 = 7 x 

and quadratic equations such as 
x2 + 5x + 3 = 0 

are simple examples of polynomial equations. Methods of solving such equations 
were considered in PI. 
This chapter introduces methods of solving equations involving polynomials of higher 
degree. One of the methods introduced may also be used to solve equations not 
involving polynomials, for example equations such as 

e-X lnx. 
It is also shown that the laws of logarithms may be used to solve certain types of 
equation. 

11.1 Polynomial equations: use of the factor theorem 
Quadratic equations may be solved by factorising or by means of the quadratic 
fonnula. No such formula is available for the solution of equations involving 
higher degree polynomials. However, on occasions, the polynomial may 
factorise. 

Example 11.1 
Solve the equation 

2x3 + 15x- 18 o. 
This is an equation involving a third degree polynomial. 
Let f(x) 2x3 +x2 15x-18. 
We factorise the expression by means of the factor theorem 
(see Chapter 2). 
Now f(l) = 2 + 1 - 15 - 18 = - 30 :t: O. 

f(-I) -2+1+15-18 -4:t:0. 
f(2) 16+430-18 28:t:0. 

f(-2) -16+4+3018=0. 
Then since f( -2) 0, x + 2 is a factor of the polynomial. 
We divide out the factor to obtain 

2x3 + x2 15x - 18 (x + 2)(2x2 3x - 9) 
(x + 2)(x - 3)(2x + 3), 

on factorising the quadratic expression. 
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Solution of Equations 

The equation becomes 

(x + 2)(x 3)(2x + 3) ° 
3 

so that x = 2 or 3 or - -. 
2 
3 

The roots are therefore 2,3, 
2 

Example 11.2 
Solve the equation 

x4 + 6x3 + 7x2 8x - 6 0. 

Let f(x) x4 + 6x3 + 7x2 8x - 6. 

Now f(1) = 1 +6+7 8-6 ° 
so (x - 1) is a factor of the polynomial. 

Dividing out the factor, we obtain 
x4 + 6x3 + 7x2 8x - 6 (x 1)(x3 + 7x2 + 1,4x + 6). 

The factor theorem is then applied to 
g(x) = + 7x2 + 14x + 6. 

A little work along the previous lines shows that 
g(- 3) = (- 3)3 + 7(- 3)2 + 14(- 3) + 6 

= - 27 + 63 - 42 + 6 = 0. 
Thus (x + 3) is a factor ofx3 + 7x2 + 14x + 6. 
Then x4 + 6x3 + 7x2 8x - 6 {x - 1 )(x + 3)(x2 + 4x + 2), 
after dividing out the factors. 

The expression x2 + 4x + 2 does not contain any obvious factors. 
Then x -1 0, i.e. x = 1 
or x + 3 0, i.e. x = -3 
or x2 + 4x + 2 0, 

-4± -4±18 
2 2 

-2 ± 12. giving x = 

The roots are therefore 1, - 3 and -2 -12, -2 +.fi . 

Exercises 11.1 
1. Solve the equation x3 - 3x2 - 4x + 12 = 0. 

2. Solve the equation x3 2x2 + 1 = 0. 

3. Find the value of k if x - 2 is a root ofx3 + kx2 + 6x - 4 0. 

4. Solve the equation 2x3 + - 32x + 15 = 0. 

5. Given that x = ± 1 are roots of the equation 
x3 +ax2 +bx-2 = 0, 

find the other root of the equation. 

Do not approximate 
the surds unless you 
are asked to do so. 

6. Show that the equation x4 4x3 + + 16x 20 = ° has only two real roots. 
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When equations cannot be solved exactly, we find approximate values of their 
roots. The roots are then found to any required degree of accuracy. Some 
methods of finding approximate values of roots involve the use of an initial 
approximation. A method of finding an initial approximation is considered in 
the next section. 

11.2 Location of the roots of f(x) = 0 
As an example, we consider the equation 

f(x) = 0, 

where f(x) = 4x3 + 20x - 5. 

Now f(1) = 4(1)3+6(1)2_20(1)-5 -15 

and f(2) = 4(2)3 + 6(2)2 - 20(2) - 5 11 

so that f(1) and [(2) are of opposite sign. 

f(x) 

20 

10 
-B 

x 
1 2 3 4 

-10 
-A 

-20 

Thus for a graph of y 4x3 + 6x2 - 20x - 5, the point 
A is below the x-axis whilst the point B lies above the 
x-axis. Since the graph of y = 4x3 + 6x2 20x 5 
contains no breaks, is a continuous line, it must 
cross the x-axis at least once between x 1 and x = 2. 
In other words, there is a value for x between x 1 and 
x 2 at which 4x3 6x2 - 20x - 5 = 0. 
This example is a special case of a more general 
situation. 
If f is any continuous function (so the graph of f is a 
continuous line) and f(a), f(b) are of opposite sign, there is at least one root 
off(x) = 0 in (a, b). 
This statement provides a method for the location of roots of equations of the 
type f(x) = 0, where f is a continuous function. 

Example 11.3 
By finding the value of f(x) = x4 + x2 + x - 3 at x 0, 1, 2, ... show 
that f(x) = ° has at least one positive root. Find a root correct to one decimal 
place. 
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Root here-+ 

J: 
o 

2 

3 

Solution of Equations 

fill 
-3 
-3 
-5 

9 

As f(2) and f(3) are of opposite sign and f is a continuous function, there is a 
root of x4 + x2 + x 3 0 between x = 2 and x 3. To find the root 
correct to 1 decimal place using this approach, we could consider the values of 
f(2.1), f(2.2), ... , f(2.9) and seek a change of sign between adjacent values of 
f(x). 

..J: fill N.B. 
2.1 -4.8 

A convenient method of 
2.2 -4.5 calculation of values of 
2.3 -3.9 x4 - 3x3 + x2 + x - 3 is 
2.4 -3.1 to write the polynomial 
2.5 -2.1 in the nested form 
2.6 -0.7 «(x 3)x+ l)x+ l)x 3. 

Root here-+ -------- ------

2.7 1.1 

Since there is a change of sign of f(x) between x 2.6 and x = the root is 
between 2.6 and 2.7. It appears that the root is closer 
to 2.6 than 2.7 because f(2.6) -0.7 is nearer to 0 than 
f(2.7) = 1.1. 
To check this we find the value of f at the point 
halfwaybetweenx 2.6 andx=2.7, i.e. atx=2.65. In 

..!.. 
2.6 
2.65 

fact f(2.65) = 0.2. Since there is a change of sign of f(x) between x 2.6 and 
x = 2.65, the root lies between 2.6 and 2.65. The root is nearer 2.6 than 2.7 
and is therefore 2.6, to one decimal place. 

Alternatively, the number of calculations could have been reduced by noting 
that there was a change of sign of f(x) between x 2 and x = 3, and finding the 
value of f(x) at the midpoint of [2, 3], at 2.5. 

Root here -+ 

~ fill 
2 -5 
2.5 
2.6 

-2.1 
-0.7 

2.7 1.1 

As there is no change of sign of f(x) 
between x 2 and x 2.5, we calculate 
f(2.6), f(2. 7), ... 

As before, x 2.6 is an approximate root and we calculate f(2.65) as before. 
Then x = 2.6 is an approximate root to one decimal place. 
This method of location of roots, by noting changes of sign of the function 
values, becomes tedious when greater accuracy is required. Fortunately, other 
methods of solving equations exist. The change of sign method given here is 
useful in that it provides a first approximation for use with the more refined 
methods. 
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Exercises 11.2 
1. Given that x = 2 is an approximate root of the equation 

2x2 +x 1 = 0, 
find the value of this root correct to one decimal place. 

2. By making a table of values of f(x) = x3 4x2 + x + 1 for integer values of x 
between - 2 and 5 inclusive, locate the three roots of x3 - 4x2 + x + 1 O. 
Find the largest root correct to one decimal place. 

3. Find a root, correct to one decimal place, between - 3 and 0 of the equation 
4x3 +6x2 20x-5 O. 

4. By first considering f(x) = x2 2, show that J2 lies between 1.41 and 1.42. 

11.3 Iterative methods 
Up until now, equations have been solved by direct methods such as 
factorising, quadratic formula and graphical methods. The method of iteration 
adopts a different approach: an initial approximation to the root is refined 
until an answer to the required accuracy is obtained. 
The method used here depends upon first rewriting an equation 

f(x) 0 
in the form x g(x). 

