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PREFACE

This text is the second of three volumes which will cover between them most of the
mathematical methods required for a modular A level course in mathematics.
Specifically, the text is based on the P2 Specification of the Welsh Joint Education
Committee which was introduced in September 2000.

It is assumed that the reader will have successfully completed a GCSE course in
mathematics and will have access to a calculator possessing mathematical functions.

The text concludes with six revision papers. It is believed that these tests should be
completed in approximately one hour by students who are ready to sit their A level
examinations.
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Solution of Inequalities

Chapter 1

Solution of Inequalities

The solution of equations was considered in P1. There, the concept of inequalities
arose during consideration of the discriminant of a quadratic function. Here, we take
a more detailed look at inequalities.

1.1

Inequalities

Often in mathematics we are asked to consider relationships such as
26+6 > 4

or ¢t-2¢ <6

or 22 +3y+520 andsoon

The symbol > means greater than,
< means less than,
and 2 means greater than or equal to.
Note that the sharp end of the arrows > and < always point to the smaller
number.
Thus 6>5 and 3 < 4.

Exercises 1.1

Use >, < and 2 to write the following statements :-
a) 12 is greater than 9.

b) 4islessthan 7.

¢)  xis greater than or equal to y.

d) mis positive,

e) pisnotnegative.

Relationships involving > and < are called inequalities. When the possibility
of equality is not allowed (i.e. > and < rather than = or <) the inequality is said
to be a strict inequality.
When inequalities involve letters, e.g. 2z + 6 > 10, our usual interest is to
find the range of values of the letter (z in above) in order for the inequality to
be satisfied, in other words, we are interested in solving the inequality. In this
book we shall consider the solution of linear or quadratic inequalities, for
example

6—4dg < 3,
and 22+ 9x+7 = 0.

We start with linear inequalities. The rules given in P1 relating to equations
can be modified for use with inequalities.



Solution of Inequalities

Manipulative rules for use with inequalities
in the following, g, b, ¢ and d are real numbers.

i Ifa>b
then a~b > 0.

() If a>b
then at+c¢ > b+c
and a-d > b-d.

(iil) If ad > bd and d is positive (d > 0)
then a > b

(iv) If ad > bd and d is negative (d < 0)
then a < b.

v) If -2 > b and dis positive (d > 0)
then a > bd so 36> 27

(vi) If g > b and d is negative (d < 0)
then a < hd.

(vii) If @ab>0
then >0 and 6>0
or a<0 and b<0.

The product of two
negative numbers or
two positive numbers
is positive,

The product of a
positive number and
a negative number
is negative.

(viii) If ab<0
then ¢<0 and >0
or a>0 and b<0.

Rules (i) — (vi) are particularly important and often lead to errors in
problems. Essentially, multiplication (or division) throughout an inequality
results in no change in the direction of the inequality (> leads to >,
< leads to <) if the number multiplying or dividing is positive.
However, if the multiplication or division involves a negative number, the
direction of the inequality is reversed (i.e. > leads to < and < leads to >).



Solution of Inequalities

Example 1.1
Solve the inequality (find the range of values of x)

3x-6 < 4,

The general strategy is similar to that for linear equations: isolate x on one
side.

3Ix < 4+6 (Rule (ii), add 6 to both sides)

50 3x < 10.

x < % (Rule (iii), division by positive number)
Example 1.2
Solve 2x—-4 2 Tx—2.
Then x—-4-7x > =2 (Rule (11), subtract 7x from both sides)
50 -5x—-4 2 -2,
~5% 2 -2+4 (Rule (11}, add 4 to both sides)
and —-5x = 2.

< 2 /' Rule (iv), division by negative
x £ == |
5 Lnumber (-5) reverses inequality

The rules need not be stated as in examples 1.1, 1.2. However, until the reader
is familiar with them, he/she is advised to justify each step as shown.
The method of solution of quadratic inequalities also makes use of Rule (viii),

Example 1.3
Solve x2-6x+8 > 0.

The left hand factorises so that
x—DHx~-2) > 0.
Theneither x-4 >0 and x-2>0 {Rule vi1)

or x—4 <0 and x-2<0.
Thuseither x>4 and x>2 ie x>4
or x<4 and x<2 e x<2.

Combination of both statements thus gives the solution as x> 4 or x < 2.

Example 1.4
Solve X' —x-4<x+4.

We move all terms to one side
o xP-x—-4-x-4<0
giving x* -2x-8<0.
The left hand factorises.
c(x—4)(x+2)<0.
From Rule (vii1), one factor is positive, one negative. The possibility of
equality is allowed for by the word ‘inclusive’ in the last line below.

Rule (i)
with > replaced

by <.
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Case 1 x-=4>0and x+2<0
Ignore possibility
of equality,
x>4and x < -2. see last line.

This is impossible.

Case 2 x-4<0andx+2>0
x<4andx>-2 Remember now
-2<x £ 4, to allow for

possible equality.

i.e. x lies between -2 and 4 (inclusive).
Sometimes the quadratic will not factorise, in

which case we resort to using completion of the square.

Example 1.5
Solve x2+8x—18 <0,

See P1 for completion
of square.

The left hand side does not factorise, and we
complete the square.
Then (x+42-16-18 <0.
(x+4)2-34 <q,
0 (x+432 < 34
Now —34 < x+4 <34,

- m -4 < x < \f3—zf -4,

Any number
between —V34 and V34 has
a square less than +34.

The values of x must lie between

—@—4311{1@—4.

Example 1.6
Solve x2—4x-10 > 0,

Completion of the square gives

(x=22-4-10 2 0
S0 {(x—2) = 14.
Then (x -2) > V14 or x—2) < -J14.
The first gives x >2+414 ,
the second gives x <2-414.
. The solution is x 2 2+414
or x €2-414.

Inequalities often occur as part of a bigger problem.

Example 1.7
Find the range of values of d such that the quadratic equation {in x)
d+2y?-2dx+1 =0 hasreal roots.



1.2

Solution of Inequalities

A quadratic
ax’+bx+ec=0
has real roots if

Comparing with the standard quadratic, we see that
a=d+2,b=-2d, ¢ = 1.

Then (=24 -4(IXd+2) >0 bz dac.
sO 42 -4d+2) =2 0

or d—-(d+2) 2 0. {(Rule (ii1) with division by 4)
@a-d-2 =0

Factorise, (d+1}d-2) = 0.

Then d+1 20 and d-220

or d+1 £0and d-2 < 0. (Rule vii)

The first pair of inequalities gives d 2 2

and the second pair of inequalities gives d < — 1.

Thus the quadratic equation has real roots if d<—1 or d 2 2.

Exercises 1.2
Find the range of values of x satisfying the following linear inequalities :-

(1) 6<2+x (i) 7 > 3-x (iii) 4 -x < 6x
(iv) 5-2x > 3x+2 (v) 7-2x> -5-3x
vi) 3x-1)=s 2 (vii) 3(x+35) » 2(x-3)

(viil) 2(x-3) -3 -1 £ 4x+ 1)~ T(x-3)

Find the range of values of x satisfying the following :-

(i) X2+ 6x+5>90 (i) x2-9x+20<0
(i) x2+6x~720 (v) 2+ 18x+72 <0
(v) 2x*=5x+1>0 (vi) 5x2 - 18+ 16<0
(vil) 5x2—-2x-16>0 (viii) 2x2—-5x—-1 €0
(%) 3x2-7x+3 20 (x) 4x2+35x-1 £ 0

(xi) x* +x+3<2x+5

Find the range of values of & such that

(i) (k+ 1x?~2x—3 = 0 has real roots

(i1) 3x2 - ix+4 = Q has no real roots

(i) (2k+ 12+ (k+2)x+ 1 = 0 has real roots

@(iv) (k+1Dx2+3x—2 = 0 has no real roots

) k+3x2+Qk+Dx+(k+1) = 0 hasreal roots.

Show that the equation (2a—1)x? -2ax+1 = 0
has real roots whatever the value of a, as long as a is real.

The Modulus Sign
The modulus of a real number is a measure of its size irrespective of the sign
of the number. We denote the modulus by the symbol | |. Then

[3] =3 butalso|-3| = 3.
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Solution of Inequalities

Exercises 1.3

Write down the moduli of the following real numbers:-

1 -2 (1) 1 (i) 0 (iv) 4—-16-12

The effect of the modulus sign is therefore to assign a positive sign to all
numbers. The modulus sign sometimes occurs in inequalities.

Example 1.8 '

Solve the inequality It ti;u?gi;s};a:cfifg Lefss
lx—6] < 4. sign it must be

between —4 and 4.

o -4 <x-6<4 e

S0 —4+6 < x < 4+6. Rule (ii) section 1.1

: 2 <x < 10

Example 1.9

Solve |2x -7 > 5.

Then 2x-7 > 5

or o7 =5 Note | -8 |> 5,

The first gives  2x >7+5 for example.

S0 2x > 12

and x > 0.

The second gives 2x<7 -5

50 2x <2

and x < 1.

The solutionis x > 6 or x < 1.

Exercises 1.4

Solve the inequalities :-

(i) |x+7] <9 (i) [2x-3 > 6
() |S—-4dx|< 6  (v) |3-x] =22

Solve the equations

@ |x-2]=3 i |2x-3|=7

- = : 2. = Hint: if |a|=3
(i) |5-2x| =13 (v) |x*-12x+5| =3 then 2= 3 or 3
(v) |2y2+4y—1] =2

Interval Notation
In the previous two sections we expressed solutions to inequalities in the form
x>-5,x€7,9<x<12,x>2orx<—4, and so on. It is convenient to write
such solutions in interval form.
The various cases may be written as follows :-
() x>-5 as (-=5,m),
@y x=2-5 as [-5, 0}
(i) x<7 as (—,7),

‘oo’ signifies numbers
increasing indefinitely,
'~od signifies numbers
decreasing indefinitely.
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(iv) x<7 as (-, 7],

(v) 9sx<12 as [9,12),

(vi) x<2o0rx27 as (—o0,2)w {7, w),
(Vi) ~8<x<4 as E—g, 4).

The round brackets occur in strict inequalities, the square brackets in
inequalities which also allow the possibility of equality.

The U in (= o, 2} U [7, =) signifies the union of two intervals, in other words
all values in either interval.

Exercises 1.5

Represent the following in interval form:-

(ayx>-3 (b)x<6 Yy x29 (d) x<-4
() —3<x<21 () x29 and x< 12

(g) x>-5 and x <20 (h) x2-20 or x< —-30

Express the solutions to the inequalities in Exercises 1.2, questions 2(1) — (iv)
in interval form.
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Chapter 2

Factorising and Two Theorems

In P1 we considered the factorisation of quadratic expressions, i.e. of polynomials of
degree two. Here we consider factorisation of polynomials of higher degree.
Factorisation of polynomials may involve division of one polynomial by another. For
that reason, we start by considering division of polynomials.

2.1

Division of polynomials
Let's start by considering an example.

Example 2.1.

Divide x3 + 7x2+ 4x -9 by x+ 2.

The method used is similar to the method
used when we divide a number by another
number without the use of a calculator.
We subtract x + 2 from x3 + 7x2 + 4x — 9
as many times as possible.

The terms in x> + 7x2+ 4x — 9 are
eliminated one by one as follows.

For numbers, division
of 38 by 6 is achieved by
taking 6 from 38 six times
leaving remainder 2.

x2+5x -6 B To eliminate x3 we
x+2)x3 +7x2+4x -9 multiply x + 2 by x2.
X +2x2 i - :
E—— Bring down next term
Subtract 5x2 + 4x and eliminate 5x2 by
5x2 + 10x . (_ multiplying x + 2 by 3x.
Subtract —6x—9 Bring down next term
6 12 and eliminate —6x by
—bx— 1 ~ multiplying x + 2 by —6.
Subtract 3

9 (-12)=-9 +12

The remainder 3 doesn't contain x so no further elimination is necessary and
we are finished.
3 2
X +7x" +4x-9 2 S —64
x+2 X+
or equivalently
3+ Tx2+4x -9

Then {(x=-2)

il

it

(2 + 5x — 6)(x + 2) + 3.
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The following points should be noted.
1. The long division procedure involves attempting to eliminate the highest
power of x at each stage.

2. The process ends when no further elimination is possible by multiplication
by a power of x or a number.

3. At each step, the signs in the highest power terms are the
same and therefore elimination 1s always achieved by
subtraction.

Example 2.2

Divide 8x% — 24x3 + 4x2 — 9x + 5 by 2x — 3.

Whilst the first term involves x* instead of x3 as in example 2.1, the same
procedure is adopted.

43 —6x2-Tx—15
2x—3)8x4—24x3 +4x2 —9x +5

~1223 + 42

—14x2 - 9x

-30x+5 w0 »
- t
3045

- 40

Then

4 3 2
8x" —~24x" +4x° -9x+5 45 —6x® —Tx—15— 40
2x-3 2x -3
Or  8x'-24x* +4x* —9x+5 = (4x’ — 627 —7x—15)2x-3)-40.

3
(xi-i).

I

The procedure may also be used when the bottom expression is of a degree
higher than one.

Example 2.3
Divide 2x* + 3x3 + 9x2 = 5x+ 1 by x2+6x+ 1.

2x2-9x + 61
X2+ 6x+1 )2x4+3x3 +9x2 —5x +1

-9x3 + Tx2 - 5x
iminate — 3
—9y3 — 54x% - 9x

612 +4x+1 7x? — (-54x2)
61x2 + 366x + 61 = Tx2 + 54x2 = 61x2
~362x — 60
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This process ends because — 362x — 60 i1s of a degree less than that of
x2 + 6x + 1 and no further elimination is possible.
A +33 + 922~ Sx+ 1= (x2+6x+ 1) (222 - 9x + 61) - 362x - 60.

Sometimes, one polynomial divides another exactly and no remainder is
obtained.

Example 2.4
Show that 2x + 3 divides exactly into 2x3 + 5x2 — 9x — 18.
2+ x -6
2x+3)2x3 +5:2—9x - 18
253 + 322
2x2 — 9x
2x2 + 3x
-12x- 18
-12x — 18

Then 2x3+5x2-9x—18 = (2x+3)(x2 +x - 6).

Given that a linear factor divides exactly into another polynomial, the division
may be carried out by another method.

Example 2.5

Given that 3x3 — 17x2+ 37x — 18 is divided exactly by 3x — 2, we can write
33— 17x2+37x - 18 = (3x ~2)(x% +ax+9).

The expression in the second bracket must be of second degree and must be of

the form shown in order that the x3 and constant terms match.

33 -18 = (3x-2)(x2+ax+9)

3x3 - 18
The constant @ is unknown but is easily found by consideration of the x2 or x
terms.

x? term N

3x3 - 17x24+37x - 18 = (3x—2)(x2 +ax+9)

I

S

Thus —17x2 = —2x2 + 3ax?
S0 -17+2 = 3a (cancelling x?).
a = -5,
or alternatively, for the x term

37x = 27x— 2ax
50 10 = —~2a
and a = -5, asbefore.

10



Factorising and Two Theorems

Substitution for a in the suggested factorisation gives
333 —17x2+37x— 18 = (Bx—2)(x2 - 5x + 9).

Example 2.6

Given that 2x — 5 divides exactly into 2x* — 11x3 + 17x2 — x — 10, we may

write

24— 113 +17x2 —x-10 = 2x =53 +ax2 + bx +2).

v

2x4

~a
-10

The form of the cubic expression on the right hand side is deduced from
consideration of the terms in x* (2x#) and the constant term (- 10). The
constants @ and b are determined from consideration of the terms in x3, x2 or x.

The term in x

—x = 4x—5bx
SO -5x = —5bx
or b = 1.
The term in x?
17x2 = 2x2 - 5ax2
SO 15x2 = — Sax?
and a = -3.

@x —5)(3 +ax? + bx + 2)

ik

Then 2x*—-11x3+17x2—x-10 = (2x—5)(x3 - 322 +x+2).
Consideration of the term in x3 gives

—11x3
S0 — 6x3
and a

Exercises 2.1

— 5x3 + 2ax3
2ax3
— 3, as before.

There is no need for this

but it is given as a check :

(2x — 5)(3 +ax? + bx +2)
N~

Derive the relationship between the polynomials A and B in the form

Polynomial A = (polynomial B)(polynomial) + remainder

for the following cases.
i) (A) x2-3x-2

(i) (A) x¥3-3x2+4x-5
(i)  (A) 2x3 —7x2 +6x -3
(v)  (A) 1264 — 83 +21x2 +1
v) (A 12x4-x3+12x2 -7

(B) x+3
(B) x~5
(B) 2x+1
(B) 6x+5
(B) 4x2 —3x+2

Find the expressions denoted by ? in the following :-
(i) 3x3+5x2-25x-7 = (Bx—T7X?)
() ¥+2x2-x-2 = (x+2)?)

(i) x* =53 +9x2 - Tx+2 = (x2 - 3x+2)(?)

Show that x — 5 divides x3 — 4x2 — 17x + 60 exactly and factorise the

polynomial.

Show that both x — 2 and x — 3 divide x* — 6x3 — x2 + 54x — 72 exactly and

factorise the polynomial.

11
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Factorising and Two Theorems

Two theorems
Question 3, Exercises 2.1 shows that if one factor of a cubic polynomial is
known the other factors are easily found. Specifically,
fxy = x*—-4x—17x+60
(x~5)(x2 +x—12)
= (x — 5)(x + 4)(x - 3).

Clearly, the procedure of factorising polynomials of degree higher than two
depends crucially on our knowing a factor to start the process. Much of this
section is concerned with finding that important first factor.
Let’s recap on our findings of Section 2.1. When a
polynomial f(x) is divided by a linear factor x — a we have
fx) = x—a) Ox) + R,
where Q(x) is a polynomial and the Remainder R is a
number.
((x) 1s of degree one less than that of f{(x) and the number
R is, of course, of degree one less than x — a.
Then, from above, on setting x = ¢, we have
Aa) = (a-a) O(@) + R
sothat R = f(a).

This result is known as the Remainder Theorem.

In example 2.1,
X+ v d4x -9
=(x +2)(F +85x ~ 6) +3

Remainder Theorem

When a polynomial expression f{x) is divided by the linear
expressionx —a, the resulting remainder is fla) .

Example 2.7
Find the remainder when x* + 3x + 5is divided by x +2.

Writing f(x) = x* +3x + 5and noting that @ = -2, we have
remainder = f(-2) = (=2 +3(-2)+5= 3.