Example 11.4 
Given the equation 

x3 - 9x2 + 24x -l3 = 0 
has a root between 0 and I, find this root correct to 3 decimal places. 
We note in passing that if 

f(x) = x3 9x2 + 24x-l3 
then 1:\0) = - l3, f(1) 3. 
Since f(x) is continuous and f(O), f(1) differ in sign, there is indeed 
a root between 0 and 1. 
Let's get back to finding this solution. 
Now the equation 

9x2 + 24x -13 0 
may be rewritten as 

24x -x3 + 9x2 + 13 
I 

so x x3 + 9x2 + 13). (1) 
24 

We add the suffices nand n + 1 to the x terms in (1) to 
obtain 

1 (3 2 ) 
Xn+l = 24 -xn +9xn +13 . 

Then if n = 0 in (2), 

_1_(_ x~ + 9x~ + l3) 
24 

(2) 

(3) 

so that if we substitute a value for xo, we can find a value for Xl' 

Section 11.2 

What shall we use for xo? Well, there is a root between 0 and 1 so let's take 

0+1 
xo= = 0.5. 

2 
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Substitution in (3) for Xo gives 

1 
xl = -(-(0.5)3 + 9(0.5)2 + 13) 

24 
0.63021. 

When n = 1 in (2), 

x2= 1 (- +9x;+13) 0.68017, 
24 

on substituting xl = 0.63021. 

We shall carry 5 
decimal places 
in our working 

Similarly, we substitute for x2 to find X3 from (2) with n = 2, i.e. from 

1 (3 2 ) X3 = -X2 +9x2 +13 . 
24 

This process may be continued along the above lines and the work set out as 
follows. 

It xn x ll+1 

0 0.5 ~ 0.63021 
(-~+9xJ+13) 

1 0.63021 ~ 0.68017 
2 0.68017 ::::= 0.70204 
3 0.70204 0.71207 The output at any 
4 0.71207 ::::= 0.71676 stage is the input 

5 0.71676 0.71898 
for the next stage 

6 0.71898 ~ 0.72003 
7 0.72003 :; 0.72053 In practice, you 

8 0.72053 0.72077 
need not use a 

table such as this 
9 0.72077 ~ 0.72088 because the results 
10 0.72088 ~ 0.72093 at each stage may 

be stored in the 
11 0.72093 ~ 0.72096 calculator. 
12 0.72096 0.72097 

The process is terminated when the outputs (xn+l values) are in agreement to a 

specified number of decimal places. In the table, it is clear that after n = 7 the 
changes between the xn+1 values are not affecting the third decimal place. The 

root appears to be x 0.721, correct to 3 decimal places. 
We check that the root is 0.721, correct to three decimal places, as follows. 
The root appears to be between 0.720 and 0.721. ~ 
Let's find the values of ~ 

f(x) x3 - 9x2 + 24x -13 
when x = 0.7205 and 0.721, since the root appears to 
be nearer 0.721 than 0.720. 

! 
0.7205 

0(- --

0.721 

lli.l 
- 0.006 

- 0(- root 
+ 0.0002 

The equation is 
x3 9x2 + 24x-13 

The root lies between 0.7205 and 0.721, i.e. is nearer 0.721 than 0.720, and is 
therefore 0.721, correct to three decimal places. 
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One of the strengths of this iteration method is that it may be used with 
equations which do not involve polynomials. 

Example 11.5 
It is known that the equation 

x - sin x - 0.2 = 0, 
where x is measured in radians, has an approximate root 
equal to 1.1. Find this root correct to 4 decimal places. 
Rewrite the equation in the form 

x sinx+0.2 
to set up the iterative process 

xn+l = sinxn + 0.2. 

Then using Xo 1.1, we have 

Xl = sin(l.l) + 0.2 1.091207, 

X2 = sin(1.091207) + 0.2 = 1.087184. 

Similarly, x3 1.085321, x4 1.084453, 

x5 1.084048, x6 1.083859, 

x7 1.083770, Xg 1.083728, 

x9 1.083709, xlO 1.083700. 

We quote results 
to 6 decimal places. 

Note that x8, x9, xlO agree to within 4 decimal places and we believe that 

x = 1.0837, correct to 4 decimal places. 
Let's check our belief. 
The root appears to be between 1.0837 and 1.0838. We find the values of 

f(x) = x sin x 0.2 
when x 1.0837 and 1.08375. 

,!: f(x) 
1.0837 + 0.0000043 .. 
1.08375 + 0.00003907 -
1.08365 - 0.000022 .. 

There is a root between 1.08365 and 1.0837. 
Thus the root is 1.0837 correct to four decimal places. 

You may feel that the checking procedures used in examples 11.4 and 11.5 are 
unnecessary. However, there is a tendency to terminate an iterative process 
prematurely before the correct root is found. The checking procedure should 
eliminate any possible error of that type. 

There is no unique way of rewriting an equation for purposes of iteration. 

Example 11.6 
In this example alternative rearrangements of the equations considered in 
examples 11.4 and 11.5 are given. 

(a) Show that xm-1 = ~(xn + sin xn + 0.2) is a possible iterative process for 
2 

solving the equation x - sin x - 0.2 O. 
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(b) Show that xn+ 1 
+13 

is a possible iterative process for solving the 

equation 
9x2 + 24x - 13 = O. 

Given an iterative fonnula we are able to find the underlying equation by 
dropping the suffices. 
(a) The underlying equation is 

1 
x + sin x + 0.2) 

so 2x x + sin x + 0.2 
x sin x - 0.2 = O. 

(b) The underlying equation is 
9x2 + 13 

x 

so that +24x 
+24 

9x2 + 13 
+ 24x -13 = O. 

Given there are many ways of rewriting an equation to obtain 
an iterative process, which one should be used? The answer to 
that question is outside the scope of this course. Suffice it to 
say, not all rearrangements are useful! 

Example 11.7 
The equation 

x3 -9x2 + 24x -13 0 
has an approximate root 0.7. 
The rearrangement 

1 
x = 24x + 13) 

of the equation gives the iteration fonnula 

xn+l 1 (9x~ 24xl1 +13). 

Using Xo = 0.7 with this fonnula, we obtain 

Xl = 1.244898, x2 1.890352 

x3 = 25.334009, x4 8.072912. 

There are an infinite 
number in fact. 

It is clear that even though the starting value was taken close to the root, the 
successive values of Xl, xl> ... bear no relationship to this root. 

Thus this particular rearrangement is not useful. 
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Exercises 11.3 
Solve the equation x2 2x 1 o by rearranging it in the form 

x 
x 

and using Xo 

1 

decimal places. 

2 
0.4 to start the iteration. Give your answer correct to three 

Show that xn+ 1 2 + 1 is an iteration formula arising from a rewriting of 
3xn 1 

the equation x3 x-I = O. Use this iteration formula with starting 
value Xo = 1.3 to find a root correct to four decimal places. 

sinxn xcosxn +0.2 
Show that xn+ 1 = 1 

COSX/I 

is an iteration formula arising from a rearrangement of the equation 
x sin x - 0.2 = O. 

Use this formula, with starting value Xo = 1.1, to find a root of this equation 

correct to four decimal places. 

4. Show that the iteration formula 
Xn e~Xn 

with starting value Xo = 0.57 can be used to find a root of 

xeX 1 
correct to three decimal places. 
Show further that the iteration formula 

Xn+l = -lnxn 
can be derived from the equation but that it cannot be used with Xo 0.57 to 

find the root. 

5. By first considering the change of sign of 
f(x) = tanx-2x 

find an approximate value to the positive root of 
tan x - 2x = 0 for 1 < x < 2. 

Use the iteration formula 

? sec- xn -l 
with Xo = 1.2 to find a root of this equation correct to three decimal places. 

6. Sketch the graph of y x3 - 3x2 1 and deduce that the equation 
x3 - 3x2 I = 0 

has only one root. Show that this root lies between 3 and 4. Use Xo = 3.1 with 

1 
the formula xn+ 1 = 3 + 2 

xI) 
to find this root correct to four decimal places. 
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11.4 Solution of equations where the unknown occurs in the index 

Let's consider the following examples. 

Example 11.8 
Find x given that 

SX = 8. 
We can move the unknown from the index by taking logs. 
Then In(S-'=) = In 8. 
so x In S = In 8. 

In8 
x 

InS 

Leave the answer in its exact form unless an approximate value is required. 
Otherwise, x = 1.2920, correct to four decimal places, say. 

Example 11.9 
By first writingy = 3x , solve the equation 

32x - 3x+2 + 20 O. 
Now if y = 3\ then 32x y2 and 

3x+2 9y. 
Substitution into the original equation gives 

y2 - 9y + 20 O. 
(y-S)(y-4) 0 

so that y S, 4. 
Then S or 3x 4 

InS In4 
so x or 

In3 ln3 

Example 11.10 
Find y given that 

7 x 2Y 3x 
Taking logs, we have 

In(7x2Y) In (3 x ) 

so that 

In 7 + In2 Y 

In7 + yln2 

y(21nS-ln2) 

In3+1n 
In3 + 2ylnS 

In 7 In3 

_1_n_7_ln_3_ ~ 0.33SS 
y = 21nS In2 ' 

correct to four decimal places. 

Note that the exact value of the answer 

IS 
In 7 -ln3 

21nS -ln2 

7 
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Exercises 11.4 
Find x given that 3X 

Given that 32x+ 1 

Given that 3Y+ 1 

Solution of Equations 

7. 
findx. 

4y-l, find y. 

4. By first writing y solve 
22x - 2x+2 12 O. 

5. By first writing 5x a, 3Y b, find the values of x and y satisfying 
3(5X ) - 3Y 4, 

5x+1 + 2(3y+1) 45. 
6. Use the factor theorem to solve 

2y 3 5y2 - 9y + 18 O. 
Deduce the value of x satisfying 

2(53x) - 52x+1 - 9(5X ) + 18 = O. 
7. Use the iterative formula 

lnxn + 3 xn+l 

with starting value Xo 
satisfying 

4.5 to find, correct to three decimal places, a value of x 

x lnx 3 = O. 
Deduce an approximate value of y satisfYing 

3Y yln3+3. 

POSTSCRIPT 

Cautionary Note 
The essence of the factorisation method of solving equations is to write the 
expression as a product of bracketed expressions. 

Then ( ) ( ) ( ) = o. 

~/~ 
One of these factors could be equal to zero. 

The roots of the equation could then be found by considering the possibility 
that each bracketed expression is equal to zero. Note that the presence of 0 on 
the right hand side is crucial. 

Students should avoid the following illogical argument. 
Given 2x3 + x2 15x - 18 = 0 
then 2x3 + x2 - 15x = 18. 

Then 

or 
Note that 

x(2x2 + x - 15) = 18. 
x = 18 

+x-15 = 18. X 

ab 0:::::> a = 0 or b 0 

O.K. so far but 
not very useful 

but if ab c (where c of. 0) it does not follow that a cor b c. 
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Chapter 12 

Some Aspects of Proof 

In this chapter, we take a brief look at the use of proof in mathematics. 

12.1 The need for proof 
In mathematics it is tempting on the basis of checking a number of special 
cases to deduce that a general conjecture is true. 

Example 12.1 
A prime number is a number which has no factors 9ther than itself and one. 
Thus 1,2,3,5, 7, 11 are primes but 6 2 x 3, 9 3 x 3 are not. 
Let's consider f(n) = n 3 

- 4n 2 + 7n + 1, where n is a positive integer. 

Now f(I)=5, f(2)=7, f(3) = 13, f(4) 29, f(5) 61, all primes. 
A possible conjecture would therefore be that when n is an integer, 
n3 

- 4n 2 + 7n + 1 is a prime. Note that since the conjecture is true for 
n 1, 2, 3, 4, 5 it may not be true for all integer values. Indeed, 
f(6) = 115 which is not a prime. 
A correct proof is the only way to convince another of the truth of a 
conjecture. There are a number of methods of proof. 
Examples of direct proof are the derivation of sums of arithmetic and 
geometric series (PI) and the laws of logarithms (Chapter 10). 
Proof by mathematical induction occurs in the P4 course. 
In this chapter, we consider proof by contradiction and disproof by counter­
example. 

12.2 Proof by contradiction 
Proofis concerned with the demonstration of the truth of an assertion. The 
essence of proof by contradiction is to assume that the assertion is false and 
show that the assumption leads to a contradiction. The method is illustrated 
by the following examples. 

Example 12.2 
Prove that if n 2 is even, then n is even: 
Given that n 2 is even, assume that n is not even i.e. that n is odd. 
If n is odd, n = 2k + 1, where k is an integer. 

Then n 2 =(2k+lY = 4k2 +4k+l 

= 1 + 2(2e + 2k), which is odd. 

But n 2 is even (given). 
Contradiction. 

The assumption is false and n is even. 
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Example 12.3 

Show that ifi is irrational, i.e. it cannot be expressed in the form!.-, where r 
s 

and s are integers. 

Assume that ifi r 
(1) 

S Any common 

where rand s are integers having no common factors. factors can be 

Then if ifi r 

s 

2 (~y 
and 3 2S 3. (2) r 

Thus 2 divides r3 

or 2 divides r x r x r. 
Thus, 2 divides r. 

r = 2k, (3) 
where k is an integer. 

Substitution from (3) into (2) gives 

(2k y = 2s 3 

or .'/ = 4e. 
Thus 2 divides .'1

3 
In fact, 4 divides sJ 

or 2 divides s x s x s. 
Then 2 divides .'I so that 

.'I = 2/, 
where 1 is an integer. 

(4) 

From (3) and (4), r and .'I have a common factor. 
But rand s have no common factor (assumption). 

Contradiction. 

The assumption is false and is irrational. 