Example 2.8
When x* + bx + cis divided by x —1, the remainder is —14; when divided by
x +1, the remainder 1s 0. Find 6 and c.

If flx) = x*+bx+e,
f(l) = _149
) = o
l+b+c = —14, ()
I—b+ec = 0. 2)

From (1), (2) we find 6=-7, ¢ =-8.

12
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From the remainder theorem, we saw that

Sx) = (x —a)Ox) + R
with R = fla)

Now when x —a is a factor of fx), there will be no remainder when f{x) is
divided by x —a. Then
R = fla) = 0.

This result is known as the Factor Theorem.

Factor Theorem
If a polynomial expression f(x) is such that f(a) = 0, then x — « is a factor
or, in other words, x — a divides into f(x) exactly.

The factor theorem is a useful tool for the factorisation of polynomials.

Example 2.9
Factorise 2x3 — x2 — 13x — 6.

If f(x) = 2x3 — x2 — 13x — 6, we seek a number to substitute for x which makes
f(x) equal to zero.

Now  f(0) = 2.(0%)—-(0)>-13(0)-6 = -6 = 0. doesn't work
fl) =2-1-13-6 = —18 # 0.

f-1) = ~2-1+13~-6 =4 0.

|

f(2) =223 -(2)?-132)-6 tch the signs:
= 16-4-26-6 = —20 # 0, s brackets
f-2) = 2(-2)3 - (-2)2-13(-2) -6

~16-4+26-6 = 0,
Since f(-2) = 0,x+ 2 is a factor.

il

2x2 — 5x —3
x+2)2x3— x2 - 13x—-6
2x3 + 4x2 l

- 5x2 - 13x

Then this factor can be divided out to give
23 —x2 = 13x -6 = (x+2)(2x2 - 5x - 3)
= (@ +2)(x-3)2x+ 1),
on factorising the quadratic expression in the

usual way (see P1). — 5x% — 10x
-3x—6
When the linear factor divides exactly into the -3x -6

polynomial it is not necessary to use long
division to achieve the imitial factorisation, as
we saw earlier.

13
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Example 2.10
Given x + 3 is a factor of 2x3 + 3x2 — 8x + 3, we may write
23 +3x2-8x+3 = (x+3)2x2+ax+ 1),
where a is a constant to be determined. The choice of the quadratic in the
second bracket arises because
(a) the degree is one less than 3,
(b) (x + 3)(2x2 + ax + 1) gives the term 2x3 which is present on the left hand side,
N

(€) (x+3)(2x2 + ax + 1) gives the term 3 which is present on the left hand side.
\ﬁ,_*w___/

The number a is then found by matching the x or x2 terms on the left hand side
with those obtained by multiplying out the brackets.

X term

-8 = x+3ax
. - 9x = 3ax @
and a = -3

or alternatively,

x* term 3x2 = ax? + 6x2

50 —-3x2 = ax?
or a = —3 asbefore.

Then substitution for this value of a in the mnitial factorisation gives

2x34+3x2-8x+3 = (x+3)2x2-3x+1)
= (x+3)(2x-Dx-1).

The method used in example 2.10 may be used for higher order polynomials.
Example 2.11
Write 3x4 — 8x2 + 9x + 2 as a product of a linear factor and a polynomial of

degree 3.

We see that f(-2) = 48-32-18+2 = ( sox+ 2 is a factor.

Then 3x%-8x2+9x+2 = (x+2)(3x3 +ax2+bx + 1),
where a and b are unknown. As before, the terms 3x3 and 1
are easily deduced by matching the terms in 3x% and the
constant term. The constants ¢ and b may be found by

matching up terms in x, x2 or x3.

X
9x = x+ 2bx
S0 8 = 2bx
and b = 4.
x*
_RQy2 = 2 2
Bx® = 4x + 2ax (c+ )03 + @2 + 4x + 1)
S0 -12x2 = 2ax? No—
and a = —6.

Substitution of these values for a and b gives
I~ 8x2+9x+2 = (x+2)(33 - 6x2 + dx + 1).

14



Factorising and Two Theorems

Exercises 2.2
Find the remainder when the following expressions are divided by the linear
expressions indicated.

i) X +x-2, x+1 (i) x’-2x"+3x+1, x-2
(i) x*+x’-2, x-1 (iv)  x'+x’-3x7+1, x+2

If x* +7x” — x + a has remainder 2 when divided by x +1, find a.

Given that x’ +bx’ +cx —2has remainders 12 and 0 when divided by
x —2and x+ 1respectively, find & and ¢.

Factorise the following expressions. Answers may involve quadratic factors.
(i) x>~3x2+4 (i) x3 = 2x2+1
(i) x4 —x2+4x -4 (iv) ¥ =3x2—x+6

Find the value of kif x — 2 is a factor of x3 + 6x2 + kx — 4.

Find the values of @ and b if x4 — 4x3 + ax? + bx + 24 is exactly divisible by x
—2andx + 3.

Given that x — 2 is a factor of f(x) = x> + ax2 — 3x + b, where @ and b are
constants, and f has a stationary value when x = — 1, find the values of g and b.

Factorise f(x).

Show that no positive integer n can be found such that x + 4 is a factor of
2n
x4+ 64,

Find the value of n if x — 2 is a factor of x2 — 64.

15



The binomial expansion for positive integral index

Chapter 3

The binomial expansion for positive integral index

A binomial expression consists of two terms. Thus 2+ x,a+ b, 7y + 3, x2 — 7 and

8a3 + 2b2 are all binomial expressions.

Sometimes it is necessary to multiply out or expand a power of a binomial. For
example,

(@a+b2 = (a+b)a+b) = a?+ab+batb?
= a2+ 2ab + b2,
(@a+by® = (a+b2a+b) = (a2+2ab+b2)(a+b)

a’d + 3a2b +3ab? + b3,

I,

after simplifying.

The multiplication process given above is impractical. Fortunately there are two rules
for expanding powers: the first uses Pascal’s triangle, the second using the concept of
combinations.

In this chapter we give only brief consideration to Pascal's triangle and concentrate
upon the second method.

31

Pascal's triangle
We note that

(@+b)0 =1, (anything)’ = 1

(a+b)! =a+b.
Multiplying both sides repeatedly by (a + &), we find after straight forward but
tedious calculation that

(a+b)2 = a?+2ab+b2,

(a+b) = a®+3a2b+3ab2+ b3,

(a+by¥* = a*+4a3b+ 6a2b2 + 4ab3 + b*.
It 1s possible to write the coefficient of the terms in the above expansions and
of others in an arrangement known as Pascal's triangle (we state this without

proof).
Binomial expression Coefficients in the expansion
(a+b)° 1
(a+b)! 1 1
(a + b)? 1 21
(a+b) 1 303 1
(a+ b)* 1 4 6 4 1
(a+ b)> 1 5 10 10 5 1
(a+ b)Y 1 6 15 20 15 6 1

This arrangement is known as Pascal's triangle and can be continued to as
many rows as can be required.

16



The binomial expansion for positive integral index

Again, without proof we note that coefficients in any row of the table
(excluding the 1's) are found by adding the adjacent coefficients in the
preceding row. For example consider the rows for (¢ + )4 and (¢ + b)°,
namely

T T TSNy
(a + b)* vl 4,6 4// 1
¥é A
(a+b)5 l \\5’,/ 10 \]\9/ 5 l
We give two examples. Thus the 5 in the second row is given by 1 + 4 in the
first row; and 10 in the second row is given by 6 + 4 in the first row.
The other numbers 10 and 5 in the second row can be seen to arise in the same
way.

Example 3.1
Check the relationship between the coefficients for (a + b)° and (a + b)0.

S50 175 1
l\\6,’15 \?0115 6 1
\/ \/

For convenience we check two of the coefficients in row 2 as shown.
The determination of any row of Pascal's triangle enables us to write any
binomial expansion.

Example 3.2
Write down the row of coefficients for (a + 5)® and deduce the corresponding
row for (a + b)7. Hence expand (a + b).

1 6 15 20 15 6 1
(a+§3)6 » "\/I\ /\\/A\’A\/’

~7 s

(a+ b)7 1 7 21 35 35 21 7 1

Then
(a+b) = a’ + Tabb + 21a°b2 + 35a%b3 + 35a3b% + 21a2b> + Tabh® + b7.

Exercises 3.1
Use Pascal's triangle to expand
1) (@+b)5 @) (a+b)0 (iii) (a+ b8

Use Pascal's triangle and write a =1, b = 2y to expand (1 + 2y)3.
Expand (x + 3y)4.

Expand (1 - 3y)3.

. . - .. ax e \
Expand and simplify (i) (l + \fiT (1) (\/5 + ﬁy (1i1) (1 + Jg)] + (l - \/5)3 .
It is tedious to use Pascal's triangle to expand (a + b)!5 say, because of the
need to generate rows of coefficients, For that reason we introduce another

method. To introduce this method we first need to discuss permutations and
combinations.

17



3.2

The binomial expansion for positive integral index

Permutations
Let's consider the following example.

Example 3.3
Taking the word 'work', how many separate arrangements can be made, taking
two letters at a time?
The possible arrangements are conveniently set out as
WO wr wk

ow or ok
™w ro rk
kw ko kr

Here, cvery pair in a row has the same first letter and there are four rows in all:
the first letter can be chosen in four ways.
Within a row there are three pairs corresponding to the possible three choices
of the second letter (o, 1, k in the first row for example).
Then the number of listed arrangements of four letters taken two at a time is

12 = 4 % 3.

no. of ways

of choosing

first letter

Definition
Each of the arrangements which can be made by taking all or some of a
number of objects is called a permutation. In example 3.3 we considered the
permutations of four letters taken two at a time.
Suppose now we required the permutations of four letters taken three at a time.
Then the first line of the possible arrangements may be taken as

wor wok wro wrk wko wkr
with another three such lines containing o, r, k as their first letters. Then the
number of permutations of 4 taken 3 at a time is

ways of choosing

'ways of choosing
third from

second from
remaining three

ways of choosing
first letter
from four

The general result is that the number of permutations
taken r at a time is

nx{n-xn-2)....n~r+1)

=pn-Dn-2)....(n—r+1).
This number of permutations (» objects taken r at a time) is written "P,..
The number of permutations of n objects taken » at a time is
P, o= nn-1n-2)....(1).

For brevity n(n — 1)}{n ~ 2). ... (1) 1s written as n!
(so, forexample, 4! = 4x3x2x1 = 24).
With this notation, "P,, = n!
and p.=nn—-1)n-2)....(n-r+1)

x3

remaining two

18



10.

3.3

The binomial expansion for positive integral index

v B (n=-r)(n-r-1)...(1)
D =2) e ) ‘)

n!
= : Here we multiply
(n-r)! in effect by 1.
Exercises 3.2

Write down the number of permutations of 7 objects taken (i) 7 at a time

(1) 5 at atime.
How many three digit numbers can be made from the set of integers
{1,2,3,4,5}7

In how many ways can six different books be arranged on a shelf?

How many different arrangements can be made from the word 'module’, taking
3 letters at a time?

Write down the values of 5Ps and 5P,.

Evaluate 6! +2!.

Evaluate 5

(4h

7

P
Evaluate —2 .

41
Write in factorial form M

Ix2x1

Show that (n —1)! +n! = (n+ D)[(n =1)!].

Combinations
Let's consider again the permutations of the letters of ‘work’, taken 3 at a time.
We saw that the number of permutations is

P3 = 4x3x2 = 24,
Suppose now we wish to know how many sets of 3 can be taken from the
letters of 'work', counting one set once.
The number of sets is 4 :-

Note the letters wor do not
also occur as wro, owr, rwo,
for example.

wor, wok, wrk, ork
We refer to the number of sets of 4 objects

taken 3 at a time as the number of
combinations of four objects taken 3 at a time.

19



The binomial expansion for positive integral index

Definition
The number of combinations of » objects taken r at a time is the number of
sets {order being ignored) of »n objects taken r at a time. It is denoted by the

4
symbol (n} Then from the above situation, (3} = 4,

W \

Example 3.4

3
Find the combination (2} of A, B, C taking two letters at a time.

The combinations are AB, BC, CA

o )

It is clear that only limited progress is possible if we have to write down all

possible combinations; for example the UK lottery relates to selection of 6
49

numbers from 49 and [6 - = 13, 983, 816,
J

Even if you could write
down a selection every
5 seconds, it would take
over 2 years to list all
the cases.

nearly 14 million.

“ - n v
As it happens, a convenient formula for ( J exists.
\}”
To derive this formula we first consider an example.

Example 3.5
Consider the following method of finding P, the number of permutations of

'
5 objects A, B, C, D, E (say), taken 3 at a time. We know this is % = 60, but

never mind.
First, we consider the selection of 3 objects taken from A, B, C, D, E, counting
a particular set of 3 just once, e.g. the set A, B, C is counted once and the

. L (3
particular order of selection is unimportant. The number of such sets is ( },
\

by definition.

Now, for the permutation situation where order is important, each set of 3 such
as A, B, C will generate six permutations {ABC, ACB, BAC, BCA, CAB,
CBA). Thus each set of 3 objects will generate Py = 3! =3 x 2 x 1
permutations.

Then we may regard the total number of permutations of 5 taken 3 at a time as
being generated by first taking sets of 3 and then rearranging each set of 3 in
3P; ways. Thus,

5
P, = @ x 31

total number
of permutations
of 5 taken 3
at a time

number of
permutations of
a set of 3 taken
3 at a time

number of

combinations
of 5 taken 3

at a time
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The binomial expansion for positive integral index

5
s 5) _ R _ 8 51 _5x4x3x2x1_1g
3! 2131 2131 2

3] X1x3x2x1

on substituting for 5P5.

More generally,

n n!
r)  (=nirt %
Example 3.6

Out of 15 men, in how many ways can 11 be chosen? If the men were to form
a cricket team, find the total number of batting orders that are possible.

Note the
convenience
of using 11!

in expression

15
Number of sets of 11 from 15= [11]

_ 1St 15x14x13x12x11!
4N 4x3x2x1x11!

for 15!
= 1365.
The total number of batting orders is the number of permutations of 15 taken
!
11 atatime = 15Py; = 14—5' = 54,486, 432,000 - a lot of batting

orders.

Exercises 3.3

15

How many different arrangements can be made by taking six of the letters of
the word equations?

. : . . [25 .. (20
Find the values of (i) 9Pg (i) 26P¢ (iii) [5} (iv) [ }

How many different numbers can be made by selecting 4 digits from the set
{2,3,5,6,7, 8}? How many start with 8?

Find the possible values of n if

n n
=10 given that n >4,
3 5

A team of 4 senior citizens is to be selected from a group of 20 to compete in a
national quiz. In how many ways can the team be chosen if

(a) any four can be chosen,

(b) the four chosen must include the ‘resident brain'?

In the U.K. the national lottery started in 1995, 6 balls being selected from 49.
In how many ways can a set of 5 be selected, one set being counted just once.
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The Binomial Theorem

In this section the expansion of (x+a)" is considered, where n is a positive
integer. We start by considering the expansions for (x + a)(x +b),
G+rax+bx+c) and x+a)x + Hx + o)x +d).

Now (x+a)x+b) = x2+(a+bx+ab

and (x+a)x+b)x+c) = [x2+ (a+b)x+ab][x+c]

x3+(a+ b+ c)x2+ (ab+ ac + be)x + abe.

i

i

Similarly,
x+a)x+b(x+o)x+d) = A Ha+ b+ c+ dxdH{abtbetad+bd+edtac)x?
+ (abc + abd + bed + acd)x + abed.

Focusing on this last result, we see that the coefficients are as follows :-

x4 1

x3 sum of the letters one at a time i.e. (a + b + ¢ + d),

x2 sum of the products of the letters two at a time
1e. (ab+bc+ad+ bd+cd + ac),

x sum of the products of the letters 3 at a time -

L.e. (abc + abd + bed + acd), and the term independent of x is abed.

Now we know that the number of ways of

. . L (4 4
(i) grouping 4 letters 1 at a time is (1)=ﬁ = 4,
L 13!

4 4

ii) grouping 4 letters 2 at atimeis |  =—r0vp = 6,
(1) grouping [z !

4 J
(i11) grouping 4 letters 3 at a time i [3):% = 4,

4
(1v) grouping 4 letters 4 at a time is (le.

In the preceding, let b=c=d =qa. Then
(x+a)* = xA+4axd+ 6a2x2 + 4adx + a*

(4 (4 4
or (x+ta = x4+l ax’ + Ja2x2+ [ }a?’.x-%a“.
Y \2 3

By a similar process we could obtain

5 5) 5) 5)
(xt+a) =x5+| jaxt+ | a3+ (@ | |afxtad,
\1J 2, 3 4

From a consideration of these general results we may conjecture but not prove
the general results for any positive integer n :-

p
n n n
(x+ay =x"+ [Jax”'l + ‘ 2) a?xn—2 + [3) axm3 4+,
\ J
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The binomial expansion for positive integral index

n

A more convenient form of the expansion when the various [1] , (:J etc. are
written out in full is available :-

The binomial theorem for positive integer »
(x+ayr =x"+ nax"1 + Mcﬂxn-E o+ Wa3x;?~3
1.2 1.2.3
+ nin—)(n=2)(n - 3)a4x”"4 +... +an
1.2.3.4

Example 3.7
Expand (x + a)®.
Inthisn =6 and
(x+a)® = x6+ 6ax’ + ———6(?; D a’xt 6(6-1(6-2) _11;(2 =2 a’x’
4 6(6—1)(6—2)(6“3)a4x2 +6(6"1)(6'2)(6*3)(6‘4) Lt g
1.2.3.4 1.2.3.4.5
x6 + 6ax> + 15a2x* + 20a3x3 + 15a%x? + 6a5x + ab.

Example 3.8

Expand (2x + 3y)4.

We write a = 2x, b = 3y in the expansion for (a + b)*. Then
@x+ 3% = 0+ 4(20)33y) + g(zx)z G3y)% + %—(M(sﬁ + Gyt

= 16x4 4+ 96x3y + 216x2y2 + 216xy3 + 8134,

Example 3.9
Expand (a — 2x)3.

Here we write 5 = — 2x. Then
(a—-2xy = & +3a%(-2)+ %a(— 2x)2 + (- 2x)3

= g3~ 6a%x + 12ax? — 8x3.