Example 12.4 
Given that f(x) is a polynomial of degree n, show that 

f(x)= 0 

cannot have more than n distinct roots. 

~~~ that f(x) = 0 has more than n distinct roots. Then the equation has at 
least n + I roots:-

ai' a 2' ............ all' an+1 (say). 

Then {x-aIXx-aJ ........ (x anXx-an+J 

is a factor of f(x), in other words f(x) has a factor of the form 
n+1 + ( ) IJ + X ....... x ...... , 

a polynomial of degree n + 1 . 
Thus, f(x) is a polynomial of degree of at least n + 1 . 
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But f{x) is of degree n (given). 

Contradiction. 
Our assumption is false and f{x)::: 0 cannot have more than n distinct roots. 

Example 12.5 
Use a proofby contradiction to show that if a and b are real numbers, then 

a + b 2 "? 2ab. 

~== 
that a 2 +b2 <2ab. 

Then a 2 + b2 
- 2ab < 0 

so that {a - by < 0 . 

Since the square of a real number cannot be negative, a - b is not a real 
number. 
But a, b are real numbers (given) so that a b is a real number. 

Contradiction. 

Our assumption is false and a 2 + b2 "? 2ab . 

Example 12.6 
Use a proofby contradiction to show that 
if{x+1Xx-3)<O then 1<x<3. 

~~ that if (x + 1 Xx 3) < 0 

then x:s; -1 or x"? 3. 
There are two cases to be considered. 

x:s; 1 

Let 
Then 

But 

x 1 a where a 0 . 
(x+lXx-3) (-1-a+lX-1-a 3) 

(-aX-1-a-3) 

(-aX-a -4) 

a{a+4)"?O. 

(x + 1 Xx 3) < 0 (given). 

Contradiction. 
The assumption is false and x> -1 (i) 
x"?3 

Let x 3+b where b"? O. 
Then (x+1Xx-3) (1+3+bX3+b-3) 

(4+b}b"?O. 

But (x + lXx - 3) < O. 

Contradiction. 
The assumption is false and x <3. (ii) 
Combining statements (i) and (ii), we conclude that 

if (x + 1 Xx - 3) < 0 then - 1 < x < 3 . 
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Example 12.7 
Prove by contradiction that if x is real and x > 0 then 

4 
x+-~4. 

x 

Assume that 
4 

x+-<4. 
x 

Then multiplying by x and noting that x > 0, we obtain 

x 2 + 4 < 4x 
or -4x+4 <0. 

(x-2Y <0. 

Then x - 2 is not real since the square of a real number is never negative. 
But x is real (given) and 2 is real and therefore x - 2 is real. 

Contradiction. 
Our assumption is false and 

4 
x+-~4. 

x 

Proof by contradiction may sometimes be used to prove that a function 
is one-one. 

Example 12.8 
Note that a function fis one-one if givenfia) = fib), then a = b. 
Show that the function f defined by 

fix) = 2x + 3 for x> I 
IS one-one. 

Assume that f is not a one-one function; in other words there exist a and b 
such that fia) = fib) 
and a * b. 
Under the assumption, 

a 2 -2a+3 b2 2b+3 

or a b2 2a + 2b 0 
(a b Xa + b) 2(a - b) 0 . 

(a -bXa +b -2) O. (1) 

Since a * b, (assumption) 
a -b *0 

and the non zero factor a - b may be cancelled from (1). 
Then a + b - 2 0 . (2) 
But from the definition of the domain of the function, 

a> 1, 
b > 1 

and so a + b > 2 
or a + b 2 > 0 . (3) 
Now (3) contradicts (2). 
Our assumption is false and f is a one-one function. 
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Exercises 12.1 
Use proof by contradiction to prove the following. 

1. Show that if n3 is odd, then n is odd. 

2. Show that if 2n 2 + n is even, then n is even. 

3. Show that .J3 is irrational. 

4. Show that if x is real and x > 0, then 
1 

x+-:2':2. 
x 

5. Show that if (x - 2Xx - 5):2': 0, then 

x~2 or x:2':5. 

6. Show that if x and y are real, then 
x 2 + 4y2 :2': 4xy . 

7. Show that if f (x) is a cubic, then 

fix) = 0 
cannot have more than 3 distinct roots. 

8. Show that the function defined by 

f(x) = x 2 + 4x + 5 for x ~ -2 is one-one. 

9. Show that the function defined by 

f(x) = x 2 + 6x + 9 for x :2': 0 is one-one. 

12.3 Disproof by counter-example 
Many conjectures in Mathematics involve the word 'all'. To show that a 
conjecture involving 'all' is false, it is sufficient to show that the conjecture is 
false injust one case. This approach is known as disproof by counter-example. 

Example 12.9 
A student asserts that 

sin(8 1 +8 2 ) = sin 8 1 + sin 8 2 

for all angles 8 1,8 2 • 

Use a counter-example to show that this assertion is false. 

Now if 8 1 = 30°, 8 2 = 60° (for example) 

sin(8 1 + 8 2 ) = sin(300+ 60°)= sin 90° = 1 

and sin 81 + sin 8 2 = sin 30° + sin 60° = ..!.. + .J3 * l. 
2 2 

Thus it is not true that 
sin(8 1 +8 2 )=sin81 +sin8 2 

for all angles 81' 8 2 . 
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Example 12.10 
Give a counter-example to disprove the following:-

if f' (o) 0 then f{x) has a maximum or minimum at x O. 

A suitable counter-example is 
f{x) 

Then f' (O) 0 but there is not a maximum or minimum at x 0 but a 
stationary point of inflexion. 

Example 12.11 
Use a counter-example to show that the function f defined 
by f(x) 3 + 4x for all x is not one-one. 

To show f is not one-one we require values a and b such that 
f{a)= f{b) 

with a:;i: b. 

Now f{x) 3 + 4x - x2 = 7 - (x - 2 Y . 
Then a 0, b 4 will do the trick, 

since f(0)=7-(-2Y =3 

and f(4) 7 (4 2Y =3. 

Thus f is not one-one. 

Exercises 12.2 
Use counter-examples to show that the following statements are false. 

1. cos 28 2 cos 8 for all values of 8 . 

2. In(x + y) In x + In y for all x, y > ° . 
3. For all real values of x and y, 

ifx>ythen x 2 > y2. 

4. If, in the quadratic equation 

ax 2 +bx+c=O, 
a, b, c are real and b is negative, then the roots are negative. 

5. If f' (0) ° and f" (0) = 0, then f{x) has a stationary point of inflexion at 
x 0. 

6. For any real numbers n,p with p > 0, 

In(p")= (lnp)". 
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Revision Paper 1 

1. Solve the inequalities 
(a) 15x-31 <7, 
(b) (x - 3)(x - 2) > 12. 

2. Write down the binomial expansion for (1 + x)IO in ascending powers of x as 

far as the term in x3 . 
Given that 

(1 + ax + bx2)(1 - 2x)IO 23x + 242x2 + ex3 + .... , 
(a) find a and b, 
(b) finde. 

3. Given a function f defined by 

f(x) 
1 

x>O 
+3 

(a) find f'(x) and deduce that fis an increasing function, 
(b) give the range off, 

(c) derive an expression for f- 1(x). 

4. If In x = 1.3614, In y 2.l469, In z = 0.6158 evaluate the following, using your 

calculator for +, x, + only and showing all your working. 

(a) In(xy) (b) 

5. (a) Integrate the following with respect to x. 

(a) e3- 2X 
Cb) (7x 

1 
(c) 

1 

9) (2-5x)2 

6. (a) Differentiate (x2 + 1) In(x2 + 1) with respect to x. 