Example 3.10

&
. . . . 1
Find the term in x? in the expansion of (x + —} .
X

It is convenient to write

6 6
(x+l} =x5(1+%}
x

vooX \
6
and look for the term in—4in the expansion of [1+Lj .
X x°
7 6 \.2
Now 14| = 1+%+@[i2= b (atb) ith
L Xy x° 1.2 x} a=1,b=1/x

The term in —14- is 15.7.
X X
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6
Thus the term in x2 in [x + l} is
x
x6. % = 15x2.
x

Example 3.11
If the coefficients of the 3rd and 5th terms in the expansion of (1 + x)" are
equal, find »n given that n > 3.

The 3rd term is the term in x2 and is sz. The 5th term is the term in x4

1.2
and is n(n—1)(n —2)(’1_3))(4.

1.2.3.4
n(n-1) _ n(n-1)(n-2)(n-3)
Then = .
1.2 1.2.3.4 are equal

This can be cancelled down to

1 = w since n#= 0,1. @
3.4

12 = n2-5n+6

S0 n2—-5n-6 = 0.
Factorise: (nt+1)(n—6) = 0.
Then n+1=0 so n = -1 (impossible)

or n—6=0 so n = 6 which is the solution.

Exercises 3.4
Expand (i) (1 +22)5 (i) (x —2p)* (iii) {x + lj (iv) 2y -2)3
x

Write down the first three terms of the expansions of
O 1+nl2 () Q-29M (i) p+g)°

10 11
(iv) {1 + gj (v) (2-3x)8 (vi) [xz + iz]
x
In the expansion of (2x — )20 find the term containing y3.

In the expansion of (1 — 2x)10 find the term containing x3.

By substituting x = 0.01 in the binomial expansion of (I — 2x)8, find (0.98)8
correct to four decimal places.

8
By substituting 0.1 for x in the binomial expansion of [1+%} , find the

value of (1.01)8 correct to four significant figures.

If x is so small that x> and higher powers are negligible, show that
(3 —2x)(1 +2x)10 =~ 3+ 58x + 500x2.
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10.

11.

12.

The binomial expansion for positive integral index

Show that if x is small enough for x? and higher powers of x to be neglected,
the function (x + 2}1 - 3x)® ~ 2 — 47x.

Find yif (1 - 3y)3 + (1 + 3y)3 = 218.
Write down the coefficients of x* and x3 in the binomial expansion of
(1 + ax)'9. Given that the first coefficient above is 8 times the second, find the

value of 4.

In the binomial expansion of (3 + x)7, the coefficient of x? is 1.5 times the
coefficient of x3. Find the value of .

In the binomial expansion of (a + x)8, the coefficient of x* is 28 times the
coefficient of x. Find the value of 4.
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4.1

Functions

Chapter 4
Functions

In P1 we discussed briefly the concept of functions, specifically polynomial
functions. We described as functions expressions in x which take values in
response to the allocation of values of x. Thus for example,
if flx) = x2+2x-3
then f(-1) = (-1)2+2(-1)-3 = -4,

f(0) = (0)2+2(0)-3 = -3,
and so on.
In this chapter we develop further the idea of function. One way in which we
develop the idea is to allow expressions other than polynomials.

Example 4.1
) = x+ -+,
X
glx) = Jx+1

are two possible functions for consideration. Whilst f is often used in
functions, we also use g and other letters to denote other functions.

Functions and processes
Let's look again at the idea of function'by means of a block diagram.

Example 4.2
Consider f(x) = x2 +2x - 3.
This can be represented as follows.

x functionbox | x*+2x-3
: , A
mput | fixy = x*+2x-3

The function box is considered to be a black box, 1.e. a device which by some
means takes an input and generates an output. Then for various inputs -

input flx)y= x"+2x-3
- e 2 w'—b
input fx)= x +2x -3

26



Functions

Other inputs and outputs are

2 5
—_— A
-3 ) 0

We have introduced the black box to underline the point that a function is
essentially a process for generating outputs from given inputs. 1t should be
noted that the process (as opposed to the output) doesn't depend upon the letter
used.

Thus flx) = x2+2x-3

and fla) = a2 +2a-3

are essentially the same process :- given a number, square it, add twice the
number, and then subtract 3.

Example 4.3

Write down two further representations of the process
glx) = 3x+4.

Any other letters may be used :-
gla) = 3a+4,
g(b) = 3b+4.

A second point to be noted is that given an input, then the output is uniquely
defined. Thus

fix) = vx+4  isa function.
However

glx) = +/x+4
is not a function because two possible answers or outputs could be obtained
from one input, e.g.

g(5) = £45+4 = £3,

Rale

A function must give one answer for any one

"acceptable” input. Don't worry about
; ; the word acceptable

In passing it should be noted that the same output at this stage.

may be obtained with different inputs. In example

4.2 with

flx) = x2+2x-3
we see that 1)y =0
and f(-3) = 0,

1.e. the output O can arise with two different inputs.

Exercises 4.1
If fx) = x+ }- write down (1), f{2), f{—1) and f(a).
X

Is glx) = Lz + x a possible function process?
x
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Functions

Show that for h(x) = (x+2)2+ 3, h(0) = h(-4).

Are there any values of x which would be unacceptable inputs for

2 . .
fix) = ————— 7 Hint : Can you find 2 ?7 Try it on your calculator.
(x+D(x+2) 0

Domains of functions

In section 4.1 we regarded the function expression as a process to generate
outputs from given inputs, the rule being that the input should generate one
output. Here we consider the acceptability, or otherwise, of inputs.

Example 4.4
Consider f(x) = J/x and glx) = l
X

Are we able to find f{-2) and g(0)? Try it on your calculator!
In fact, it is impossible to find outputs for these particular inputs and
processes.

Example 4.4 indicates that it is often: useful to specify, along with the rule,
formula or process, the elements upon which the process acts. Thus the Jx

rule will only act upon values of x which are non-negative; and the 1 rule will
X

only act upon non-zero values of x, i.e. when x = 0.
The set of numbers upon which a rule or process is able to act is called the
domain.

Example 4.5
What is the largest possible domain for

_ L . -
@) = 70 ®) @) = G 1% (©) he) = ==

We adopt the convention that, unless otherwise stated, the process or rule will
act upon all real numbers with possible certain exceptions which are always
noted.

Thus (a) fix) = a , (x=-1)
x

(b) g(x) = (x+1)2, (no exceptions, i.e. all values of x are allowed)

© h@x) = \/;ﬁ - (c>-2)

In interval notation the domains are

@ (o, -1 (-1,0) () (~0,0)  (¢) (-2, ).

Note that in (¢), x = -2 is not allowed because division by 0 is not defined.

Sometimes even when the rule or process would accept all or most numbers,
we may wish to restrict the domain.
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4.3

Functions

Example 4.6
fix) = x2+4x+5, 0<x<5
gx) = x3+4. 4<x<16

The domains here are therefore [0, 5] and [4, 16).

Exercises 4.2
Find the largest possible domain in interval notation of the functions defined
by the following rules :-

(a) f(x) = V2-x (b) fx) = —— © f) = %
S S _ ——
(d) fix) = s o (e) f(x) (x+D(x-1)
_ 2 _ 2x-1
DW= ey @03
-
(h) f(x) = V4-x? G) f(x) = \st _9;

Ranges of functions

In the last section we considered the domain of a function, the set of numbers
upon which the rule acts. We now consider the set of numbers which are
produced by the process, i.e. the outputs. The set of outputs 1s called the
range of the function.

When asked to find the range by the action of a given function rule upon a
domain, we often find it useful to use a graphical representation of functions.

Example 4.7
Find the ranges in interval notation when the given function rule acts on the
elements of the given domain :-

Q) fx) = 3x—1 [0, 2]
G ) =a2-1 (-1, 2]
(iii) fx) = x2+2x+3 (—a0, o)

6y We write f{x) = 3x—1 as y = 3x - 1.
Then y is the output for a particular x. The introduction of y allows us
to plot inputs (x) and outputs (y) on a graph in the usual way. In this
case the graph is a straight line as shown,

A

5_..

4__

34 The shaded circles

indicate that the
24 end points are
included.

1...

0 1 2 g
- 11/

The range is [~1, 5].
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(ii) Herey = x2 — 1 and for the given domain (-1, 2] , it is easy (by means
of a table, for instance) to draw the graph.

y
3 The unshaded circle
indicates that x = -1
2 is not part of the
1 domain.

Here the range is (-1, 3], the endpoints of this interval being the lowest
and highest points of the graph. It should be noted that finding the
outputs for the endpoints of the domain would have resulted in (0, 3]
which is not the range in this case.

(i) Inthiscasey = x2+2x+3 = (x+ 1)2 + 2, on completing the square.
The smallest value arises when x = —1, this smallest value being 2.
The range is then {2, =).

again this graph
could have been
deduced from a
table of values.

Exercises 4.3

Draw the graphs and state the ranges in the following cases :-

(a) f{x) = 1 -x, domain [-3, 2] (0 fx) = (x-2)2+ 4, domain (0, 4)
(¢) f(x) = vx+2, domain(-1,7] (d) fix) = La, x>0

FA

X

(e) f(x) = x2, domain [-4, 5].

For each of the following function rules and domains, decide whether there are
two or more elements in the domain corresponding to a single element of the
range, [for example for f(x) = x2, all x, f(-2) = f(2) = 4 so -2 and 2 in the
domain correspond to 4 in the range].

(@) f(x) = 3x+4 [-1,20] (b) fx) = 22+ 8x [-4, 4]
(Note that x2 + 8x = (x + 4)2 -16.)

(¢) fix) = x2+8x [-5,1] (d) fix) = 1 (x>0)

X



4.4

Functions

1 1

fi R 0 fi = —00, 0
(e) f(x) . (x>0) (0 fx) I ( )
(g) flx) = 4x—-x2 [0, 4] 4x—x* =4—(x-2)’

Summary

A function involves three components, namely :-

a rule or formula (regarded as a process) which gives a single output value for
a single input value;

a set of input values upon which the rule acts, known as the domain;

a set of output values, known as the range.

Inverse functions

Given a function f, involving the three components mentioned earlier, it is
sometimes possible to find another function which reverses the effect of f.
This function would take an output of f and find the input from which it came.
Such a new function is called an inverse function and may or may not exist.
Here we consider which functions have inverse functions and show how such
mverse functions may be found.

Example 4.8

Given flx) = x+1 (o0, ®),

can we find a function which reverses the effect of £?
The process could be represented as a black box.

x x+1

—_— s W) =x+1 |———

So for example

fix)y=x+1

flx)=x+1

ete.

Given an output, are we able to say what the input was? A little thought
shows that for this case, a given output arises from an input which is one less.
Thus the reverse process could be represented as

1 . 0
et fUNICtION BOX

2 1 le later.
function box |—— new rule later.

It is clear that a function exists which reverses f{x) = x + 1 : it is the function
which subtracts 1 from the input value.
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Example 4.9

Given f{x) = x2 (—o0, w),

can we find a function which reverses the effect of f?
The process could be represented as a black box.

2

x
fx) = & u
So for example
-1 s 1
— fx)=x -_—
1 1
fx) =

Given an output, are we able to say what the input was? A little thought
shows that for an output there may be two inputs, for example in the above, an
output of 1 could arise from inputs —1 and 1.

In this case we are unable to find a function which reverses the effect
of f(x) = x2.

Let's summarise the results of Examples 4.8 and 4.9.

Function Does the inverse function exist?
flx) = x+1 An output arises Yes
from one input only
fix) = x? There are two inputs No

giving the same output

Functions such as f(x) = x + | (any domain), for which only one input gives a
particular output, are said to be one-one functions. Note that f{x) = x2 with
domain (~c, ) is not a one-one function (as seen earlier). One-one functions
arise again in Chapter 12,

Examples 4.8 and 4.9 illustrate (but do not prove) a general result concerning
one-one functions and inverse functions. First, we recall the definition of an
inverse function.

Definition
The inverse function £~ of a function f is a function which takes the outputs

of f and maps them to the inputs of f, in other words ! reverses the
effect of £.

Rule
A function f has an inverse function f~! only if f is a one-one function.

Example 4.10

Show that for f(x) = x? + 4x + 7 with domain (—o0, w), no inverse function
exists.

Suppose we have an output y and attempt to find the corresponding input x.
Thus lety = x? + 4x + 7 and attempt to find x in terms of y.
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x2+4x+7-y = 0.
By the quadratic formula,
—4+,/16-4(7-y)
2

442047+
= Y - 2+ /73

2
For real roots, y > 3 so that the range of fis [3, ). For a given y in this range,

there are two values of x. This is illustrated in the graph of y = x2 + 4x + 7.

x =

h
o — Two values correspond
to this value of y.

1
1
I
I
I
1
I
I
1
s
A d

In this case, therefore, the inverse function doesn't exist.

Example 4.11

We note that if the function had been f(x) = x2 + 4x + 7 (same rule as in
4.10) with a restricted domain (—co, —2] the graph would be as shown, and
there is only one input of a given y, where y > 3.

y A
______ The range of
43 fis [3,00).

o 0 "x

Then the inverse function exists and for given y,
x = -2- m
from example 4.10.
Thus the function f-1 processes y to give
2-Jy-3.
In other words,

Fly) = —2-fy-3.

Now any letter may be used in the definition of the rule for f~! and usually we
choose the letter to be x. Then in this case
flix) = -2-4x-3

is the inverse of f(x)= x2 + 4x + 7 when the domain of fis (—o0, —2].

The —ve square root
is taken because
all x's are —2 or less.

The two square roots
are not possible,
i.e. fis one - one.
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Given the rule of any function, it is appropriate to state also the domain and

range of that function. To determine those entities for f~!, we note the
following diagram, where we have represented the domain and range of f as
two boxes.

f—l
domain of f range of f

Now an examination of the diagram shows that f~! takes elements of the right
box (i.e. the range of f) and finds corresponding elements in the left hand box
(the domain of f).
In other words,
range of f = domain of -1,

domain of f = range of f-1.
This is, in fact, the relationship between domains and ranges of one-one
functions and their inverse functions. In the present case, therefore,

f £l
Domain (-0, ~2] Domain [3, o)
Range [3, «©) Range (—c0, 2]

Summary
(i) When a function f is one-one, its inverse f~! exists.

(i) The domain of f~! = the range of f.

(iii) The range of f-! = the domain of f.

(iv) To find the rule for f~! we
(a) attempt to solve y = f{x) for x in terms of y so that x = f~1(y).
(b) replace y by x to give f~1(x) in the usual notation.
Note that if two or more values result in (a) it is possible that the original
function f is not one-one over the given domain (Example 4.10); but it may be
one-one over a particular restricted domain (Example 4.11).

Example 4.12
Given f{x} = 3ox
VX—53
state the largest possible domain and the corresponding range. Find f~1(x) and
state the domain and range for f~1.
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Since f{x) involves a square root, we must choose x so that the square root of a
non-negative quantity is being taken, i.e. choose x so that

x—=35 is not allowed

then we require 3 —x 20 and x—5>0 (i)

or 3—x <0 and x-5<0 ()

(1) leads to x < 3 and x > 5 which cannot occur together.

(i1) leads to x > 3 and x < 5 which can be combined into the one statement

3<x < 5, so that the largest possible domain of f(x) is {3, 5).

For the corresponding range, we note that when x = 3, f{x) = 0 and as x — 5,
f{x) — co. Hence the range of f'is [0, ).

To find £-1(x), let

3-x
y=1x = :
x=5
Then yz = 3_fxi
x=5
so that (x-5p? =3-x
2+1) = 3+ 5)2.
and 7+ 3+ 5y 2 Only one value of x
y = 3+5y for a given value of
yz 41 ¥, i.e. fis one - one.
2
so that l(y) = 32532 .
yo+l
Changing from y to x, we have
2
Fl) = 325x .
x°+1

The domain of f~! = range of f which is [0, ) and the range of f~! = domain
of fwhich is [3,5).

Exercises 4.4
For each of the following functions, by drawing rough graphs or otherwise,
decide whether f is a one-one function :-

(a) f(x) = 4x+3 domain [-1,5]
(b) f(x) = 2x2 +1 domain [-3,3]
(©) f(x) = x2+6x domain [-3, 3]
(d) fix) = x2+6x domain [-5,5]
() fx) = Vx* +4 domain (—oc, o)
(0 flx) = (x+2)? domain (—ooc, o)
(@) ) = domain (0, )
X
(h) fx) = —————  domain (o, )
X +2x+3

For all functions which are one-one in question 1, find their inverse functions
{give the three components).
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Find the inverses of the following one-one functions, stating the rule, domain
and range in each case :-

@ f() = 1+ domain (0, )
x

(b) fx) = (x+2)2+3 domain (0, )

(c) flx) = (x+1)(x+5)  domain (-3, x)

(d) flx) = vx+2 domain [-2, )

domain (-2, )

@ fw) = Ji?

) fx) = J(x+3)(x—1) domain [1, «)

Find the largest possible domain for the function f(x) = %, and find the
X+

inverse of f, stating the domain and range of f~1.

Given f(x) = with domain (-0, 0), find f-1, stating the domain and

x2 41

range.

. . . 2x-1 . . .
Find the largest possible domain of f(x) = X—3, giving the corresponding
X+
range. Find f~1(x).

Allowing non-negative values only, find the greatest possible domain for the

function f given by f(x) = V4 — x% . Find (1) the range of f,
(i) the rule for f1, i.e. f1(x).

Sketching inverse functions

In section 4.3 we demonstrated how a function can be represented as a graph.
For example, if f{x) = x2+1 with domain [0, ) we write y = x2+1 and obtain
the graph

y A

For convenience,

we have used a
_ .2 restricted domain:

y=x+1 to obtain a one-

one function.
1
0 x

This function has range [1, «). It is easy to show that the inverse function is

f-1(x) = ¥Yx? —1 with domain [1, ) and range [0, ).
To draw this graph of f~! we adjust the graph of f so that the input axis is
horizontal and the output axis is vertical. Then the graph of f-1 is
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YVa
The new axes
Ox, Oy are the
previous 0y, Ox
axes respectively.
0] 1 x

In fact, the graph of f~! is easily obtained by reflecting the graph of f in the
line y=x

Ifthe liney=xisa
mirror and pins are
placed upright on the
graph of f we'll see
pins behind the
mirror situated on
the graph of

Technique

To find the reflection P' of any point P in the line y = x we drop a
perpendicular PM from P to the line y=x and continue PM to P' where
MP'=PM. P'is then the reflection of P in the line.

Rule
The graph of f~!can be found from the graph of f by reflecting the latter in the
line y = x.

Exercises 4.5
Given f(x) = 3x+2, (all x), find -1, and draw the graphs of f and f~! on the
same diagram.

Given f(x) = x2 [0, ), find f-1. Draw the graph of f~! by reflecting the
graph of f in the line y = x.
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3. Given the following graphs of functions, draw the graphs of the corresponding
inverse functions.

Y , Va ,
3__ //y:x f/ y“’x
// 2— //
L :I x ,0 3 X
@ (b)
A P ya ,

Y // y=x s Yy=X

1+ 2 14
! ‘/_t » L/\} ¢ »
-3 3 x ,0 . 3 x

© CY

4.6 Composition of functions
In this section we discuss a method of combining functions to obtain new
functions. Let's consider the following example.

Example 413

Let fx) = x2  with domain (~o, ),
g(x) = 2x with domain (-, ©).

In the block diagram representation:-

x fx)= x* x2
1n worags ,
square it

x glx)= 2x 2x
In words ,
double it

Let's consider the following function which is a combination of f and g.

g 2x f 4x°
double it square it

If we call this new function or composite function h then h(x) = 4x2.
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If the f box preceded the g box as shown, the input x would result in an output
of 2x2.

x I f x 2x’

g
square it double it

Thus if we call the effect of combining f and g here a function k then
k(x) = 2x2.

Definition

The result of performing a function f first and then g is a function gf
where  gf(x) = g(f(x)).
The order should be noted : gf means that the If f{x) = x, %(x) = 2x,
function f'is performed first. gfx) = g(x) = 2x"
Similarly, the function resulting from performing g first and then f is a
function fg where fg(x) = f(g(x)).

The process of combining functions in this way is called composition of
functions.

It is not essential to draw the block diagrams when carrying out composition
of functions.

Example 4.14

If fix) =3x-2 Remember that the letter x
. used in the definition of the
gl = x2+1 (domains —, ) functions is unimportant.
find fg(x) and gf(x). For instance g means

'square it and add one’'.

Now fg(x) means f(g(x)) which we find by

replacing x by g(x) in the expression for f(x). . o
=3x2+3-2 = 3x2+1.

Similarly, gf(x) means g(f(x)) which we find by replacing x by f(x) in the
expression for g(x).

g(f(x)) = g(3r—2) = Bx—2)2+1
= 9x2 - 12x+5. itandadd I

It is tempting to assume that given two functions f and g we may always be
able to form the functions fg and gf. This is not the case : sometimes we are
unable to form one or the other.

Example 4.15
Consider the functions

fx) = Vx, domain (0, <)
glx) = x+2. domain (—o0, )
Then fg(x) = f(gx)) = vx+2,
and  gf(x) = g(f(x)) = vx +2.

‘We note however that

f(g(x)) = vx+2 1is not defined for x < —2 and such values of x are
allowed for in the domain of g, the first function to act. This may be better
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understood by referring to the block diagram and considering the processing
of -5, for example.

-5 -3 f no output

g
add 2 take square root

In contrast, there is no difficulty in forming gf(x), where the function f acts
first. The domain for f is (0, ), i.e. the set of non-negative numbers and the
square root process is able to deal with such numbers.

- [
Positive | f square root B square root
number take square root Tound add 2 +2

An obvious question poses itself here : in general terms, why does fg exist and
gf not exist?

A little thought leads to the following conclusion : gf doesn't exist because
some of the outputs of the first function (f) were unacceptable inputs for the
second function (g); in contrast, fg could be formed because all the outputs of
the first function (g) were acceptable inputs for the second function (f).

Now we recall that the set of inputs and outputs for a function are called the
domain and range, respectively. Then summarising the above discussion, we
conclude that fg exists if the range (set of outputs) of the first function (g) is
contained in the domain (set of inputs) of the second function f.

Rule
The composition of two functions exists if the range of the In fg, g is the
first function is contained in the domain of the second first function

function.

Example 4.16
Given functions f and g, where
fix) =x-5 (=00, )
1
g = = (0, )
X

determine whether fg and / or gf exast.

with domain (0, ), the range is also (0, «v). Now this

R

fg For g(x) =

range is contained in the domain of f (1.e. in (~ o, @)} so that fg can be
formed.
Then fg(x) = Hglx) = f[l}:l—&

X)) X
We note that the domain of fg is the domain of the first function g.
gf For f(x) = x—5 with domain (—o0, %), the range is also (-, «). This
range of f contains the value 0 which is unacceptable as an input for

gix) = l Thus gf cannot be formed.
X
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Chapter 5

Functions and Graphs : a further look

Functions whose ranges and domains are sets of real numbers can be represented by
graphs. Graphs give useful insights into the behaviour of functions, enabling the
identification of location of maximum and minimum values, for example.

Up until now, graphs have been produced as a result of drawing
up tables of y = f(x) against x and then plotting the values of x
and y. Whilst this technique has proved useful it is sometimes
misleading, specifically in relation to the behaviour of the graph
function between the plotted points.

In this chapter, we introduce the technique of sketching graphs
of functions, where we place less emphasis on plotting points
and more on the features of graphs. Our approach is to consider
the graphs of some basic functions and investigate how these
can be used to give other graphs,

X
0" « plotted points
\\—/\_/\/

5.1  Graphs of basic functions
In this section, unless stated otherwise, all functions are defined for all values
of x

The simplest graphs are straight lines which are derived from linear equations.

Example 5.1 Straight lines

Let's consider the function defined by
fix) = 3x+1

or y = 3x+ 1.

Linear equations of this type were considered in P1 where it was pointed out
that such equations give rise to straight line graphs. The graph in question is
shown:

yA
y=3x+1

~
=
v
b
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Exercises 4.6

If  fx) = x2+2 domain (—0, )

and gx) = 3x-2, domain (—o0, ©)

write down the rules for the functions fg and gf and give the domains and
ranges in both cases.

Given g(x) = 3x+1 domain (-0, )

fix) = 2x—4, domain {(~oo, o)
find the rules for the functions fg and gf and give the domains and ranges in
both cases.

Given f(x) = 2x+1 domain (0, )
glx) = x—1, domain (~co, o)

determine which of fg and gf exist, giving the domain and range in that case.

Functions f, g and h are defined as follows :~

fx) = x2+3 domain [0, 4]

glx) = Jx—4 domain (4, 20]

h{x) = % domain (1, 15]
X

State which of the following composite functions can be formed and which
cannot, giving your reasons in each case.

() gf (b)) fg () th (dhf () gh (f)he

Given f~1(x) = - 3 + Y9 +x when f(x) = x2 + 6x [-3, 3], show that f~1f(x) = x.
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Other examples arc y =— Sx + 2, p=3, and x =—1.

Ya Y a Y a

\ > X 0 » X 0
y=~5x+2

Example 5.2 The modulus function
This function is written as

fl) = +Vx?
or ¥y =+\/x7.

The value of y is never negative, and 1s positive except when x = 0. The
function is often written as

fx) = | x|
or y =lx],
where the modulus notation | | is interpreted as the 'absolute value' (ignoring
the sign) of a number. Thus

[3] =3 and |-5|=5.
The graph of y = | x| is shown below.

y

Another, possibly less familiar, way of writing the modulus function is shown
in the bubble, This form is useful when using the modulus function in the
branch of mathematics known as Calculus.

Example 5.3 Quadratic functions
Quadratic functions of x involve terms in x2 but no higher powers of x.
Examples are f(x) = xZ, g(x) = x2-2x+1, h(x) = -3x* + 5,
or in terms of y,
y=x% y=x-2x+1, y=-3x2+5.
Graphs of quadratic functions in x involve curves known as parabolas.

di 1 y=x2—2x+1 1
y=x 3 \p=-3x+5
1J
0 " o] 1 " [ !
(a) ) (©

43



Functions and Graphs: a further look

All parabolas have a common feature in that they possess a single turning
point. For the cases considered here (other forms are possible) : as we move
our eyes to the right, graphs (a) and (b) change from moving down the page to
moving up the page, i.e. the functions change from being decreasing functions
to increasing functions. In contrast, graph {c) changes from moving up the
page to moving down the page, i.e. the function changes from being an
increasing function to a decreasing function.

Finally, it is noted that the shapes of all the graphs are similar, (c) being an (a),
(b) type graph tumed upside down.

Example 5.4 Cubic functions

Here the polynomial function involves terms in x* but no higher powers of x.
In contrast to quadratic functions where the basic shape (‘cup' in (a), (b), 'cap'
in (c)) is fixed, cubic functions can exhibit various shapes. Consider the
graphsof (a)y = x3 (b) y = x*+x (¢) y = x* —x as shown below.

Ya Y a Y a

0 » X 0 > X / />x

@y = (b) y = x> +x () y=x-x

All the graphs pass through (0,0) although the graph (a) is flat at that point
whereas (b) and (c) are not.

In (c¢) there are two turning points of the type occurring with quadratic
functions.

Example 5.5 Trigonometric functions

These type of functions were introduced in P1. For completeness the graphs
of sin x, cos x and tan x are displayed here.

y 4 +y

1
-360/\ 90° 3600 . 270° -907*\ 20°, |
AR LAVANES VAL v

y = sinx y = COSX
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Ya

-270° -90° 9¢° 270°

y = tanx

Example 5.6 The reciprocal function
We consider fixy = 1
X
1

or y = -
X

The function is undefined for x = 0. As x approaches 0 through positive
values of x e.g. (x = 1, 0.1, 0.01, 0.001 etc) y takes increasingly large positive
values (1, 10, 100,1000 etc), and as x approaches 0 through negative values
(-1, -0.1, -0.01,-0.001) y takes increasingly large negative values (-1, —10,
—100, 1000 etc). As x takes large values (positive or negative) y takes small
{positive or negative) values. The graph is as shown below.,

YV

v
=

The function is seen to be discontinuous at x = 0. In passing, it should be
A 3\
noted for f(x) = -1—, f(—-l- | = =2, and f(l i

= 2 but it cannot be deduced

that f{x) = 0 for some x in {— —;, é—] .

Example 5.7 The exponential function
We consider functions such as

_ 1y o
f(x) = ZX, g(x) == I R h(x) = 45): 1
3

l X
or y = 2)63 y = [5] . );:453("1)

where x occurs in the exponent. Such functions occur frequently in
mathematics and must therefore be included in our catalogue of basic
functions.
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Here, we draw up a table of values (in spite of the reservations expressed

earlier), and plot the graphs of y=2¥and y = (

}w]x
3

(a) P -2 -1 0 1 2 3
y=2r [ L_1 1 0-; 2 4 8
22 4 2
(b) x 2 -1 0 1 2 3
\E /’ ~2 -1 1 1 1 1
NI R
3 W3 3
@ v
y=2
'_/'/ll /\/—\/\
. . ; — It is assumed
2 10 1 2 3 that the curves
are accurately
represented by
(® y4 joining the
calculated points.
y=G
1\‘\~._
5 10 ) y

One common feature of the graphs is that y > 0 for all points on both graphs,

l.e. the graphs are above the x-axis.

The graphs differ in that (a) 1s an

increasing function (the graph climbs to the right) and (b) is a decreasing

function (the graph falls to the right).

below.
(a)
() y=1 when x=0
(i) Y0 a8 X —» 0
(111) y—>0 as x —> —w
(iv)  the graph becomes steeper
to the right

46

Other features of the graphs are listed
(b)
y=1 when x=0
y—>0 as x—>
Yy >0 a8 x —> —w

the graph becomes steeper
to the left.



(a)
(b)
(©

Functions and Graphs: a further look

y=da,is only
defined for
a>q.

A little thought shows that the contrasting features occur

for y = a¥ according to whether ¢ is greater than or less
than 1.

Example 5.8 The log function
Let's return briefly to the exponential function. To fix

ideas, we consider f(x) = 10+,
The function is one-one and therefore its inverse function

-1 exists and in fact is defined by £~1(x) = log, x.
The graph of log,yx is easily plotted by first using the log,, button to calculate

values, or by reflecting the graph of y = 10¥ in the line y = x.

y A

4 y=log,x

From the graph of y = log,, x the following features are apparent :-
log,,1 = 0,

logypx = —w asx =0,

loggx —> ® as x —

and log,, x has domain (0, ).

Exercises 5.1
The following graphs relate to the following :-

(i) y=x2+2x+5 i)y y=2x+1
(i) y=x+1 (iv) y=-x2+2x+1
V) y=xd-x+1 W) y=(13%+1
(vil) y =x3+x+1 (viii) y={(02)
. 1
(ix) y = log,x (x) y=;+1
() v = lx- 1 (i) ¥ =

%]

i) y=~ -;-x+1.

By first considering the shape of some of the graphs in Examples 5.1-5.8,
group the equations and graphs as ((i),B)for example (this is not necessarily

the correct result!).
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’ \y ’ yﬂ/
1

\ 1

N ©

1 1

E 71 F Y
2
1

oo TN
1
> X

[

L]
¥
=

)

i

0

J yll

\ 4
*
[ane
W
v
=

y
\,x
0

01 > X
;-\K”T _____

Sketch the graphs of y = 3 — x and y = log,, x. Hence show that there is only
one value of x satisfying
x+logx-3 =20
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Show by sketching appropriate graphs that the equation ' +x—-2=0 has
only one root and that is positive.

Sketch the graphs of y =sinx and y =x — 2 and show that sinx —x+2 =0
has only one root.

Effects of transformations on the graph of y = f{x)

In this section we consider the effects of a number of processes on the graph
ofy=f (\c) These processes and others are known collectively as

transformations of the xy plane. Specifically, we consider the transformations
known as trapslations and scalings.

Translation
This relates to situations where every point moves
by the same amount. There are two cases

considered, namely

(i) a movement or translation of all points in the
xy plane, through the same distance parallel
to the x axis,

(ii)  a movement or translation of all points in the
xy plane parallel to the y direction.

Translation in x direction

For a reason which will become apparent, it is

convenient to suppose that all points move a

distance —a in the x direction, where a may be

positive or negative.

Geometrically, the effect of the translation —a in the x direction is to move the
curve y = f(x) bodily in the x direction, as shown. In the diagram a is taken

to be positive.

y A
original
curve
—
a
0 X

Given that the original curve has equation y = f{x), what is the equation of
the new curve?

Now the effect of the translation
(x,y) —» (x-a,y)1is to form new co-ordinates X, ¥ given by

X = x—a, </ T
Y =y Xdecrease@
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Then x=X+a and y=7Y.
Substitution for x, y iny =f(x) gives
Y=f(X+a).

Now let’s drop the capital letters because this relation is equally valid with
other letters. Then we obtain.

y=fx+a
Note the possibly surprising result:

a translation of —a in the x direction changes x to x + a mn f (x). That was the
reason for our choice of -a in the x-translation.

Rule [

A translation of —a in the x direction converts the curve y = f(x) into
y = f(x + a), referred to the original axes.

Example 5.9
Draw the graphs of y= x” and y = (x + 3)2 . The graphs are as shown.
Y4 Vi
y=x!
0 8 30 x

Now f(x)=x", f (x+3)=(x+ 3¥ so that @ = 3. The second graph is obtained
from the first by a translation of -3 along the x-axis.

Example 5.10
Giveny= f (x) has the graph shown, sketch the graphof y = f (x - 2).

(-2,3)

y=f(x)

(1.-4)
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Here a = -2 and the new graph is obtained by moving the original graph
through —(~2) = 2 along the x direction. The stationary points (-2, 3}, (1, -4)

are translated to (0, 3) and (3, ~4) respectively. The transformed graph is
therefore as shown.

/o :

G4

(iiy  Translation in v direction
Geometrically the effect of the translation « in the y direction is to move the
curve y = f (x) a distance a in the y direction (note we do not use —a here).

y

new

a original

Then the transformation (x, y) — (x, y + ) defines new coordinates
X, Y given by
X = x,
Y=y+a.
Then x=X, y=Y —a
Substitution forxand yiny = f (x) gives

Y —a=f(x)
or Y = f(X)+a.
Dropping the capitals, we have
y=fla)+a.

Rule IT

A translation of a in the y direction converts the curve y = f(x) into

y= f(x)+a, referred to the original axes.




Functions and Graphs: a further look

Example 5.11
Draw the graphs of y = |x| and y = x| + 2.

Here f (x)= [x] and @ = 2. The graphs are as shown, where the original graph

of y= lxl has been moved a distance of 2 in the y direction.

¥ y=ix+2

y=Ix|

Example 5.12
Given that the graph of y = f (x) is as shown, find the graphof y = f (x)~ 4.

y\

(-1,4)

(4:'4)

The new graph is found by moving the graph of y = f (x) through -4 along
the y direction. The original stationary points change to (—1, 0) and (4, —8).

y

-1,0)0

(4,-8)
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Scaling
This relates to situations where distances are multiphed by a constant factor,
As with translations, we consider scalings in the x and y directions separately.

Scaling in the x direction
For a reason which will become apparent, it is convenient to suppose that there

is a scaling of —]—in the x direction, 1.e. all distances are multiplied by i
a a

The geometrical effect on a graph is shown below.

original new
yt y
(-1,4) (-3,4)

AN

24 (4

In particular, the x-coordinates of the stationary points of the original curve

have been multiplied by l To find the equation of the new graph we proceed
a

as previously.

The transformation (x, y) —» (l X, yj
\a

defines new coordinates X, ¥ given by
X = lJc, Y =y.
a

Then x = aX, y =Y
and y = f(x) becomes after substitution for x and y:-
Y = flax).
On dropping the capitals, we have
y = flax).
Note again a possibly surprising result: a scaling of 1 in the x direction
a
changes xto axin f (x)

Rule IT1

. 1. L .
A scaling of —in the x direction converts the curve y = f (x) into
a

y = flax).
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Example 5.13
The graph of y = x* + 2 is as shown.
(-2,6)

(1,3)

Then a scaling of 3 in the x direction gives the following graph, the effect on
the points (=2, 6) and (1, 3) of the original graph being indicated.