(b) Show that 
d eX + xe x + 1 

Hence evaluate 
xe x 

dx 
dx x+1 (x+1)2' + 1)2 

7. Show that the circle which has the line joining two points (1, 1) and (3, 5) as a 

diameter is given by 

x2 + y2 4x 6y + 8 O. 
Show that the equation ofthe tangent to the circle at (0, 2) is 

y+2x 2. 
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8. A is the point (a, cos a) on the curve y = cos x and AB is perpendicular to Ox 
as shown. 

y 
A 

o a B 1t 

2' 
x 

The area of triangle AOB is one quarter of the area below the curve between 

the lines x = 0, x = a and the x-axis. 
1 

(a) Show that a = -tan a. 
2 

(b) Show that there is a root of the equation between ~ and 5n. 
3 12 

(c) Use the iterative process 

an+1 = tan- 1(2an) 

with ao = 1.16 to find the value of a correct to three decimal places. 

9. Prove by contradiction that the equation 
4 3 2 ° X +ajx +a2 x +a3x+a4 = , 

where a j , a 2 , a 3 , a 4 are constants, cannot have more than four distinct roots. 
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Revision Paper 2 

1. Given that x + 1 and x 2 are factors of 

x4 + ax3 - 7x2 + bx + 6, 

find all the factors of the expression. 

2. Write down the binomial expansion of (1 + 2x)4. 
Solve the equation 

(l + 2x)4 + (l 2x)4 - 34 O. 

3. (a) Use a counter-example to show that the function f defined by 

f(x) = x 2 + 6x + 11 for all x 

is not a one-one function. 
(b) Use proof contradiction to show that the function g defined by 

g(x}= x 2 + 6x + IHor x>-3 

is a one-one function. 

4. Find x in the following cases. 

(a) 52X 3(2X), correct to four decimal places. (b) 42X+ J + 16 65 x 4x. 

5. (a) Given f(x) ~, find f'(x). 
x +a 

Given f'(l) = 1, find the value of a. 
(b) Differentiate the following with respect to x. 

(i) In(eX + x) (ii) x2(1 + x)12 (iii) sin 4x 

6. Integrate the following with respect to x. 

(a) f_3 -dx (b) f 2 dx 
4x+5 (2x+l)2 

Cc) fsin(3x + 5)dx 

7. A circle has equation 

x2 + y2 2x 4y - 5 = O. 

(a) Find the coordinates of the centre of the circle. 

(b) Find the radius of the circle. 

(c) The line y = 2x + 5 intersects the circle at points A and B. 0 is the centre of 

the circle. Show that BO is perpendicular to AO and find the area of triangle 

ABO. 

8. Use the trapezium rule with five ordinates to find an approximate value for 

dx 

giving your answer correct to three decimal places. 

142 



Revision Papers 

Revision Paper 3 

1. (a) Factorise 5x3 - 4x2 - llx - 2. 

(b) Findyif 53y+1_4x52Y-llx5Y-2 o. 

2. The functions f and g are defined by 
1 

f(x) = -- (x> 3) 
~ 

and g(x) = 3x2 - 3 (x> 0). 
(a) Derive an expression for gf(x). 

(b) Derive an expression for g-l(x) and sketch the graphs of g(x) and g-l(x) on 
the same diagram. 

3. (a) Given that p = elnp 
, where p is real and positive, 

show that In(pn)= nlnp. 

(b) A student claims that if x, y are both real and positive, then 
In(xy )= (In x Xln y) . 

Use a counter-example to show that this assertion is false. 
(c) Given that 

show that 
ln2-lnl5 

x=----
ln5 -ln2 

4. The circle C is given by the equation 

x2 + y2 - 6x - 4y + 4 = o. 
(a) Write down the coordinates of the centre of the circle. 

(b) Show that the distance of the centre of the circle from the y-axis is equal to the 

radius. What does this result indicate concerning the y-axis and the circle? 

e2x 

5. (a) Differentiate -- with respect to x. 
3x-5 

(b) Differentiate x2 In x with respect to x. Hence show that 

6. (a) 

2 3 
JXlnxdx = 2ln2--. 
1 4 

A chord is joining the points at which x = 0 and x = ~ on the curve y = cos 2x. 
6 

11: . 
Find the values of x in the range 0 to - at the pomts where the tangents are 

2 

parallel to the chord. 
n 

(b) Show that J(sin3x-sin5x)dx=.fi +~,giventhat cos~ = _1_. 
o 15 15 4 .fi 
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7. Show that there is a root of the equation 

8. 

x=2sinx 

behveen nand n. 
2 

Use the iterative fonnula 

X n+l = --'----''--_-''--__ '-'-
1-2cosxn 

with starting value Xo 2 to find the root correct to two decimal places. 

y 

o 1 x 

The sketch shows the graph of y f{x). The curve passes through the point 

(l,0) and has a maximum point at (0, 1). 
Sketch on separate diagrams graphs of 

(a) y=f{x)+l 

(b) y f{x+l) 

(c) y f(%J. 
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Revision Paper 4 

1. Write down the binomial expansion for (a + b)4. 

Find the term independent of x in the binomial expansion of ( 3x - ~J4 
\ x 

2. Prove by contradiction that if 

x 2 -6x +8 < 0 
then 2 <x < 4. 

3. If 

f(x) = ~ 
x 

with domain x ;::: 1 , 
(a) find an expression for f- I x, 

(b) state the domain and range of f~l , 

(c) explain why the function of jJ cannot be formed. 

4. Solve the following equations 
(a) 3x = e2

x+l 

(b) 3ln 2x = 1 + In x . 

5. A circle C has equation 
+ y2 +4x-4y 8=0. 

The straight line with equation x + y = 4 cuts C at two points A and B. 

(a) Find the coordinates of A and B. 
(b) If 0 is the centre of C, find the area of triangle AOB. 

6. Differentiate the following with respect to x. 

(a) eX + 1 (b) In(sinx) (c) x2(1 + r 
eX + 2 

7. (a) Integrate the following with respect to x. 

(i) (ii) _1_+ 2 
eX 3x + 2 

(b) Find the area between the curve y = sin 2x, the x-axis and the lines 
1t x O,x=-. 
2 

8. Use the trapezium rule with five ordinates to find an approximate value for 3[1 J x--dx, 
2 x 

giving your answer correct to two decimal places. 
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Revision Paper 5 

1. (a) Express the polynomial 

2.0 - 3x3 - 2x2 + x - 2 

as a product of two linear factors and a quadratic factor. 

(b) Use the result of (a) to show that there is only one value of e in the range 0° to 

360° satisfying 2 sin4 e - 3 sin3 e - 2 sin2 e + sin e - 2 = o. 

2. Sketch the graphs of (a) y = lnx, (b) y = In{2x) 

showing the points (i) where y = 0, 
(ii) where x = e. 

3. The functions f and g are defined by 
2 

f{x)= -, xo;toI 
x-I 

g{x) = x 2 + 2 for all x. 

(a) Find the values of x for which 
f{x) = x. 

(b) State the range 0 f g. 
(c) Find fg{x ) and state the range offg. 

(c) y=2Inx+3, 

(d) State whether the inverse of g exists, giving a reason for your answer. 

4. (a) Given that x and y are real and positive, show that 
In{xy) = In x+ lny . 

(b) Solve the equation 