Yy
(-6,6)\/
(3,3)
2
0 X

Noting that the scaling 1 =3,wehavea :%.
a
Now f(x) = x* +2 so that
flax)= f LY :flx)z r2= Lo
3 3 9

Thus the equation of the transformed graph

. 1,

18 = —x" +2
7 9

or 9y = x* +18.
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Example 5.14
Given that y = f{x) has the graph shown, sketch the graph of y = f (Zx).

y
(-1,2)

/N /.
_

(4,-3)

L . 1
Here a = 2 and the transformation is an x scaling of 5 The transformed

graph is as shown, the original stationary points being transformed into

(——;—, 2) and (2,-3)

(2>'3)

i) Scaling in the v direction
It is supposed that there is a scaling of @ in the y direction, i.e. all distances in
that direction are multiplied by a.
The geometrical effect on a graph is shown below.

(-1,2) 7 (-12a) 7

/
N/

(2,-3) (2,-3a)

o

/

In particular, the y coordinates of the stationary points have been multiplied by
a. To find the equation of the new graph we proceed as before.
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Functions and Graphs: a further look

The transformation  (x,») —» (x, ay)
defines new coordinates (X,Y) given by
X=x Y= a

Then x =X, y = r sothaty = f(x)
a
Y

becomes —=f (X )
a
or Y = afiX).
Changing the capital letters, we have
y = afix).

Rule IV

A scaling of a in the y direction converts the curve y = f{(x) into

y = af(x)

Example 5.15
The graph of y = x* + 2 is as shown.

(-3,11)

2,6)

A scaling of 4 in the y direction gives the following graph, the effect on the
intercept on the x-axis being indicated.

y

0 X

Noting that the scaling in the y direction is @ = 4 and f(x)= x* +2, we see
that the equation is

y

or y

J

41(x) = 4(x? +2)

4x* +8.

Il
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Example 5.16
Given thaty = f (x) has the graph shown, find the graph arising as a result of

a scaling of % in the y direction being applied.

3

y
L4

TN

()

The transformed graph is as shown.

Y

-1,2)

- x
7N

(3,-D

The stationary points (=1, 4) and (3, -2) have been transformed into (-1, 2)
and (3, —1) respectively.

Exercises 5.2

/.

-1 0 3

%9 -2)

The sketch shows the graph of y = f (x) The curve passes through (-1, 0)

and (3, 0), and has a minimum point at [é ,—2} .
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Sketch, on separate diagrams, the graphs of
@ y=/x+2)  ®y=fG)+2 (@ y=/6x)
Sketch the graph of y = 1 and the graph resulting from the translation
X
(x,y) —» (x—l, y) followed by the scaling (x, y) — (x, 2y). What is the

equation of the graph resulting from these transformations?

Sketch the graph of y =[.x]. What x and y translations transform y = l.x] into
y =?x - 2} —4 7 Sketch the second graph.

Sketch the graphs of y = cos x and y = sin x. Show that y = cos x and
/

y= sintx + %J have the same graph.

Use the graph of y = sin x to sketch the graph of y= 5sin3x + 4.

Sketch the graph of y = 3%,
Use this graph to sketch the graph of y =2 x 3X + 5.
P2 20 1 1 2x
Given that y = [E) +4 can be written as y = 5[5) + 4, sketch its graph
71 *
starting from the graph of y = ‘ é—) :
N

Sketch the graphs of ~
(i) y = logypx (i) y=3log,,x (iii) y=3log, (x) + 5
(iv) ¥y = 3log,, (2x) + 5.
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Cartesian Coordinate Geometry of the Circle

Chapter 6

Cartesian Coordinate Geometry of the Circle

In P1, the properties of straight lines were investigated by algebraic methods. Here
we make a start in applying algebra to the study of curves.

6.1 Locus of a point
The locus of a point is the path of the point when it moves under certain
conditions. The locus or path may often be described by equations in
coordinate geometry.

Example 6.1
A point P(x, y) moves such that it is always equidistant from the points A(5, 1}
and B(3, — 1). Find the equation of the locus of P.

Expressed geometrically, the condition satisfied by
the point Pis AP = BP.
Now AP2 = (x-52+(y-1)2,
BP?2 = (x-32+(y+1)2
Then AP = BPis equivalent to

AP = Bp2
which leads to
x=52+@p-12 = x-3)2+ @+ 1)~

X210+ 25432 -2y +l= X2~ 6x+9+y2 + 2y + 1
so that 4x+4y-16 =0
or x+y—-4 = 0.
We recognise this as the equation of a straight line.
In fact, the equation describes the line passing through
the mid point of 4B which is perpendicular to 4B.

y A
locus of P

Because of the close connection between the locus and the equation satisfied
by points lying on the locus, we refer to the equation itself as the locus.
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Cartesian Coordinate Geometry of the Circle

Example 6.2
Find the locus of a point P whose distance from the point A(1, — 2) is twice the
distance from the origin O.

Let P(x, y} be the point on the locus.
Then since PA = 2P0,

PA? = 4PO?
so that (- D2+ +2)2 = 402 +y2). Yo{é are not_m;gted
. _ recognise this
- M-t lhylady = dxl 4yl type of equation at
giving 3x2+3y2+2x -4y -5 = 0. this stage.

Example 6.3

Find the locus of a point P such that P4 is perpendicular to PB where 4 is
(0,1) and B is (0, - 1).

Let P(x, v) be a point on the locus.

The gradient of P4 1s y=1_ y—l'

x-0 X
The gradient of PB is y+l_ y+1‘

x—-0 X
Since the lines are perpendicular, the product of their gradients is — 1.
Then r=1 X yel_ 1.

X x .
‘ y2 1= g2 Again, you are not

’ expected to recognise
or x2+y2 =1, this curve.
Example 6.4

Find the locus of a point which moves so that its distance from the point
A(1,2)1s 2.

Let P(x, ) be a point on the locus.

Then P4 =2
so that P42 = 4,
(-12+@y-22 =4
sothat x2-2x+1+32-4y+4 = 4
: X242 - 2x—dy+1 = 0.

Exercises 6.1

Find the locus of a point which moves so that its distance from the
point 4(2, 0) 1s three times its distance from the origin O.

A point P(x, y) moves so that its distance from the origin is 5. Find the
equation of the locus of the point.

Write down the distance of the point (x, v) from the line y = — 1. Find the
locus of a point which is equidistant from the origin O and the line y =~ 1.

A is the point (—1, 2) and B is the point (1, —2). A point P moves so that AP
and PB are perpendicular. Find the locus of P.
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Cartesian Coordinate Geometry of the Circle

Find the locus of a point which moves so that it is equidistant from the point
(a, 0) and the line x = —a.

Find the locus of a point which moves so that its distance from the point (a, 0)
is three times its distance from the line x = — a.

The Circle

A circle is the locus of a point which moves in a plane

so that its distance from a fixed point in the plane is radius

constant. The fixed point is called the centre and the

constant distance the radius. centre

Example 6.5

Find the equation of the circle having centre C(1, —2) and radius 3.

Let P(x, y) be a point on the circle.

Then CP =3

givess CP2=9

sothat (x-1)2+(y+2)2 =09. P
X2 -2x+1+3y2+4dy+4 =9

giving x2+y2-2x+4y—4 = 0.

Example 6.6
Find the equation of the circle having centre C(2,1) which passes through the
point A(1, 2).

A(1,2) P@, y)

Whilst the radius of the circle is not given, it can be calculated by using the
points 4 and C. Thus, when P(x, y) is on the circle,
CP? = CA4?
sothat (x-2)2+(@y-1)2 = (1-2)2+2-1)2
(x-22+(@y-1)2 2
or x2+y2—4x—-2y+3 0.

Il

The standard equation of a circle

In P1, it was pointed out that to represent a straight line an
equation must be of first degree in x and y (when x and y
appear, at least). Is it possible to make a similar statement in
relation to the equation of a circle? To answer this question,
let's derive the standard equation of a circle.
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The most general equation of a circle is
(x-aP+@y-b2=1r2 b
which reduces to (£

x2+3y2 = 2ax - 2by+a?2 + b2 -2 = 0.
This suggests that every equation of the form
¥2+y2+2gx+2/y+c =0
represents a circle.
This equation may be put in the form

(v +gp+ (R = g2 f2c

so that (—g, ) is the centre and /g’ + f* —¢

18 the radius of the circle,
In summary, the general equation of a circle is

The coefficients of
x2 and y? are equal and
there is no term in xy.

Check this
by multiplying
out factors.

X242+ 2gx+2fp+c =0

with centre (— g, — f) and radius q/gz +f2-c.

Example 6.7
Determine which of the following equations represent circles. Where the
equation describes a circle state its centre and radius.

(@) 3x+y—-5 =20 (b) 32 =4x (©) x2+32+4x-2y+1=0
(d) x2+32+3xy -4y +3=0 (€) 3x2+3y2=5
(f) 3y2+x2—y =2 (g) 2x2+2y2 - 6x—-5y=0

(h) 3x2+32+6x-5=0 (i) w2 ~22=5

(a) A straight line.

{b) Curve but not a circle.

{¢) Circle with centre (- 2, 1), radius 2.
(d) Curve but not a circle (presence of xy).

(e} Circle with centre (0, 0), radius %
() Curve but not a circle (coefficients of x2 and y? are unequal)

J61

(g) Circle with centre g,g , radiug ——,
24 4

(h) Circle with centre (- 1, 0), radius \/g .

(i) Curve but not a circle (coefficients of x2 and y2 are unequal).

Exercises 6.2

1 Find the equations of the circles with the following centres and radii (plural of
radius).
(a) (0,1); 3 M 1,2); 5 (©(@23);4
@ L-1D; 42 (& @4 1);+5

2. Find the centres and radii of the following circles :-
(a) 2+ +dx+2y+4 =0 b)) x2+32-2x-4dy-4 =0
() x2+3y2-3y =12 (d) x2+32-4x =0
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(&) 42+ 4H2-8x—Ty =2 (f) 4x2+4y2 =9

Find the equation of the circle with centre (2, ~ 1) which passes through the
point (2, 1).

Find the equation f the circle which passes through the points (0, 4), (0, 9) and
(6, 0). (Let the equation be x2 + y2 + 2gx + 2fy + ¢ = 0).

Find the equation of the circle which has the line joining A(1, 2) and B(-1, 3)
as a diameter.
(The mid-point of a diameter is the centre of the circle).

A circle of centre O has equation
X4y +2gx+2fy+c=0.
The point P{ct,B) lies outside the circle.
(a) Write down the coordinates of O and the radius of the circle.
()] Find an expression for OP.
(c) A tangent to the circle from P intersects the circle at 7% Show that
PT’=o’ +p’ +2ga+2fB+c

The equation of a tangent to a circle

The equation of a tangent to any curve at a point can be found by calculus.
Here, we shall not use calculus but instead exploit the particular geometry of
the circle. In particular, let's recall that a tangent to a circle is perpendicular to
the radius at the point.

point
— tangent

radius

Example 6.8
Verify that the point (3, 5) lies on the circle
2 +3y2—4x-6y+8 =0
and find the equation of the tangent at this point.

If the point lies on the circle, its coordinates must satisfy the equation.
Substitution of x = 3, y = 5 in the equation gives
left hand side = 32 +52 — 4(3) - 6(5) + §
9+25-12-30+8§

= () = right hand side.
.. The point (3, 5) lies on the circle.
The centre of the circle is (2, 3) so that the gradient of the radius to the point
(3,5)1s

5-3 . 2,

-2

i

(WS}
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and therefore the gradient of the tangent is — i
2 Product of the

gradients of
perpendicular lines
is—1, P1L.

Thus the equation of the tangent is
1
-5 = —-—(x-3)
y 2( )
2y—-10 = —~x+3

sothat 2p+x-13 = (.

Example 6.9

(a) Find the equation of the circle passing through the origin O and the
points A(1, 0) and B(0, 1).

{b) Find the equation of the tangents to the circle at B and P(1, 1).

(c) The tangents at & and P meet at (J. Prove that the length P(} is equal
to the radius of the circle.

(a) Let the equation of the circle be
x2+y2 +2gx+2fy+c = 0.
Since the circle passes through (0, 0), we have
02+ 02 +2g(0) + 2f10) +c = 0.
¢ =0
Similarly, since A(1, 0) and B(0, 1) lie on the circle :-
12402+ 2g(1)+2f(0)= 0,

which reduce to 1+2g =240
1+2f = 0.

1. 1

g 2’f 5

The equation of the circle is therefore
x2+y2+2(—l]x+2{—i yte=20
L2 L2

or ¥ +yZ-x-y =0.

(b) The gradient of the radius at B(0,1) is
Centre is at (—g,~)

o (3:3)

The gradient of the tangent at B 1s therefore given by
gradient x — 1 = -1

so that gradient = 1.
The equation of the tangent at B is therefore given by
y—-1 =1x-0)
or y—-x—1 =0 (1)
Similarly, the gradient of the radius at P(1, 1) is
1
-3 _
L
2

The gradient of the tangent at P is therefore —1.
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The equation of the tangent at P(1, 1) is then
y—1 = -1(x~1)
or y+x-2 = 0. 2)

(©) The coordinates of O, the point of intersection of the tangents, satisfy
equations (1) and (2).

y—x-1 =0, (1)
ytx—-2 =0 (2)
Addition of (1) and (2) gives
2y—-3 =0
y = 9_
5
Substitution for y in (1) gives
3 -x=-1 =0
2
. 1 Checking in (2),
giving x =7 ';“"%‘"2"'0
13
Q kbl B
2 2
Then PO =
[1_,1] J{l_?’_] 1,11
2 4 4 2
80 PO = Lo ﬂ
N
From the equation of the circle,
x2+yl-x—y =0
the centre is ( l’—l—J and the radius is
\2 2
2 2 {_
2) 2 2 2

.. The length PQ is equal to the radius of the circle.

Exercises 6.3
Verify that the given points lie on the circles and find the equations of the
tangents at the points.

(@) (2,2); x2+y2=8

® (1,1); x2+3y2+4x+2y=38

(©) 3,-1); x¥2+y2+2x+4y—-12=0
(d) (1,-1); 2x2+ 22 +5x+8y—1=0.

The tangent to the circle x2 + y2 — 4x — 2y — 8 = 0 at the point (-1, 3) meets
the x-axis at 4. Find the distance of 4 from the centre of the circle.

Find the equations of the tangents to the circle x2 + y2 — 4x + 6y + 5 = 0 at the
points where it meets the y-axis.
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The tangent to the circle x2 + 32 — 2x + 4y — 15 = 0 at the point (-1, 2) meets
the x and y axes at 4 and B, respectively. Find the coordinates of 4 and B.
Deduce the area of triangle AOB, where O is the origin.

(a) Find the equations of the tangents to the circle x2 + y2 — 8y + 8 = 0 at the
points A(— 2, 2) and B(2, 2).

{b) Show that these tangents to the circle intersect at the origin (J. Show that
ACBQ is a square, where C is the centre of the circle.

The condition for a line to be a tangent to the circle

When a line intersects a circle there are two

possibilities :-

(a) the line meets the circle in two points, forming a

chord of the circle,

(b) the line is a tangent to the circle, touching the

circle or meeting it at two coincident points.

The points of intersection are found by solving simultaneous equations.

chord

tangent

Example 6.10
Find the points of intersection 4 and B of the line
y-x+2 =0
and the circle
x2+y2-2x+2y-6 =0
and find the length of the chord 45.

Let's solve the simultaneous equations.
From the equation of the straight line,
y =x-2.
Substitution into the equation of the circle gives
A x-2)2-2x+2x-2)-6 =0
which reduces to

2x2 —4x -6 = .
x2-2x-3 =0
o (x -3x+1) =0
Thus x =3,-1L
Substitution of these values of x into
y =x-2
gives y = 1,-3.
Then A is (3, 1), B(-1, - 3). You may reverse
, the choice of 4, B
Thus AB? = g32 +1)2+ (1 +3)2 of course.
so that AB = 32 = 42.
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Example 6.11
Prove that the line y — x + 3 = 0 1s a tangent to the circle
24y -2x-4y-3 = 0.

Our strategy here 1s to show that the line intersects the circle in one point (or
two coincident points).
Substitution of y = x — 3 into the equation of the circle gives

2+ (x-32-2x-4(x-3)-3 = 0.

L. 2%2 ~12x+18 =10

so that x2—6x+9 = 0. or use the
Then x-32 =0 quadratic formula
so that x =3 (twice).

The point of intersection is (3, 0).

Example 6.12
Find the relation between m and c if y = mx + ¢ 1s a tangent to the circle
x2+y? = g2,
Substitution of y = mx + ¢ into the equation gives
x2+ (mx+c)? = a2
x2(1+m?) +2mex +c2—a? = 0.
The conditions for this quadratic equation to contain two equal roots is

(2me)? = 4(1 + m2)(c? - a?). for
m2c2 = 2 — a2+ m2c2 — m2d?. @+ b+ =0,
’ ) ) ) b4 —dac=0
o = g«(1 +m*=)
- 2 Don't remember the
or c = tay(l+m”). result: remember the

condition for equal roots.

Exercises 6.4

The line y = — x + 3 intersects the circle x2 + y2 — 4x — 2y + 3 = 0 at the points

A and B. Given the point ((3, 2) show that AC and BC are perpendicular, Is

( on the circle?

Find the length of the chord made by the intersection of the line x + y = 4 with

the circle x2 + y2 = 25, Hint : retain the surds.

Find the point at which the line x = 4y — 3 = 0 touches the circle

x2+y2—d4x -8y +3=0.

Find the values of m if y = mx is a tangent to the circle x2 + 32— 10x + 16 =0

and hence find the equations from the origin to the circle.

(a} Find a relation between m and ¢ if the line y = mx + ¢ passes through the
point (1,2}.

(b) Find a relation between m and ¢ if the line y = mx + ¢ is a tangent to the
circle x2 +y2 = 4,

{c) Use the results of (a) and (b) to find the equations of the tangents from the
point (1, 2) to the circle defined in (a).

Find the equations of the tangents of gradient % to the circle x2 + y2 = 4.
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The intersection of two circles
Two circles may or may not intersect. If they intersect they may intersect in
one or two points.

OO O OO

No intersection Two points of Touching circles, one
intersection point of intersection

When the circles intersect in two points, they have a common chord; when
circles intersect in one point, they have a common tangent.

It is easy to check whether circles intersect and, if they do, the number of
points of intersection. In the following, the circles have centres C, C, and

radii ryand r,.

(a) No intersection

The distance between
the centres is greater than

In this case, the distance C;C) > r{+ry. the sum of radii.

(b) Two points of intersection

}

In this case, C1 Cy < ri+rs.

The distance between
the centres is less than
the sum of radii.

(c) One point of intersection {circles touching externall

The distance between
the centres equals the

In this case, C; Cy = ry +ry. sum of the radii.
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(d) One point of intersection (circles touching internally)

The distance between
the centres = difference
of the two radii.

)
C

In this case, Cl Cz = K1

Example 6.13

Investigate whether the following pairs of circles intersect. Where they do,
state the number of points of intersection.

(@) x2+32—4x~2y+1=0; x2+y2+4x-6y—-12=0

(b) x2+32+2x=0; x2+y2—6x—4y+9=0

(c) x2+3y2=16; 5x2 +5y2 - 18x — 24y + 40 =0

(d) 2+y2+4x—dy+4=0; x2+32-2x—dy+4=0

(a) For the first circle, the centre is (2, 1) and the radius is
V22417 -1 =2,

For the second circle, the centre is (—2,3) and the radius is

V)2 432412 = V25 =5.
The distance between the centres 1s
V(=2-2)2 +(3-1)? = V42 +2% = J20.

Now the sum of the radii > distance between centres so that the circles

intersect in two points.

(b) For the first circle, the centre 1s (~ 1, 0) and the radius 1s

N=D2 407 -0 =1.

For the second circle, the centre is (3, 2) and the radius is

V3242?79 =44 =2,
The distance between the centres is /(3 + 1)2 +22=420.

Now the sum of the radii < distance between centres so that the circles do not

intersect.

(c) For the first circle, the centre is (0,0) and the radius is
V02 402 —(~16) =4.

For the second circle, the centre is (2,—-
35y

2 (' P 2
and the radius 15\/(2} + | 12} -8 =1.

s

. . ( 9 N (12 .\
The distance between the centres is \g-—O +|——0] = 3.
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Cartesian Coordinate Geometry of the Circle

Now the distance between the centres = difference of the radii so that the

circles touch internally.

(d) For the first circle, the centre is (— 2, 2) an the radius is
J2)P (22 -4 =2,
For the second circle, the centre is (1, 2) and the radius is V12422 -4 =1.

The distance between the centres is \/(—2 ~1?+(2-2)* =3.

Now the distance between the centres = the sum of the radii so that the circles
touch externally.

Orthogonal Circles
If the tangents to two circles at their points of intersection are perpendicular,
the circles are said to be orthogonal.

VN
v,

In this case, if the radii are »; and r, and C;C; = d is the distance between the

centres, it follows by Pythagoras' Theorem that
dQ = r12 + I‘22.

Example 6.14
Show that the circles
x2+y2—2x+2y—-9 =0
x2+3y2+12x-3 =0

are orthogonal.

For the first circle, the centre is (1, — 1) and the radius is V11,
For the second circle, the centre is (— 6, 0) and the radius is4/39.
The distance between the centres is

J=6-1)2 +(0—(-1)? = 30.
Then the sum of the squares of radii is

(V12 + (Y392 = 11+39 =50,

which is the square of the distance between the centres.
Thus, the circles are orthogonal.

When the circles intersect, it is straightforward, in principle at least, to find the
points of intersection.

Example 6.15
Find the points of intersection of the circles

2+yr =1, (1)
x2+3y2+2x—4y+3 = 0. (2)
We have to solve these equations simultaneously.
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Subtracting (1) from (2), we have

2x~4y+4 =0
or x—-2y+2 =0. (3)
(3) describes the common chord of the circles. To find the points of
intersection of the circles, we find where the common chord intersects one of
them.
We substitute from (3) into (1) for x.

From (3}, x =2y-2
Then (1) becomes,
2y -22+y2 =1
so that 592 -8y+3 =0 or use the
. Gy-3)y—1) =0 quadratic formula
5’
Wheny‘—'g, x =2><§-2 =—f,
5 5 5
y=1, x =2x1-2 =0

The points of intersection are therefore (—
\

hal

3\
’EJ’ and (0, 1).

Exercises 6.5
Show, without finding the points of intersection, that the circles
x2+y?=4and x2+y2 —4x—2y—4 =0 intersect in two points.
Show that the circles
x2+32+10x-4y-3=0 and x2 +32 -~ 2x -~ 6y + 5 =10 are
orthogonal,
Show that the circles
5x2+5y2 - 6x-8y=0
X2+y2-6x-8y+16=0
touch each other.
The circles
x2+y2—6x-8y+9=0,
x2+y2=09,
intersect at two points.
Find the coordinates of the point where the common chord intersects the line
joining the centres.
Prove that the circles
x2+3y24+x+3y=0,
and x2+y2-2x-6y=0
touch each other. Find the coordinates of the point of contact and the equation
of the common tangent at that point.
The circles
¥2 + y2 = g2
and  x2+32-10x~24y+105=0
touch externally at a point. Given that ¢ > 0, find the value of a.
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Move Differentiation

Chapter 7

More Differentiation

Differentiation was introduced in P1. There, a first principles approach was used to
differentiate polynomial functions.

This chapter has two main aims. First, it develops some techniques of differentiation
to supplement the first principles approach.

Secondly, it considers the differentiation of some additional functions.

Note that in this chapter we abuse notation by referring to f{x) as a function.

7.1 Differentiating composite functions (function of a function rule)
It is essential, before considering the differentiation of composite functions, to
recognise composite functions when they occur.

Example 7.1
Identify the composite functions in the following.
(1) (x+2)? (i1) sin 3x (i) x(x +2)
2
(iv) cos(x? +2) (v) x sinx (vi) -
x+2
(vil) x2* (vili) V1 +x (ix) 3

Here we attempt to put each function in the form f{g{x)) where f and g are
functions to be identified.
(1) Composite. {x + 2)? may be considered as f{g{x)) where g(x) = x + 2 and
fx) = x2,

(ii) Composite. Sin 3x may be considered as f{g{x)} where oo that sin 3
g(x) = 3x and f{x) = sin x. @S
(iit) Not composite. x{(x + 2} is not of the form f{g(x)) but is

of the form f{x) x g(x) where f{ix) =x, glx) =x + 2. > -
(iv) Composite. Cos(x2 + 2) is of the form f(g(x)) where cocsg x*’é)fg;“
g{x)= x%+ 2 and f(x) = cos x.

(v) Not composite. x sin x is the product of f(x) = x, g(x) = sin x.

(vi) Not composite.

1s the quotient of f{x) = x?
and gx) = x+ 2.

(vii) Not composite. Product of f{x) = x, g{x) = 2¥.

(vii) Composite with g(x) =x + 1, flx)= Jx.

(ix) Composite with g(x) = 3%, flx)=x+5.
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Exercises 7.1
Identify the following as composite or non-composite functions. In the case of
the composite functions, identify the inner and outer functions (g(x) and f{(»)
respectively).

() xsin3x () Vvx*+2x+1 (i) tan(5x+7)

(1v) (¥ +3)(x*+3) (V) (x2+3)% (vi)

sindx
{vil) (x+3)2+5 (viil) 6 +7 (ix) (x+3)cosx

We obtain insight into the differentiation of composite functions by the
following examples.

Example 7.2

Differentiate the following by first multiplying out the brackets. For
convenience we label all the functions as k{x).

O k(x)=0Cx+22 {) kx)y=0x2+.1)F (i) kix)=(7x2-2)2

2+
?§x+lléx+4 (a+ by =d +2ab+¥

6(3x +2) = 2.3(3x +2). @
will become clear.

x*+ 2x3+ 1

I

(1) Now  k(x)
S0 k'(x)

Il

Il

(i) Now k{x)

S0 K(x) = 4+ 4x = 4x(x2+ 1) = 2.2x(x* + 1).
(ili) Now  k(x) = 49x%-28x2+4
S0 k'(x) = 196x3 ~ 56x

i

28x(7x2 = 2) = 2.14x(7x2 - 2).

We summarise the results below.

Function Derived Function

(Bx +2)2 2(3x+ 2).3 The reason for
(2 + 1) 2062+ 1).2x B factors s
(7x2 - 2)2 2{?):2 — 2).14)5 soon be apparent.

In each case,
k(x) = (expression)?
and kK'(x) = 2(expression) x derivative of expression :-

Ix+2 3
2] x2+1 X 2x
Ix2 -2 14x

The general rule suggested by the above examples is valid.
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Exercises 7.2
Check that the rule

‘if k(x) = (expression)?, then k'(x) = 2(expression) x derivative of expression’

holds in the following cases.
(1) k{x) = 2x~3) () k(x)=(Cx+ 4% (i) k(x)= &* +x)%

A similar rule applies for different powers of the expression.

Exercises 7.3
Check that if
k(x} = (expression)?
then k'(x) = 3(expression)? x derivative of expression
for (i) k(x) = (x+1)3
(i) k(x) = (2x~-1)
(i) k{x) = (x2+ 1)

3

@x-1Y =8«

G+1)Y=x+3"+3x+1
-1;'>.xz+6x—1
G+ =x"+3x" +35+1

The generalisation of the results considered in exercises 7.2 and 7.3 is the

following :-
Rule ()
If k(x) = (expression)”
then  k'(x) = n(expression)”~! x derivative of expression.

This result applies in fact if # is a positive, negative integer or rational
number.

Example 7.3
Use rule 1 to write down the derivatives of

() 5x+6)7 (i) @x—=1)1  (iii) (2x3 +x2 - 4)-32

(i) If k(x) = (5x+6)
then k'(x)

Il

O(5x+ 601 x (5)) —— T derivative of 53+ 6 3

45(5x + 6)8,
where for convenience we group factors finally.

(i)  For(2x— 1y"l, expression = 2x—1 and n =-1.

Then derivative is — 1(2x - 1)71"1x (2) —— {dem
= —(x—-1)2x2

_ 2
(2x-1F
(iiiy Expression = 2x3+x2-4, n= - %
3 derivative of
Derivative =- 5(2):3 +x2 — 4y 321 (6x2 + 2x) <—— 27 +xF -4
= = 3x(3x + 1)(23 + x2 — 4)-512
= —3x(3x +1) Note that
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Exercises 7.4
Use Rule I to write down the derived functions in the following cases :-

(1) (9x-2)4 (i) (3x2+2)! (iii) (x2+3x+4)2

(iv) (2x+ 1)112 (v) (x7 + 4x3)3 (vi) %ﬂ

(Vil) (}{,2 - 4x + 2)*‘532 (VIII) W (IX) [ i}

x) [xz + -)I;T (xi) K'%x + 1, + %T (xii) (’71: - —j_i
X N X

Rule | may be rewritten as follows :-

let y =g
so that y = f{g(x), g(|x) was c;aH?d
vhete {9 = e

Then % = n(g)n-1g)

can be written as

% ~ £(g0)) £00).
Thus Rule (1)
Ty - fg0)

The significance of
this rewriting will
become apparent later.

then % = £'(g() % gx)

[' is a general rule whatever the functions f and g. The rule, of course,
concerns the differentiation of composite functions and is often referred to as
the function of a function rule. We shall obtain practice in the use of this
rule with other functions later.

For the moment, we confine the discussion here to giving a proof of (I'),
followed by some further examples. The proof of I' is non examinable.

Let y = f{gk)).
If u = g(x) then
vy = f(u).

If & x is a small increase in x and du, 6y are corresponding small increases in u
and y, respectively, then

&y _y
& cfu éx
Then as & — 0,

‘We assume that the

9—}1 = hmé—nhm[@ &Jj

dx &-0dy S0\ du  dx limit of the product
. é} is the product of the
= lim hm — limits, a non-trivial
&0 du &0 dx result, incidentally.

dy du

= — X PR—

du  dx
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More Differentiation
= 1'(u) x g'(x)
'(g(x)) x g'(x).
This establishes Rule I'.

Y = o)
% - £ig) g00).

]
Tl
gq R
S
N’

If
then

The method of proof given above suggests another method of representing the
differentiation of composite functions.

Example 7.4

3 3
(1) If y = (x*+3x2+1)? wemay write y = u? where

u=x3+3x2+1.

Then ¥ - du
du dx
NN

1
= éu2 X (3x2 +6x)
2
= %x(x +2)(x3 + 3x2 + 1)%,
on factorising and restoring the function u = x3 + 3x2 + 1.

(ii) If y= {x“ +6x° —2]

X
7 4 2 2
then y= u~2 where u = x” +6x" ——.
X
1 3
Now Y _ —lu_z“1 = - lu—z (from P1)
du 2 2
d
and o

dx
2

43+ 12x + —
X

Il

3

Thus Y —l(x4+6x2—z] x{4x3+12x+%]
2 X x°

- [2x3 +6x + —%J[x“ +6x° - gj )
x x

. . 2 o
on restoring the function u = x* +6x2-Z and dividing by 2.
X

Exercises 7.5

Find % in the following cases :-

5
2

DHy=x4 (@{)y-= (x%—l} — (iii) y = (3x2 + 5x - 61)
x
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p s
(iv) y = L9x4—?x3—%) M y=— 16
x Tx” =3x" +2x+1
. 1 . 1
v)y=-——"3 (vii) y =
(2):’—73:2-I~1)2 362 £ 55— L

(viii) y= [«/§+\/—2;-+3)_ .

We now leave differentiation of the composite function briefly and consider
the differentiation of the so-called exponential function.

The function f(x) = ¢X and its derived function
Functions such as 2%, (1) were discussed in Chapter 5. The functions are

special cases of the general function f(x) = ¢* where @ > 0.
To differentiate f(x) = &* we may proceed as follows.

This is non

. examinable.
We let y = a¥ and dx, dy be corresponding small

increments in x and y respectively.

d . ;

Now S
and y+ 5y = axtox,
Then oy = a¥tox _ gx
x+8x x
o &y _aT e
x Sx
and v . hm —
dx &0 X so f'(x) =lim 4@l
x+8x a* h—0
= lim =4 lim 9;1)
B0 ox h—0 \ A
a* r adx - lj
= lim —
de—0 o
( a(;"C - l) (ak - 1]
Wenote that  lim -~ and lim are expressions for the
K0 X h—0  h

same [imit.
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()
h

The value of the limit is dependent on ¢. To make progress, we consider the

The form hm will be considered here.

h—>0

graph of y = a* where @ = 1. The graph is as shown.

Y A
y=da
All the curves of
the form y = &
B(h, ah) pass through the
_’,/A' : point (0, 1).
0 X

The points A(0, 1) and B(h, a®) are shown on the graph.
The slope of the chord AB is then

e B

difference of y's

difference of x's h-0 A
As h — 0, the slope of the chord tends to the slope of the tangent at 4. In
other words,
h
slope of tangent at A = lim ﬁ—-—~~~~1~.
h-0 A

We investigate this limit for various values of a by means of a calculator. The

¥* button on the calculator should be used. The results are quoted correct to 2
decimal places.

F-1
Values of
h

a X h=01 | A=001 | =0.001 | Approximate

limit
i ¥ =1 0 0 0 0
2 2X 0.72 0.70 0.69 0.69
3 3x 1.16 1.10 1.10 1.10
4 4% 1.49 1.40 1.39 1.39

In passing it should be noted that when a = 1, ah =1h =1 for all values of k

S0

a’ -1

1" -1

h

1

"“‘[O

/1_1

The last column in the table gives approximate values of lim a_} ~~~~~~~~~~~~~ for
f>0 1

various values of a.
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Recalling that if f{x) = a*, we see that since

h —
Fl) = aflim &
h=0 &
the approximate derivatives for 1%, 2X, 3% 4% are as shown in the following

table.

f{x) f'(x) (approximately)

1% 0 Except for 1 the
derivatives are the

X X

2 0.69 x 2 original functions

3x 1.10 x 3% multiplied by

4x 1.39 x 4% (different) non-zero

) constants,
Table 1

In the table, the coefficients are given correct to 2 decimal places. The values
of the coefficients for other values of a can be found by means of a calculator.

Exercises 7.6
k1

Show that lim 2.7

H—50

~ (.99,

and hence write down an approximate derivative for f(x) = 2.7%.

h ot
Show that lim %72 I
h->0

~ 1.001

and hence write down an approximate derivative for f{x) = 2.72%,

We deduce from Table 1 and the solutions of Exercises 7.6 that

a ~1

lim = 1 for some value of g between 2 and 3. In fact from the

W0 A

solutions to Exercises 7.6 this value of a is between 2.7 and 2.72. This
number is called e in mathematics and has approximate value 2.718282,
correct to 6 decimal places.

The significance of e is that if f(x) = &*

then f'{lx) = 1 xeb = et

This is a remarkable result and bears repeating :-

the derived function of f(x) = ¥

is f'{(x) = e, the same function.

-
1

Rule{) 11 fx) = e
then £'(x) = ¥,

The function e* is of fundamental importance in mathematics due to the fact
that it is unaltered by differentiation.

Being a function, e* can be used in the same way as other functions. In
particular, it can be involved in the composition of functions.
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Example 7.5

. » . . . 2
Differentiate the functions (i) e+ (i) e* ****+2

(1) The function is f{g(x)) where g(x) =2x + 1 and f(x) = &%
Then its derivative f '(g(x)) x g'(x)
«

f(x) = &
e =g,
f'gx)=¢e

Alternatively,
y = ¢t where u=2x+1.
Then g}—} = g}ix @-
dx du dx
= eg¢x2
= 262)6"‘1'

(i1) The function is f{(g(x)) where g(x) = x2 + 4x + 2 and *f(x) = o~
Then the derivative is £'(g(x)) x g'(x)
74 4

2
— eX +4x+2 x (2x+4)
— (r)x_i_ 4)6):2«}-4):4-2

or if y = e whereu=x2+4x+ 2,
then —dg-:@ix(-iﬁ
dx du  dx
= el x (2x+4)

(2x+ 4)6)(24‘4}{-%'2.

i

It is useful to streamline the differentiation of functions such as e&(),

if y = e8)
then y = e¥ whereu = g(x). ,
dy  dy du F =f'(gxeg®
Thus ?‘; = :i; X a dx = esf-") £
= el xg'x)
— o2) x g(x).
Rule (TiI)

If y = ¢8(x)
dy
th = o8(¥) g'(x).
en e g'(x)

The result, therefore, of differentiating elexpression) jg

¢CXPICSSION x derivative of expression.
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Exercises 7.7
The following examples make use of Rule III.
Find the derived functions of
"l

() e Gi) e* i) e 2 (iv) e

(v) e* (vi) e (vii) g¥ 51

Loge x and its derived function

The function f(x) = e* has derived function f'(x) = e*. This derived function is
positive for all values of x and the function f(x) is therefore an increasing

function. The graph of f(x) = e* is as shown.
y

The function f is one-one and has an inverse f
-1

In Chapter 5 the

We define the inverse of f (given by inverse ‘Of
f(x) = &%) to be £ "1 (x) = In x or loge x. fx) =10 was
f = log ,, X,

This inverse function is called the logarithmic
function to base e.