In(x2-10) = Inx+2In3. 

5. Differentiate the following with respect to x, simplifying your answers as far 
as possible. 

2ex 

(a) ~I 
e + 

6. (a) Find 

(b) Evaluate 

(c) Find 

1t 

4 

(b) x 3 cos3x 

J{cos 2x + sin x) dx. 

3x 

J~. 
e 
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(c) 
.J4x2 + 5 
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Revision Papers 

7. Sketch the graphs of y = cos 28 + 1 and y 48 for 0 s 8 S 1t and hence show 

there is a root of 

cos 28 + 1 48 

between 0 and 1t. Show further that the root lies between 0.4 and 0.5. 
4 

Use the iterative fonnula 
1 

8n+1 = -(1 + cos 28n) 
4 

with starting value 80 0.4 to find the root correct to three decimal places. 

8. Use proof by contradiction to show that J5 is irrational. 
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Revision Paper 6 

1. (a) Write down the binomial expansion of (a + bX)8 as far as the term inx 3 
• 

(b) In the binomial expansion for (a + bx y , 
(i) the term in x has coefficient 64, 
(ii) the coefficient of x 2 is equal to the coefficient of x 3 

• 

Show that a = ±.J2 . 
2. Solve the inequalities 

(a) 12x+31>5, 

(b) 3x2 
- 4x + 3 S 2X2 - 3x + 5 . 

3. Find the values of x and y satisfying the simultaneous equations 
3x5x +2x7Y =13, 

7x5 x +3x7Y =20. 

4. The quadratic expression 

f(x) = ax 2 + bx + c 
is such that 

(a) when it is divided by x-I, the remainder is 3, 
(b) when it is divided by x + 1, the remainder is 7, 
(c) f(O)=l. 

Find f(x). 

5. The function f is defined by 
1 

f(x) = x + - for x > 1 
x 

(a) State the range off. 
(b) Show that f is an increasing function. 
(c) Find an expression for Cl (x) and state the domain and range of f~' . 

(d) Sketch the graphs of f and on the same axes. 

6. (a) Differentiate sin x cos x with respect to x. 

7. 

(b) Differentiate xe2x dx. Hence evaluate 
I 

fxe
2xdx . 

o 

Integrate the following with respect to x. 

(a) e4x~9 (b) cos(5x + 7) (c) 1 

(3 + 2x) 

8. (a) Use a counter-example to show that the following assertion is false:~ 
tan(SI-SJ=tanSI tan forallvaluesof8:,S2. 

(b) Use proof by contradiction to show that if 4n 2 + n + 1 is even, then n is odd. 
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ANSWERS 

Chapter 1 
Exercises 1.1 

(a) 12> 9 (b) 4 < 7 (c) x ~y (d) m> 0 (e) p ~ 0 

Exercises 1.2 

1. 

2. 

3. 

(i) x> 4 (ii) x> - 4 C') 4 (iv) x < ~ III x> 
7 5 

(
,5 

(v)x>-12 VI)X~-
3 

(vii) x> 21 (viii) x ~ 14 

(i) x < 5 or x> 1 (ii) 4 < x < 5 (iii) x ~ - 7 or x ~ 1 

( ) 5-J17 5+J17 
(iv) -12~x~-6 v x< orx>---

4 4 

( ') 8 2 ( ") 8 2 ( "') 5 - .J33 5 + .J33 VI < X < Vu x < - - or x > Vlll ~ X ~ ---
5 5 4 4 

(') < 7 Jl3 7 + Jl3 ( ) -5 141 -5 +.J41 
IX X _ or x ~ X ~ X ~ ---

6 6 8 8 
(xi) 1 < x < 2 

4 
(i) k ~ 

3 
17 

(iv) k < 
8 

(ii) --J48 < k< ..J48 
11 

(v)k~--
12 

(iii) k ~ 0 or k ~ 4 

Exercises 1.3 
1. (i) 2 (ii) 1 (iii) 0 (iv) 24 

Exercises 1.4 

1. 
" 3 9 

(11) X < - - or x> 
2 2 

( " ') 1 11 III - - <x<-
4 4 

(i) - 16 < x < 2 

(' ) 1 5 
IV X ~ - or x ~ 

2 2 
2. (i) x 3, 7 (ii) x - 2,5 (iii) x = 4,9 

(iv) x = 6 6 ± 2J7 (v) y = - 2 ~.JlO 2±J2 
2 

Exercises 1.5 
1. (a) (- 3, (0) (b) (- 00,6] (c) [9, (0) (d) -4) (e) [-3,21) 

(f) [9,12) (g) (-5,20] (h) (-00,-30]u[-20,00) 
2. (i) (-00,-5)u(-1,00) (ii) (4,5) (iii) (-00,-7]u[1,00) (iv) [-12,-6] 
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Chapter 2 
Exercises 2.1 

Answers 

1. (i) (x + 3)(x - 6) + 16 (ii) (x 5)(x2 + 2x + 14) + 65 

(iii) (2x + 1)(x2 - 4x + 5) - S (iv) (6x + 5)(2x3 3x2 + 6x - 5) + 26 

(v) (4x2 3x + 2)(3x2 + 2x + 3) + 5x - 13 

2. (i) x2 + 4x + 1 (ii) x2 - 1 (iii) x2 2x + 1 (x 1)2 
3. (x 5)(x 3)(x + 4) 
4. (x 2)(x - 3)(x + 3)(x - 4) 

Exercises 2.2 
1. (i) -4 (ii) 7 (iii) 0 (iv)-3 
2. -7 3. 

4. (i) (x + 1 )(x - 2)2 

(iii) (x 1 )(x + 2)(x2 - x + 2) 
~ 14 ~ 

7. 0, 2; (x + 1)2(x - 2) 9. 

Chapter 3 
Exercises 3.1 

2, -1 

(ii) (x 1)(x2 x 1) 

(iv) (x 2)(x2 x 3) 
- 15,26 

3 

1. (i) a5 + 5a4b + 1 Oa3 b2 + 10a2b3 + 5ab4 + b5 

(ii) a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6 

(iii) as + Sa7b + 2Sa6b2 + 56a5b3 + 70a4b4 + 56a3b5 + 2Sa2b6 + Sab7+ bS 

2. 1 + 6y + 12y2 + Sy3 3. x4 + 12x3y + 54x2y2 + 108xy3 + Sly4 

4. 1 9y + 27y2 27y 3 5. (i) 17 + 12J2 (ii) 9/3 + 11 J2 (iii) 32 

Exercises 3.2 
1. (i) 5040 

5. 120; 20 

Exercises 3.3 
1. (i) 362SS0 
2. 604S0 

Exercises 3.4 

(ii) 2520 

6.722 

2. 60 

7.70 

(ii) 165765600 
3. 360; 60 4. 5 

3. 720 

8. 35 

4. 120 
n! 

9.---
3!(n-3)! 

(iii) 53130 (iv) 15504 
5. 4845; 969 6. 1906SS4 

1. (i) 1 + 10z + 40z2 + SOz3 + SOz4 + 32z5 

(ii) x4 Sx3y + 24x2y2 - 32xy3 + 16y4 (iii) x3 + 3x + 3 + 1 
x 

(iv) Sy3 12y2z + 6yz2 - z3 

2. (i) I + 12x + 66x2 (ii) 1 - 2Sy + 364y2 (iii) p16 + 16p 15q + 120p14q2 
2 

(iv) 1 + 5x + 45x (v) 256 - 3072x + 1612Sx2 (vi) x22 + 11x1S + 55x14 
4 

3. or 1494220S0x17y 3 4. 960x3 5. 0.S50S 

6. 1.083 9. ±2 
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5 

48 

Chapter 4 
Exercises 4.1 

11. 8 

5 1 
1. 2- ',-2-a+-

, 2 ' a 

Exercises 4.2 

Answers 

1 
12.±-

2 

2. No 4. -1, 2 

1. (a) (-00,2] (b) (-00, 3)u(-3,00) (c) (0, (0) 
Cd) (- 2,1)u(1, (0) (e) (- 00, - l)u(1, (0) (t) (- 00, l)u(1, 3)u(3, (0) 

(g) C-00,-3)U(±,00) (h) [-2,2] (i) 00, 9]u( 16, (0) 

Exercises 4.3 
1. (a) [- 1, 4J (b) (4,8) (c) (1,3] (d) (0, (0) 
2. (a) No (b) No (c) Yes (d) No (e) No (t) Yes 

Exercises 4.4 

(e) [0,25] 
(g) Yes 

1. (a) One-one (b) Not one-one (c) One-one (d) Not one-one 

2. 

3. 

4. 

5. 

6. 

(e) Not one-one (t) Not one-one (g) One-one (h) Not one-one 
1 x - 3 

(a) [- (x) -4-; [-1, 23J; [- 1,5] 

(c) [-l(x) = -3+·h+x; 27]; 3,3] 

(g) [-lex) = ~ ; (0, (0); (0, (0) 
x 

1 
(a) [-lex) - ; (1, (0) ; (0, (0) 

x-I 

(b) [-lex) =-2+.Jx-3 ;(7,00);(0,00) 

(c) [-lex) = -3+.J4+x; (-4,00);(-3,00) 

(d) [-l(x) = x2 -2;[0, (0);[-2, (0) 
2 -1 1-2x _ _ 

(e) f (x) 2' (0,00),(-2,00) 
x 

(t) [-lex) = -1+~4+x2 ; (0, (0); [1, (0) 
1 I-x 

(- 00, - l)u(-l, (0); f- (x) = ; (- 00, O)u(O, (0); 00, - l)u(-l, (0) 
x 

!l-x 
(x) = -~-x- ; (0,1); (- 00,0) 

(- 00, 3)u(-3, (0); (- 00, (0); [-lex) 
1+3x 

2 x 

7. [0, 2]; [0,2]; [-lex) -f4=-

151 



Answers 

Exercises 4.5 
In the following, the broken line graphs relate to the inverse functions. 

x-2 
1. f-l(x) = -- for all x. 

3 

y 

2. f-l(x),f; for x 2= O. 

3. (a) 

/ 
/ 

y 

3 / 
/ 

/ 

/ y=x 

// I 