The graphs of f(x) =e* and —l(x) =1nx are
shown below.

the logarithmic
function to base 10.

The graph of f —1 is the reflection of the graph of fin the line y = x.

Now, by definition, the action of f (or f ~1) reverses the effect of f 1 (or f).
Thus ff-1x) = x

or f_lf(x) = x

Since f(x) = ¥ and f ~1(x) = In x, we have:-

Rule (IV)

eln(®) = x (1)
In(e®) = x. (2)
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The logarithmic function has a number of other properties which will not be
discussed here. We confine our discussion to the differentiation of In x.
The result (1) in Rule IV, taken with Rule III above, may be used to find the
derived function of In x.
Suppose g(x) = Inx. Then (1) above may be written as
8 =x. (3)
Differentiate both sides of (3) with respect to x.
The right hand side, 1.e., x, becomes 1 when differentiated. What about the

differentiation of e&(*)?

By rule I1I, ¢&() becomes ¢&(X) x g'(x) when differentiated.
Thus if el = x

then e8(0) x g'(x)= 1

50 g(x) = FE)
Recalling form (3) that e8(x) = x,
we have gix) = l
Thus Rule (V) )

If gx)=Inx

&“}%E[

g

- E‘
=

then g'(x) = —1-
X

The function In x may be composed with other functions e.g. In(3x2 + 2),

3 In(x + 2), In(e3X + x2 — 5) and so on.
Such functions may be differentiated using Rule I'.

Example 7.6
Differentiate the following functions :

(1) In2x (i1) In x? (1) In (x —-1—} (iv) (nx)?2  (v) ln(l}
X x

(i) Now In2x = f{g(x)),
where  f(x) = Inx, f'(x) = 1
X
gx) =2, g =2
1 1
and f'(g(x)) = = ) e L
€)= == = Fe=3
Thenif y = In2x, f'(gtx) = 5t7)

dy 1 1

— = {Ygx) g'x) = —x2 = —.

dx (80 g 2x X 1t is no coincidence
Alternatively, that In 2x and In x
£y -z have e s
then y = Inu whereu=2x.

Thus, Q = El}i x Q
du  dx

= _1_><2 = —]-><2 = l

U 2x X
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(i)  Using the alternative approach,

y=lInu where u = x2

and dy _dy du
dx du dx

= e x2Xx = —2><2x = 2

4 x X

n) y=Inu Whereu=)c~i
x
Y du

dx du  dx

and

1

—_— = ey

1 (1 N %} differe;ﬁat?(’i gives
w 1)) =%
_ o
T
X
_ P |
.X3 - X ’

on multiplying top and bottom by x2.

(iv) y = u? whereu=1Inx.
Then d—y = d—yxég
dx du dx

= Jux L = 2na)x~
X X

= ~Inx.
X

(v yv=1Inu whereu:l.

dy dy du
dr du dx
N
U xz
=t 121
1 x2 x
x

Differentiation of functions of the form In(g(x)) may be streamlined.
If y = In(glx))

S0 y = Inu where u = g(x).
Then L. Y X du
dx du dx
"(x
8(x)
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Rule (VD)
Thus1f
y = In(g(x))
b _ g™
dr  g(x)

Then we may differentiate In(x2 + 3x + 4) immediately to obtain
2x+3 g'(x)w
F3x+4 L gx) )

Exercises 7.8
The following exercises make use of Rules I — VI. You may assume that
where necessary sums of terms may be differentiated term by term.

Write down by means of Rule VI the derived functions of the following :-

@) In (5x) (ii) In (6x +5) (iii) In (x2 + x)
(iv) In [—12-} (v) In(9x2 +4x +3) (vi) In (xz +i}
X \ X
(vil) In (x7 + 1) (viii) Inx ? (ix) In((x+1)?)
) In (2 +x)3) (xi) In (e2r) (xii) In (5)
Differentiate
() ent*+h i) (Inx)? (i) e™  (iv) edhne

Find the derived functions of
f(x) = In (%), g = In(4), h(x) = In(7)
and show that h'(x) = {'{x) + g'(x).

Show that if f(x) = In (x) then f'(x) = —.

x
Show that if k(x) = In(x?), m(x) = In(x%), n(x) = In(x?)
then n'(x) = k'(x) - m'(x).

Show that if f{x) = In(e¥) then {'(x)=1.
Which other function has derived function 17

How do you reconcile the results? (Hint : see Rule [V, (2))

Show that if f(x) = el X then f'(x) = 1.
Explain the result.
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More techniques of differentiation
In P1 it was pointed out that a function consisting of the algebraic sum of
multiples of powers of x and constants may be differentiated term by term.
In fact, sums of any type of functions may be differentiated term by term.
Thus, if

mx) = x*+ 93 +e¥+Inx

then m'(x) = 4x3+27x2+e%+ -}—
x

Term by term differentiation is justified as follows.

For convenience we
consider the sum of
three functions. The
proof carries over to

Suppose y = f(x) + g(x) + h(x). 1) any finite sum.

Let 6x, by be corresponding small increments in x

and y respectively.

Then y+38y = f(x +8x)+ glx + 8x)+ h{x +8x) . (2)

Subtract (1) from (2) and group terms in f, g, h on the right hand side.

Iy = flx +6x) — f{x) + g(x + dx) — g{x) + h{x + 6x) — h(x)
&  f(x+d)-f(x) g(x+06x)—g(x) h(x+08x)-h(x)
and o + +
K Sx ox dx
Thus d_y = lim Q
dx S0 O
 lim [f(x + aai)-f(x) LB ci)i) —8(x) | h(x+d) - h(x)\3
Fe-»0 o ox o J
\2
= £'(x) + gx)+ h'(x),

assuming that the limit of a sum of terms is the sum of the separate limits,

Rule (VII)

Thus the derived function of f{(x) + g(x) + h(x)
s f'x)+ g+ h(),

a result which generalises to the sum of any
finite number of functions.

‘We are therefore justified in differentiating
eX+In(x2+ 1) +x2+3x+5

d oL
a5 oF 4 22X tox 3 (40
x“+1

Exercises 7.9
Differentiate the following functions :-

(1) Inx+eX () In@2+1)+x2+1 (i) e3* +x*+2

(v) m(2Z+x)+e742  (v) In(eX¥+x) (vi) In (exg +x)

(vil) In (3x2+2) +(x - 5)2  (vii)) In [ex + 1 + 21 (ix) In(e¥ + )
x )

(x) e+’ (xi) (¥ —x+ 2}



@

(i1)

(iif)

More Differentiation

Whilst the techniques introduced so far have been useful, there are problems
which camnot be treated by these techniques. For example, how do we
differentiate,

(1) x¥¥* or (i) x7 In(x2+1)?
Now we are able to differentiate x3, e, x7, In (x? +1) as separate @

terms but does this enable us to differentiate (i) and (i1)? In fact,
it does, but we require another rule.

We note that x3¢¥ and x7 In (x2 +1) are neither sums of
functions nor compositions of functions. In fact they are
both of the form f{x) % g{x), i.e. products of functions.
The appropriate rule for differentiating such cases is, not
surprisingly, known as the Product Rule.

The rule is
Rule (VIII)

or vice versa

%(f(x)g(x)) — ') + g ).

.B. The rule is not

Thus to differentiate a product of two functions : we
differentiate the first and leave the second alone, then
differentiate the second and leave the first alone, and add
the two components so obtained.

d
fix)g(x)
&E f'(x)g'(x)

Example 7.7
Differentiate (i) x3e* () x7Inx (i) 2 (x +1)20

fx) = x%, gl = &,
') = 3x2,  glkx) = &,
S0 i(x3e’f) = e¥3x2 + x3.e¥
dx

= x2¢%(3 + x), on taking out common factors.

flxy=x7, g = Inx,

) = 760, g) = %

I

(In x).7x6 + x7. 1
x

7x6 Inx + x6
(7 Inx+1).

d
so —(x7 Inx
dx( )

flxy=x%, g = (x+D%,
f'(x) = 2%, g(x) = 20(x+ 1),

$0 %(x2 (x+1)20) = (x +1)202x + x2.20(x + 1)19

(e + 119 [2(x +1) + 20x]
X+ 1)19[22x+ 2]
2x(x+ D9 [11x + 1]

Notice that the function
of function rule is
used to find g'(x).
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More Differentiation

For completeness, we give the proof of Rule VIIT and give an alternative form
of the rule.

Let y = f(x)gx)
or y = uy, (1)
where u = f{x), v= g,

Now let &, du, Jv, Jy be corresponding small mmcrements in x and y
respectively.
Then y+ &= (u+ u)v+ &) 2)
Subtracting (1) from (2), we obtain
y= (ut+ ou)yv+tov)—uv
= U +tvou + oudv.

and
N
Then ¥ . Hm (Q = lim (ué+v£&i+%j
dx ; ‘ S

dv du
where u = f(x), — = g'(x), v = g(x), — =f'(x).
re U ()dx x g()dx (x)

Thus Rule VII may be written as
d du dv
—(uv) = y— +u——

dx dx

or as given previously,

%(f(x)g(x)) ~ (') + fWE (). (b)

(a)

The form VIII (a) is usually the more popular form with students and is often
remembered as
d(uv) = vdu + udv
or in words
"dee uv equals v dee u plus u dee v ".
Either form may be used in practice, of course.

Example 7.8
Differentiate (1) x22x+1) (i) 2+ D Inx (i) e InGx*+x+1).
@ u =2, vo= 2+ 1)3,
du dv
— =2, — =32x+1322 f(x) =x", g() = (2x +1)’
dx dx £'(x) = 2x, g'(x) = 6(2x +1)
= 6(2x + 1)2.

[Note in passing the use of the function of a function rule to
differentiate (2x + 1)? or (expression)3].
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More Differentiation

Then the result 1s
(2x +1)3.2x + x2.6(2x + 1)?

Il

2x(2x + 1)2[2x + 1 + 3x] (factorising)
2x(2x + 1)2(5x + 1)
or 2x(5x + 1)(2x + 1)2.

il

i) fix)=x*+1, gk =lnx
1) = 2x, g0 = %

The result is

In (0. 26 + G2+ 1)t = 2xInx + L2+ 1)
X X

Use brackets
to distinguish
between terms

= x2Inx+ 1)+ 4
X

(i) u= e, v = In@x+x+1)
3
éﬁ:gezx, dv 1%{‘ +1 _
dx  3x% 4+ x+1

fl

Use Rules IIT and
VI to differentiate
¢” and In(3x"+x+1)

The resuit is
12x° +1
3xt 4 x+1
12x° +1 |
3x4+x+1J'

In(3x* + x + 1).2e2¥ + 2%,

= e“[2 In(3x* + x+ 1)+

One further technique must be considered : the quotient rule. The quotient
rule 1s concemed with the differentiation of functions such as

. X . 1n(x3 +4)
i i) ————=
® x% 41 @) 3x+1
1.e. the functions of the form
/
LETp i‘.)
g(x) WV

We state and use the quotient rule before proving it.
Rule (IX)

iy = 1)

g(x)
then ¥ = EDD =L@
dx (g(x))
=f
alternatively, if y =2 u=1t)
v v=g)
du dv
V— —
i(ﬁj = _dx dx )
dr\v v
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(i1)

(iif)

More Differentiation

The u, v form of Rule IX is again the more favoured form of the rule and is
remembered as

vdu — udy

d[ﬁw = T
V/ Vv

or in words, 'dee u upon v equals v dee u minus u dee v all over v squared'.

Rule IX in either form is known as the quotient rule,

Example 7.9
Use the quotient rule to differentiate
3 3
. " -1 oy 1 +4
R 1) S 1 L Sl
x“+1 x”+1 3x+1
enc = 2
o d: L fx) = x, g(x) =x"+1
— =1, e f'ixy=1,gx) =2x
dx o dx
The rgsult 18 , ) Warning : commeon errors are
(AN I-x2x  x"41-2x () getting the terms on the top
(x> +1)? (x* +1)? in reverse order or
1— 52 (b) writing the top as
{(x*+1 o ax
u=x3-1, v =x3+1,
& 3x2, A
dx dx

The result is
(x> +1).3x% = (x* =1).3x2

3 2 Use brackets and
. (7 +1) note the change of
30 +3x7 —3x° +3x2 sign when the brackets
= are removed.
(x3 + 1)2
_ 6x°
(x3 + 1)2

u=In(x3+4), v =3x+1,

du _ 3xP v
E dx '
The result is

2

(3x+1).$ ~~~~~~~ ~In(x? +4).3
X" +4

2

(3x+1)?
no significant simplification being possible.

We defer the proof of Rule IX until the following exercises have been worked.
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More Differentiation

Exercises 7.10
Use the quotient rule to differentiate the following :-

ox=1 ol X B .. 5-3x 1
i 1) — 11 v v
@ x+1 (i) Inx (i) x+2 (@) 5+ 3x ) x+1
x _ 2 X X
i) e‘ 1 (vii) Inx (vii) X 22x+1 (ix) e €
e* +1 e* x“+3 e +e "

The adage ‘practice makes perfect’ is an apt description of differentiation. For
that reason some additional miscellaneous exercises are given here. The
various rules are brought together to assist the reader.

dy
* &
r f(g(x)) f'(g(x)) x g'x)
i . oX
I e8(¥) e8(0) x g'(x)
v elnx =y 1
In(e¥) = x ]
vV Inx —1-
x!
VI In(g(x)) g'x)
g(x)
vil fx) + g(x) + h(x) f'x) + g'(x) + h'(x)
VIII " } "%* us
fX)8M)] - gy (x)+ F(0)g' (%)
du dv
y— -
X u _dx dx
v v2
or
f(x) g(x)f'(x)-f(x)g'(x)
g(x) (g(x))?
a*(a>0) a*lna

The differentiation of o* is the subject of question § in the next exercise.

Exercises 7.11
Differentiate the following with respect to the appropriate variable.

4 f—
(i) P32 tx+24+ 5 (i) xnx iy =1
X xT+1

(iv) (x2+ i3 (V) J1-x (vi) e~
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More Differentiation

(vii)  x(In x)2 (viii) \/xlﬁ (ix) (X + 1) In(e¥ + 1)
x) . ! — (xi) x(1 - x) (xi) x(1 —x)!10
e +e -
N
(xiii) x4+ — (xiv) (x 41 nx  (xv) 17“
X Xy x°+1

Find the slope of the tangent to the curve given by y = &1— at the point (1, 1).
X+

(The slope of the tangent is the value of jx—y at the point in question, see P1).

) 2
Show that ify = 2L then S2 = -2
x+1 dx (x+1)

2
Find the slope of the tangent to the curve given by y = e* %
at the point (1, €2).

Find the maximum and minimum values of the function f given by

x
f{x) = .
¢ x? 41

Find the maximum and minimum values of the function f given by

{(x=2).

flx)y = x+
x —
Find the coordinates of the maximum and minimum points of the curve given
by y=x2e7*,

From Rule 1V, it may be seen that ella =4 {a > 0) and thus a* = e(ln a)x,
Use these results to show that

d
Z(@) = a*In > 0).
l(a) a*lna (a>0)

Differentiate the following with respect to x.

() 2¥ () x3% (i) 5 (v) 3¥Im@Bx+1)  (v) 3%e.

X
Postscript to Section 7.4 (non-examinable)

For completeness, we give the proof of the quotient rule (Rule IX) here, i.c.
du dv

V——u— 0= 1)
we show thatif y = £ then Y _ _dx  dx @
v dx v2
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More Differentiation

We prove the rule by means of the product rule as follows.

Given y = E,
v
we obtain yvo=u
Differentiating both sides with respect to x.
d ) = du
dx dx

Now yv is a product and the product rule may be used to differentiate it as
follows: keep the second (v) fixed and differentiate the first (y), then keep the
first fixed and differentiate the second, and add the results.

dy dv du
Vo p— =
dr “dx  dx
& _d_ b
& dr T dx
S0 % = %%_%% (on dividing through by v).
Thus Y _ 1 % - -(B)- ('Py:EJ
dx v dx v dx Y
du  dv
—_u—
- dx  dx
2
du  dv
d (u v-d;—ua
or —| = = ——.
dx[v) v?
In terms of f{x) and g(x) : -
d (fu)) _ g (D) -f()g'(x)
dr {g(x) (g(x)’
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Differentiation of Trigonometric Functions

Chapter 8

Differentiation of Trigonometric Functions

This chapter is mainly concerned with the differentiation of sin x, cos x, tan x, sec x,
COSEC X, COL X.

8.1 Differentiation revisited
Differentiation was introduced in P1. The derivative or derived function of the
function f{x) was defined as

£'(x) = Hmﬁ’i*_f*)_‘ﬂﬂ
=0 h

dy lim f(x+dx)—£(x)

dx &x—>0 ox

or , where y = {(x).

8.2 Differentiation of trigonometric functions
To differentiate sin x from first principles we would need to find
lim sin(x + 8x)—sin x

Br-2( dx

or alternatively

lim

h—0

sin(x + 4)—sin x

Here, we do not pursue this first principles approach but settle for stating the

result.
If y=sinx,
—dl = COS X .
dx

Also, if y=cosx,

d .
2 = _sinx.

dx

Note the negative
answer,

Differentiation of tan x may be achieved by using the
derived functions of sin x and cos x and the quotient
rule (Chapter 7).

tan x may be
differentiated from
first principles but
is not done so here.
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Differentiation of Trigonometric Functions

sinx u
Let y = tanx = = — (say).
cosx v
d (e : d
d cosx--(sinx) —sinx-*-{cosx)
Then oA de 5 dx
dx cos” x
_cosx{cosx) —smx{—sinx) See carlier
- 3 results
cos” x
_ cos? x +sin® x cos 2x +sin*x =1,
cos? x see P1.
1
cos’ x

= sec? x, since sec x = .
cosx

The derived function of tan x 1s sec? x.

We now differentiate sec x = You are not expected to have any other

COSs X
knowledge of sec x at this stage.