/ ··.--jl!------~ 

// 0 1 3 
/ 

x 

y=x 

x 

(b) 

152 

y=x 



Answers 

(c) 
y 

/ 
/ 

/ 
3 / 

/ 
I / 

1 / 
/ 

-3 
~ 

1 3 x 

-3 

I denotes the inverse in the above cases. 

Exercises 4.6 

1. fg(x) 9x2 - 12x + 6; gf(x) 3x2 + 4 

(d) 3 Y 

/ 
/ 

/ 

/ 

/ 
/ 

/ 0 
/ 

Domains and ranges are co, co), co, co) in both cases. 
2. fg(x)=6x-2; gf(x)=6x-ll 

Domains and ranges are (- co, co), co, co) in both cases. 

/ 
/ 

/ 

3. fg doesn't exist; gf(x) = 2x with domain (0, co) and range (0, co). 

/ 
/ 

/ 

3 

4. (a) doesn't exist because the range of f ([0, 19]) is not contained in the 
domain ofg «4,20». 

(b) fg exists because the range of g «0,4]) is contained in the domain 
off([0,4]). 

(c) fh exists because the range of h ((~ ,21)'\ is contained in the domain of 
225 J 

f([0,4]). 
(d) hf doesn't exist because the range of f ([3, 19]) is not contained in the 

domain ofh «(1, 15]). Similarly, (e), (f), gh and hg do not exist. 

Chapter 5 
Exercises 5.1 
1. (i, C) (ii, D) (iii, I) (iv, F) (v, H) (vi, G) (vii, B) (viii, A) 

(ix, E) (x, M) (xi, K) (xii, L) (xiii, J) 

2. 
Y 

Y log x 
!O 

----~~~--~~----------~x 

y = 3-x 
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3. 

4. 

Answers 

Where graphs intersect 
3-x 10g10 x 

or x + 10g1O X 3 = O. 

Graphs intersect at one point. Therefore, the equation has only one root. 

y 
y = ex 

1 
------~O~----~---------------+x 

y = 2-x 

The graphs intersect at only one value of x, which is positive. Thus the 
equation has only one root which is positive. 

y 

1 y = smx y = x-2 

-1 

Graphs intersect at one point and, therefore, the equation has only one root. 
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Exercises 5.2 (drawings are not given to scale.) 

1 (a) (b) y 

G ,0) 
---+----------~--~--~x 

-3 
----~--~---------------x 

° 

( -l,-2) 

(c) 

yt 

x 

(i,-2) 

2. 

y I y 
I 

~ 
I , 
, 
, 

(0,2) 
-1' 

~ 
x I 

1° 

'x 
0 

(~i 
E' 1 Equation y 

2 
quatlOn y =-

x+ 1 x 
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3. 

y 

o 
--------~---------+.x 

o 

(2, -4) 

y= Ix I y I x -21-4 

Transformations (x, y) ----. (x + 2, y), (x, y ) ----. (x, y 4). 

4. 

y 

-2rr 3rr 
-'~--------~---------'~---rr~--~r---------~---------4~--+x 

./' 

/ 
/ 

/ 

/ 
/ 

/ 
./' 

2: 

y=smx 

y 

y=cosx 

\ 

\ 
\ 

\. 

\ 
\. 

The graph y = Sin( x + ~ J is obtained from y sin x by an x translation of ~ 
to the left, this resulting in the graph y = cos x . 
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5. 

6. 

In y 

Answers 

y 

y = sin x 

y 

sinx, the peaks and troughs occur at x = (2k + 1)'::, (k any integer), 
2 

with values at ± 1. For y = 5 sin 3x + 4 , the peaks and troughs occur more 

frequently at x = (2k + 1 h, with values 9 and -1. 
6 

y y 3' 

(1,3) 

(-u) 

---=====~~~~--------------------x 
o 

y (1, 11) 
y = 2 x 3'+ 5 
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7. 

8. (i) 

Answers 

y 

1 
(l, Y.t) 

-----------+---~==~--------x 

9 
'2 

o 

y 

( l,¥) 

----------~-----------------x 
o 

(10, 1) 

----~°l_~ __ --------------------~x 
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y = log x 
10 



(ii) 

(iii) 

(iv) 

Answers 

y 
(10,3) 

o 
----~~~--------------------x 

y 

y 310g x 
to 

(10, 8) 

o 
----~------------------------------x 

y 

(!, 5) 

____ ~o~-----------------------------.x 
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Chapter 6 
Exercises 6.1 

1. 2x2 + 2y2 + x-I = 0 

3. I y + 11, 2y = x2 - 1 

5. y2 = 4ax 

Exercises 6.2 

Answers 

2. 

4. 

6. 

x2 +y2 =25 

x2 + y2 = 5 

y2 - 8x2 - 20ax - 8a2 = 0 

1. (a) x2 + y2 - 2y 8 0 

(c) x2 + y2 - 4x - 6y - 3 0 

(b) x2+y2+2x-4y=0 

(d) x2 + y2 + 2x +2y = 0 

2. 

3. 

4. 

5. 

6. 

( e) x2 + y2 - 8x - 2 y + 12 0 

(a) (- 2, - 1), 1 (b) (1,2),3 

(d) (2,0),2 ( 
7 .J14s 

(e) 1, 8' 8 

x2 + y2 - 4x + 2y + 1 0 

x2 + y2 - l2x - 13 y + 36 0 

x2 + y2 - 5y + 5 = 0 

(a) (- g,- f), 
;--:----:--

Exercises 6.3 

(c) (. 0 2) J57 
\ '2 ' 2 

3 
(t) (0,0), -

2 

1. (a) y + x - 4 = 0 (b) 2y + 3x 5 0 (c) y + 4x 11 0 
(d) 4y + 9x - 5 = 0 

2..J26 3. y - x + 1 = 0, y + x + 5 = 0 

4. A(-5,0), B(O,%j, 6.25 

5. (a) y+x=O,y-x=O 

Exercises 6.4 

1. 

4. 

2Jfi 

5. (a) c=2-m (b) c ±2~ 
(c) y=2, 3y+4x-lO 0 

6. 4y-3x+IO=0,4y 3x 10 ° 
Exercises 6.5 

4. l( 27 36~ 
25'25) 

Chapter 7 
Exercises 7.1 

5. (0, 0), 3y + x = 0 

3. 

6. 

(3,0) 

5 

(i) 
(iii) 

not composite 
composite, g(x) 

(ii) composite, g(x) = x3 + 2x + 1; [(x) 
5x + 7, [(x) tanx (iv) not composite 

Cv) composite, g(x) x2 + 3, [(x) xt (vi) not composite 
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(vii) composite, g(x) x + 3, [(x) = x2 + 5 

(viii) g(x) =6x
, [(x) = x + 7 

Exercises 7.2 

(i) 2(2x - 3).2 (ii) 2(3x2 + 4).6x 

Exercises 7.3 
(i) 3(x+l)2.1 (ii) 3(2x - 1)2.2 

Exercises 7.4 

1. (i) 36(9x 2)3 

(iii) 2(x2 + 3x + 4)(2x + 3) 

Cv) 3x2(x7 + 4x3)2(7x4 + 12x2 ) 

2 _1 
(vii) - 5(x 4x + 2) 2 (x - 2) 

Exercises 7.5 

(i) 4x-5 

(iv) 5 (4 3 3 "2 9x -7x -

- (63 x8 -18x5 + 2) 
Cv) 

(7 x 9 
- 3x6 + 2x + 1) 

(vii) 

Exercises 7.6 

3 
+5+ 

2( 3x2 + 5x­
\ 

(ix) not composite 

(iii) 2(x3 + x)(3x2 + 1) 

(iii) 3(x2 + 1)2.2x 

(ii) 6x(3x2+ 2)-2 
I 

(iv) (2x + 1)-2 

(vi) 
1 

(x+ 
3 

(viii) ----_=_ 

( \~7( I ... . 2 . 1 1 
(Vlll) -6lE +-+3) ---,. E \2E x,) 

1. 0.99 x 2.7X 2. 1.001 x 2.72x 

Exercises 7.7 

(i) 3e3x (ii) 2xe X 
2 

Cv) e-x 
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Exercises 7.8 

1. (i) ! (ii) 6 
6x+S 

C") 2x+l (iv) 
2 

(v) 
18x+4 

III --

9x2+4x+3 x 2 +x x 
3 

(vi) 2x -1 
x(x 3 + 1) 

(xi) 2 (xii) 1 

2. (i) 2x (ii) ~(lnx)2 
x 

3. 
347 

- --, , 6. x 
x x x 

(viii) 

(iii) 3x2 

x 

S (ix) _2_ (x) 
3(2x+l) 

2x x+ 1 x 2 +x 

(iv) ~e3lnx which equals 3x2, in fact. 
x 

Exercises 7.9 
" 1 x 

(1) -+ e 
x 

("") 2x 11 -2-+2x 
x +1 

X2 

( ") 2xe + 1 
VI 2 

eX +x 

(iii) 3e3x + 4x3 (") 2x+l 3 3x- 7 
IV -2-+ e 

x +x 
x I e --

"") 6x (VIl 2 +2(x-S) 
3x +2 

x 2 

(ix) :::: ~: (x) e
3h

lX+x

2 (~+ 2X)( or x
3
e

x2 (~+ 2x )) 

(xi) 4(eX-x+2)3(eX-l) 

Exercises 7.10 

(i) 2 
(x+l)2 

(ii) lnx - 1 
(lnx)2 

(iii) (x+l)e
X 

(x + 2)2 

(V) -1 (vi) 2e
x 

(vii) 
(x+l)2 (e x +l)2 

2(x 2 + 2x - 3) 2(x -l)(x + 3) 
(viii) --'-------'-

(x 2 + 3)2 (x 2 + 3)2 

-30 
(iv) ------:-

(S+3x)2 

Exercises 7.11 

1. (i) 3x2 - 6x + 1 - ~ 
x 

(ii) 1 + In x 
8x 3 

(iii) ---
(x 4 + 1)2 

(iv) 30x(x2 + 1)14 

(v) -1 
2~ 

(vi) - 4e-4x (vii) (lnx)2 + 2ln x 
-1 

(viii) 
3 

2. 

(ix) eX(l + In(eX + 1)) 

(xii) (l-x)9(I-llx) 

x 2 (l-2lnx) + 1 
(xv) 

x(x 2 + 1)2 

1 

2 

2(x + 1)2 
-x x e -e 

(x) (xi) 1 - 2x 
(ex +e-X

) 

1 1 
(xiii) 1 - - (xiv) 1 + lnx + -2 (I-lnx) 

x 2 x 

5. (1) " ( 1)"" ll'2 maXImum; l-I'-2 mInImUm 
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6. 

9. 

Answers 

(1,0) maximum; (3,4) minimum 

(i) 2X In 2 (ii) 3X (1 + x In 3) 

(iv) Jf[_3_+ ln3ln(3X+l)J 
3x+1 

7. (0,0) minimum; (2, 4e-2) maximum 

(
"') 5x (x InS -1) 
III 2 

x 

(v) 3xeX(1 + In 3) 

Chapter 8 
Exercises 8.2 

1. (i) 3 cos x (ii) - 3 sin 3x 

(v) ~sec(3X I tan(3X '1 
4 4) 4) 

(vii) 3(cos 3x sin 3x) 

(ix) - sin l( ~ I 
2) 

("') 1 x III -cos-
2 2 

1 2(X) (iv) "4 sec "4 

(vi) 2 cosec 2x cot 2x 

(viii) sec x(tan x + sec x) 
1 1 

(x) cosx - x 3 sinx 
3x 

(xi) 2x(1 x) sin x + (x2 + 4x + 1) cos x 

(xii) - 6 + x(5 cos x sec2 x) + 5 sin x - tan x 

(xiii) 6x cos2 (x2) sin (x2) 

(xv) 2x(cos 2x x sin 2x) 

(xvii) 0 (xviii) 

(xx) -4xsin2x-cos2x 

2x 

(xxiii) - cosec x 

2 
( ') sec x XIV 

2.)tanx 

( ') ~ xcosx 
XVI vsm x + r---

2vsinx 

(2x+ 
2 

( ') 1 + cos X XXI 
2 x 

( 
') sinxcosx XXIV 

~2 + sin2 x 

3x ( ') 
( 

, ) e 3cosx+smx 
XIX 2 

cos x 

(xxii) tan x 

Exercises 8.3 

1 (I') M' , I J3 7n 2 70 . Immum va ue - - - ::::; , 
2 12 

(ii) 
(iii) 

(iv) 

Maximum value J3 11n = - 2,01 
2 12 

Minimum value - 2, maximum value 2 
Minimum value::::; -127,6, maximum value ~ 5.51 

Minimum value - 3 J3 ::::; - 1.299, maximum value::::; 1,299 
4 

(v) Minimum value 3, maximum value 11 
J 

2. 13' or 46,87 approximately 4. ± 54.7° approximately 

5. Maximum value 1, minimum value ~:::::; 0,71 

163 



Chapter 9 
Exercises 9.1 

1. (i) 
7 

Exercises 9.2 

1 

x 

Answers 

(") 3 ~ 11 -x 
4 

(Hi) 

/ 1 (vi) -+2y--
5 3/ 

2 3/ 
(Iv) _X/2 

3 

3 
1. (i) (x+l) 

3 
(ii) (2x-l)4 

8 
(iii) (3x+7)5 

15 

-(7 x 6)-5 
(iv) --'-----...:-

35 
I 

(v) (vi) 
2(9x 8)2 

(vii) 
-1 

9 9 (2x+ 
5 

(viii) 2~ (ix) 
(3 - 2X)2 

(x) 
5 3 

2. (i) and (iii). 

Exercises 9.3 
1 1 

(i) 2 In I x I (ii) In I x I (iii) In I x + I (iv) - In I 9x + 7 I 
3 9 

1 
(v) -In 11 x I (vi) In I 3 - x I + In 13 + 2x I 

2 

Exercises 9.4 

1. (i) !e2x+1 
2 

3x 

(vi) e 
3 3 

(H) - e-x+3 (iii) 

2 ~ 
(vii) -e 2 

5 
2. (i), (ii), (iii), (vi) 

Exercises 9.5 

1. 

2. 

( ' ') 1 , 11 -sm5x 
5 

(i) -cos{x+ 2) 

(iv) ~sin(4x-7)+%COS(2X+5) 
(i), (vi). 

Exercises 9.6 

(i) -
1 

(ii) In Ixl (iii) 
x 

4 

7 

2 
(iv) 

2 
(viii) _e5x + 

5 

3 
(v) 

(iii) !cos(9 5x) 
5 

2 . ( ) 5 (v) -sm 7x+l --cos3x 
7 3 

(iv) +3x (v) 
2 

2 

3 

(s + 1)/ 

e-4X 

4 

3 

+ 3)2 

3x2 1 5-9x 
(vi) (vii) (viii) eX+3 (ix) __ e_ 

3 
In 110x - 91 

10 9 

(x) (xi) 
-1 

(xii) 2x + 6 In I x I -
3 

33 4(2x+ 
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Answers 

( ... ) 4 2 I I 1 
Xlll SX2 + n,x (xiv) 

X4 3x2 1 3 1. 
+ +3Inlxl-- (xv) -x 3 

( 
.) (a+bt)3 

XVI 
3b 

(xix) In 12 + 3yI 

4 2 2x2 2 

(xvii) 

1 4 
(xx) --+ 

x 

4 
(xviii) y2 _ 5y 

4 

(xxi) -~ + 2.J3 + 5t 
Jt 

(xxii) - 1 (xxiii) 
2(13 5w)2 

1 
-cos5x 
5 

(xiv) %CO{2Y -~) 

(xxv) .± sin 3 y + ~ cos( 7 y + 5) 
3 7 

(xxvi) 2cos(3 - 2x)- 2 sin(l 0 - x) 
2 

Exercises 9.7 
3 

1. 
28 

4. (a) 2.75 
5. e-l 

Exercises 9.8 

2. 2 3. 8.45, correct to two decimal places 

(b) 4.93, both correct to two decimal places 

Answers are given correct to three decimal places. 
1. 0.202 2. 1.019 3. 0.524,3.143 4. 2.133 5. 3.373 

Chapter 10 
Exercises 10.1 
1. (i) 1.314 (ii) 4.92 

(v) 5.16 (vi) 1 
2. (i) In a = x (ii) loglo b y 

(iv) 10glO 1 0 (v) In (7.389056) 

(vi) log,o 204.1738 2.31 (approximately) 

Exercises 10.2 

1. (i) _1_ 
x+ 1 

Exercises 10.3 

1. (i) Alnx 

(ii) 2x 
x 2 + 1 

(ii) lnx+ 3 Iny 
2 

(iii) -5.61 (vi) 3.61 
(vii) 1 
(iii) logd c = z 

2 (approximately) 

(iii) 1 2 
(iv) 

x 

(iii) 4 In x + 3 In y 
2 

x 

(iv) ~ lnx 
3 

2 
(v) -Inx+4Iny-3Inz 

3 
(vi) 1 + lna (vii) - 2 - 2 In b 

( ... ) 11 1 I 
Vlll :2 oglO X :2 oglo Y 

3 1 
(ix) 210glO x + -log,o y - -log,o 2 

2 2 
1 1 

(x) 10glO X + 10glO y - 10glO Z 
2 3 

2. (i) (c) (ii) (b) (iii) (c) (iv) (d) 
(v) (b) (vi) (d) 

3. (i) .J3 (ii) e + 1 (Hi) e 
e 
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Answers 

4. 
1 

Y = Fsx 2 5. 
(x + I r (X2 + I) / 

x 3 
y 

2 I 1 2 4 
6. (i) (ii) --+-- (iii) +--

x 

C) 3 4 IV --+--
x 2 2x+5 

Chapter 11 
Exercises 11.1 

1. 2. 

x+l x+2 

(v) 
3 --+ 

x+l 

1 1+Fs I-Fs 
, 2 ' 2 

4. 

-2, 2, 3 

1 
- 5, , 3 5. -2 

2 

Exercises 11.2 
1. 1.8 

Exercises 11.3 
1. -0.414 
4. 0.567 

Exercises 11.4 
In7 

2. 

2. 
5. 

3.7 

1.3247 
1.166 

In3 

3. 

3. 
6. 

3x 

2x + I 
12 4 ---

12 

3. 

-0.2 

1.0837 
3.1038 

2x+ 1 

6 

In3 
1. 

In3 
2. 

-In(~) 21n3-In2 

3. 
In 12 

In(1) 

6. 
3 

3, ,-2; 
2 

Chapter 12 
Exercises 12.2 

4. 
In6 

In2 

In -(3) 
In3 2 

In 5 '"""In.S 

5. 

7. 

In3 In5 

In5 In3 

4.505, 1.370 

x+2 

3 

3x -5 

There are many possible counter-examples in addition to the following suggestions 

1. 8= re 2. x 1,y=2 3. x 2,y -3 
4 

4. 
6. 

x 2 
- 2x + 1 0 

p=2, n 3 
5. f(x)=x 4 hasaminimumatx 0 
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Binomial, 

expressIon 

theorem 

Circles, 

equations of 

tangents to 

orthogonal 

touching 

Differentiation, 

of composite functions 

of exponential functions 

of logarithmic functions 

of trigonometric 

functions 

Disproof 

Division of polynomials 

Equations, 

16 

22 

62 

63 

70 

68 

72, 75 

79,91 

82 

93,94,95 

138, 139 

8,9 

Index 

INDEX 

Inequalities, 

strict 1 

manipulation of 2 

Integration, 

approximate (trapezium rule) 113 

of exponential functions 108 

of trigonometric functions 109 

Interval notation 6, 7 

Logarithmic functions 116, 120 

manipulation of 119,120 

Modulus 5,6 

Pascal's triangle 16 

Proof, 

the need for 134 

by contradiction 135, 136, 137 

Scalings 53 

use of Factor Theorem 123, 124 

location of roots 125 Translations 49 

iterative methods of solution 127 

where unknown occurs 

in the index 132 

Exponential functions 116 

Factor theorem 13 

Functions, 

domain of 28 

range of 29 

inverse 31 

composition of 38 
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