To differentiate sec x, let's observe that sec x =
cosx

(cos x)~ L.
The derived
function of (f(x})” is
n(f(x)) " x (),

see Chapter 7.

d d -
Th i R
en = (secx) = {({cosx)™)

= (-—1)(cosx)""’ %(cesx)

= — (c0s X) "%~ sin x)

_ sinx
SN
{cosx)
. sinx
= gecxtanx, smcetanx = .
COSX

The derived function of sec x is sec x tan x.

Exercise 8.1

Write cosec x = (sin x)~!

and deduce that the derived function of cosec x 18
cOsx

You are not expected
to have any other
knowledge of cosec x.

— cosec x cot x, where cot x = ——.
sinx

The derived function of cosec x is — cosec x cot x.
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Differentiation of Trigonometric Functions

Finally, let's differentiate cot x by noting that

You are not expected
to have any other
knowledge of cot x.

cotx = = (tan x)~L.

tanx

Il

Then %(cot x) é((tan x)~ 1)

= (=1)(tan x)~1-1 %(tan x)
\

- (tanx)~2 (sec? x)
_ -1 2
= m sec X

2
cOS X 1
i P, - x B
sinx cos” x
1
sin? x
= — ¢cosec? x.

1

The derived function of cot x is — cosec? x.

We summarise the above results for convenience.

Function (f{x)) Derivative ('(x))

sinx COS X

COS X - 8N X

tan x sec? x

sec x sec x tan x
cosec X — cosec x cot x
cot x — cosec? x

In relation to the above table you are expected to
a) know the first three results,
b) be able to derive the last three results from the first three.

We may use these results with the rules given in Chapter 7 to differentiate
more complicated functions.

Example 8.1
Let's recall the function of a function (differentiation of a composite function)
rule, namely that the derivative of f{g(x)) is {'(g(x)) x g'(x) or if y = f{u) where
u = g(x) then

& _dy du

dx  du dr
Use this rule and the results given earlier to differentiate the following.

(i) cos2x (i) sin(¥x) (iii) tan (4x2 + 2x+1).
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Differentiation of Trigonometric Functions

1) The function is f{g(x)) where f{x) = x2, g(x) = cos x.

The derivative is f'{g(x)) = g(x) 1) = 2x
\ \ f'(g(x)) =2 cos x

= 2 ¢08 x x {— sin x)
= — 2 ¢OS X $In X.

Alternatively, y=u? where u = cos x

and d_yzd_yxd_u
dx du  dx
AN

I

2u % (~ sin x)
2 cos x x {~ sin x)
—~2¢0osx8nx.

I

il

(i1) The function is f{g(x)) where f(x) = sin x, g(x) = Jx.

Then the derivative is  £'(g(x)) x g'(x) £(x) = cos x
\ \ f'(g(x)) = cos (/%)
e e’

COS\/_.X_ E%X‘—;]

2Wx

Alternatively, y = sin u where u = Jx.
Then Y - E}f_ X gli
dx du dx
1

1
COSU X —U ?
2

- COS!\/‘; }
2Jx

(i) Lety=tanu where u=4x2 +2x + 1

il

, as before.

so that d_y = iy_ % ﬂ‘i
dx du  dx
Vo
= sec? u x (8x +2)
= 2(4x + 1) sec(4x? + 2x + 1).
Example 8.2

Use the differentiation of a product rule, namely

—d-(uv) = vgli + ufi—‘i W
dx dx  dx e

to differentiate the following.

() y=(x2+3x+2)sinx (i) y =x3 tan x

(iii) y = sin x cos x (iv) y=cos?x (cosx x cOs x)

(v) eXsinx (vi) (x? + 2)sec 2x

(vii) (2x+ 1) cosec (x> —x)  (viii) e*’ cot 4x (ix) (Inx) sin 3x.
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Differentiation of Trigonometric Functions

@ u =x2+3x+2, v =sinx
du dv

SO — = 2x+3, — = 08X
dx dx
dy

then el (sin x)(2x + 3) + (x2 + 3x + 2)(cos x)

= (2x +3) sin x + (x2+ 3x + 2) cos x.

(i1) u = x3, v = tanx
0 du 3x?, b sec? x
dx dx

e (tan x)(3x%) + (x”)(sec? x)

= x2(3 tan x + x sec? x).

(iii) u = sinx, V = CosX

du dv .
S0 — = COS X, — = —sinx.

dx dx

dy . .

i = {cos x)(cos x) + (sin x)(- sin x)

= cos? x - sin? x.

(iv) U = COSX, V = COSX

du . dv .
sothat — = —sinx, — = —sInX.

dx

dy . .

. = (cos x){— sin x) + (cos x)(— sin x)

= — 2 ¢Os x Sin x.

) u = e Vv = sinx
S0 du 2e2X, LA cOS x.

dx dx

—d—(ezx sinx) = (sin x)(2e%X) + (eZX)(cos x)

= ¢2X(2 sin x + cos x).

(vi) u = x2+2, v = sec2x

du dv
sothat — = 2x, — = (sec2xtan2x)2 = 2sec 2xtan 2 x.

dx dx

a%c—((xz + 2)sec 2x) = (sec 2x)(2x) + (x2 + 2)(2 sec 2x tan 2x)

= 2 sec 2x[x + (x% + 2) tan 2x].

(vii) u = (2x+1), v = cosec(x3 — x)

du dv
sothat — = 2, — = —cosec(x? - x) cot(x? —x) x (3x2 - 1

& m ( ) cot( ) x( )
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Differentiation of Trigonometric Functions

—fx—((Qx + 1) cosec(x® — x)) = (cosec(x® — x)(2)

+ (2x + D)(~cosec(x? - x)cot(x? — x)) x (3x2 — 1)
= cosec(x® — x)[2 — (2x + D(3x% - 1) cot(x? — x)].

(viil) u =e*, v = cotdx ;
du 5 3 Note again
sothat — = e* x3x2 = 3x2e” the use of the
dx function of 2
dv function rule.
and ™ = (— cosec? 4x) x 4 = — 4 cosec? 4x.
d XB 2 x3 x3
= ¢ cotdx|= (cotdx) Bx’e™ J+le* | (— 4 cosec? 4x)
X
3
= e” [3x2 cot 4x — 4 cosec? 4x].
(ix) u =1Inx, v =sin3x
so that o l, v 3 cos 3x.
dx X dx

(sin 3x) (lJ +(In x)(3 cos 3x)
X

—éd;((]n X) sin 3x)

L sin 3x -+ 3 (In x) cos 3x.
X

Example 8.3
Use the differentiation of a quotient rule, namely
du dv
_@_(@ _ M
dx V/ 1,-2
to differentiate the following.
s x sinx +cosx e

() —— (il) ——— (iii)
X X

~-2x

2x

cos3x

(v B " —°

secx cos2x+sin2x

sinx, v = x2

1
du dv
— cosx, — = 2x.

)
so that

i
I

_d_/sinx) _ (xz)cosx-(sinx)@x)
de x° !

X
XCosx —2sinx cancelling
o Xeosx—osimx one x

x3
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Differentiation of Trigonometric Functions

(i1) u = sinx+cosx, VvV = x
du ) dv
sothat — = cosx-sinx, — = I,
dx dx
d [sinx%—cosx]: (x)(cosx —sinx) —(sinx + cosx)(1)
dx X x2
_ {(x=1cosx—(x+1}sinx
x? .
(iii) u = e2¥ = cos 3x

v
sothat — = 22X b — 3 sin 3x.
dx dx

d ( e } (COS3X)(2€2X)— (e“l—Ssin 3x)

dx | cos3x cos’ 3x
_ (20053x+3s1n3x)
cos? 3x
(iv) u = tanx—1, v = secx
du

5 dv
so that Sece X, 5 = gec X tan x.

Then d{tanx—-1) _ (sec:;c)(sec2 x)—{(tanx —1)(secxtanx)
dx\ secx sec? x
B sec x(sec? x-—tan2x+tanx)
sec’ x
_ sec’x —secxtan’ x+secxtanx
sec’x
(v) u =e2X, vy = cos2x+sinx

so that du =—2e‘”2x,@ = — 2 sin 2x+2 cos 2x.
dx dx

Jr
cos2x + sin EJJ

_ (cos2x+ sin2x)(~2e™ )= (e )(=2sin2x + 2 cos2x)

{cosZ2x +sin 2)‘:)2

e 2 (~2cos2x —2sin2x +2sin2x — 2cos2x)

(cc)s,2x+sinzx)2
—4e™** cos2x

(cos2x + sinE;c)2

99



83

Differentiation of Trigonometric Functions

Exercises 8.2
Differentiate the following.

A
() 3sinx (i) cos3x (i) sin (1] (iv) tan [f‘
2 Y
(3
v) sec} Zx] (vi) cosec 2x (vii) sin3x +cos 3x  (viil) secx + tan x
\

i
(ix) Zcosg (x) x3cosx (xi) 2x2cosx+(x2+ 1)sinx

{(xi1) -+ S5xsinx —xtanx (xiii) cos? (x?) (x1v) +/tanx
X
(xv) x2 cos 2x (xvi) x+/sinx (xvil) sinZ x + cos? x
3x

. cos2x
Xviii Xix}) - XX
( ) 2x+3 (xix) COSX (xx) Jx
(xx1) S (xxi1) In (cos x) {(xx1ii) In(cot x + cosec x)

Jcosx

(xxiv) «[2 +sin® x.

Maxima and minima problems involving trigonometric

functions

We consider further application of the techniques introduced in P1 to
investigate stationary values of functions.

Let's first recall the approaches to be adopted in investigating stationary values
of a function f(x).

Method 1 Method 2
(a) f'(x) = 0, then (a) f'(x) = 0, then
either (b) f'(x) changes from + to —, maximum | either (b} f"(x) <0 for a maximum
or  (c) f'(x) changes from — to +, minimum or {c) £"(x)> 0 for a minimum
or (&) £'(x) doesn't change sign, stationary | or (d) f"(x}=0, no information.
point of inflexion.

The second method uses second derivatives to classify stationary values,
Second derivatives of trigonometric functions are easily found, in principle at
least.

Example 8.4
2
(i) If y = eX(cos x + sin x), find -2
de

.. . 1—si
(i1) Given fx) = s?n a , find £"(x).
l+sinx
. dy . ¥+ (e ) u=¢", v=cosx+sinx
) m (cos x + sin x)(e*) + (eX)( sin x + cos x) % e %: inix + cos £
= 2e¥ cosx,

-
Similarly,g;;— = (2 cos x)(e¥) + (eX)(~ 2 sin x)
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Differentiation of Trigonometric Functions

]

2e*(cos x — sin x).

u=]-sinx,v=1+sinx

_ (I+sinx)(—cosx) = (1-sinx)(cosx) %xyz —cosx, % - cos x

@ ') A
{1+ sinx)
_ —COSX — SINXCOSX — COSX + Sin X cOsx
(1+sin ;wc)2
9 cosx function of Renction
S0 f'(x) — tule with 42 where
(1+sinx) u=1+sinx

For this function let u=—-2cosx,v = (1 +sinx)2

$0 that du 2 sin x, . 2(1 + sin x){cos x) .
dx dx
Then ) = {1+sin x)? (2sinx)—~ (-2 cos§)2(1 +sinx){cosx)
(1+sinx)
= me)ﬁl[Zsinx(l%sinx)-choszx] cancelling
(1+sinx) I+sinx
_ 2sinx+ 2sin® x + 4cos” x
(1+sinx)?
_ 2(sinx + sin? x + 2 cos’ X)
(1+sinx)3 sin®x + cos?x = 1

2(1+ sin x + cos’ x)

(1+sinx)3

We use the second derivative test (method 2) to investigate the stationary
values of a function.

Example 8.5
Find the stationary values or turning points on the curve of
y =sinx+cosx for O0<Lx<2m

For turning points, % = 0.

d .
Now LA COS X — sin x
dx
d? y
and —5 = — 8in x — COS X.
dx
Then Y. 0
dx
gives cosx—sinx = 0
: cosx = sinx
sinx
and = tanx = 1. tan +
cosXx

Thenx = -Z—E, STK in the range 0 to 2. tan +
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Differentiation of Trigonometric Functions

Whenx=zc-,
4
2
d—’;):_"SIHE_cosﬁzw_l__L=.__2_=_ 2(0)
dx 4 4 2 2 V2

corresponding to a maximum point.
The corresponding maximum value is

T, . m 1 1 Don't approximate
y =cosz+sm—=—2-+ﬁ=*/§o the surd if not
s asked to do so.
When x = —R,
4

d%y 5w 5

i = §IN —— — COS ——

dx? 4 4

L EHH =

=42 >0, corresponding to a minimum point.

S5t . 5m
¥ = co§ — + s —
4 4

1 L
EaET

The stationary or turning points are therefore
I

&% A2 J maximum point,

[57: ] . ‘
7 2 minimum pomt.

In the next example, we use the sign test on the first derivative to classify the
stationary values.

Example 8.6
Find the stationary values of
fix) = tan? x —2tan x forOSxég.

For a stationary value,

f'x) = 0.
1 — 2 Y - 2
Now f'{x) - @ tar}2 x)(sec? x) — 2 sec? x To differentiate
= 2sec” x(tan x — 1). tan? x we could
write #? where
Then £'(x) = 0 gives, uZfenx

2 sec? x{tanx - 1) = 0.

2
8€C™ X =

=0  (impossible)

cos’ x
or tanx = 1.
b
x = —.
4

)

To use the sign test on f'(x), let's consider the signs of f '(x) at x = %,

w A
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Differentiation of Trigonometric Functions

n
X T
6
i \/5 s 1 Or use your
Cos 5 = B tan 5 = 7—5 calculator
1 1 secx=—i-
so that f'lx) = 2x- j{——l) cos x
BY W3
2
87 1
= —l—=-11<9
o
7
3
cosE = l, tan T - \@
2 3
| L
s that £1(x) = 2x——(3-1)

8(v3-1) > 0.

Thus as x passes through %, f '(x) changes sign from — to +, @
corresponding to a minimum value.

The corresponding stationary value is

\
f[—’f a2l _2tanZ=1-2=~1.
4 4

4
Thus f{x) has a minimum value of - 1 whenx = %
Alternatively,
f'(x) = 2tanxsec?x—2sec?x @
test
u v
. d d d 2 roduct rul
f"(x) =secZx—(2tanx)+ 2 tan x —(sec? x) — 2— (sec x) product ruie
dx dx dx
= 2 sec? x + (2 tan x)(2 sec x x sec x tan x) function of a
—2(2 sec x x sec x tan x) function rule
giving f"(x) = 2sec4 x + 4 sec? x tan? x — 4 sec? x tan x.
1 1
Whenx=£, secx = = — = 2.
4 cosx -

N7
') =2(¥2)* +4(2 P(1)? - 42 (D)
=8+8~8 = 8>0,
corresponding to a minimum point as before.
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Differentiation of Trigonometric Functions

Exercises 8.3
Find the maximum and minimum values of the following functions
for0<x<2n.

() cos2x —x (i) V3 sinx +cos x (ii1) e*(2 cos x +sinx)
(iv) cos x -+ sin x cos x. (v) cos2x+4cosx+6.
Prove that the function 8 sec 8 + 27 cosec 6 has stationary values when

tan 6 = —;— I£ 6 is acute, calculate the stationary value.

Show that the least value of 3 secx — 2 tanx for 0 < x < g is approximately
2.24.

The turning effect of a ship’s rudder is shown theoretically to be £ cos 8 sin? 9,
where 6 is the angle which the rudder makes with the keel, and £ is a constant.

For what value of 8 is the rudder most effective?
Note that the values of 8 of interest lie 1n the range — 90° to 90°.

. . . . b1
Find the maximum and minimum values of cos? x + sin? x for 0< x < 5
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More Integration

Chapter 9

More Integration

Integration was introduced in P1. There, the process of integration was confined to
integration of constants and polynomial functions. Here, we extend the list of basic

) ) 1, . .
functions to be integrated: —, e*, sin x, cosx are considered.
X

Secondly, a new rule of integration is introduced whereby certain types of composite
functions may be integrated. Later, some definite integrals are evaluated. The
Trapezium Rule which enables the calculation of approximate values of definite
integrals is considered.

9.1

Techniques and rules
Let’s start by recalling a rule from P1.

Rule !

n+l

+k,(n=-1)

g CX
J-CX de= n+l

where ¢ and £ are constants.

The reader may wish to perform a quick revision of this rule by working the
following exercises. Before doing so, we recall that when differentiating a
finite number of terms, we may differentiate term by term. Since integration
reverses differentiation, we may integrate term by term.

Exercises 9.1
Integrate the following with respect to the appropriate letter,
ignoring the constants of integration.

) x° Giy x” (i) Gv) Jx
x
1 1Y
v) X+ (vi) Ly +—
x y)
It is possible to generalise Rule I to functions of the form (ax + b)" where a, b
and # are constants, We consider an example before giving the general result.

Example 9.1

Now é—i-((?x +5%) = 4(Tx+5)2.7
= 28(7x+5)}

or %[gx—;j)—‘;] = (7x + 5.
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Thus writing in terms of integrals, we have
j(7x+5)3dx = -(7}‘—2“;2%.
Note also that a constant in the integral would not introduce any difficulty.
Thus
[37x+5yax = 3-”-’“%%.

The general rule is therefore

c(ax+b)""! .

Rule I1 +b)Y'dx =
e Jc(ax ) {(n+1)a

where g, b and ¢ are constants.

BEWARE
It 1s stressed that Rule II holds because ax + b is a so-called linear function in

. C . 3 : 3.
x, i.e. x occurs only as x'. This eliminates — + 2, for example, because — is

x x
3x~1
2 e+l
Note that J (a;c2 + b)ncbc (ax"+b)
(n+1)2ax
2 n+l
because d e +b) 7 # {ax? +b).

dx (n+1D2ax
You are urged strongly not to use such a fallacious result or any similar result
which does not relate to linear functions.

Exercises 9.2
Integrate the following by using Rules I and II. Note that there is no need to
remove the brackets before integrating. Ignore the constants of integration.
i) (x+1)2 (i) 2x-1)3 (iiiy Bx+ 7)4
i -L

(iv) (7x—-6)~¢ v) 3x+1)? (vi) (9x~8) 2

1 1 . E 1
(vi) ———— (Vill) —pe—— (ix) (3-2x)2+(3-2x)2

(2x+3)? vitx

x) (Ix+m)S (I, m, s are constants, s= —1).

Which of the following maj/ be evalyated by means of rule 117
i 3 7
0 [er+dia @ IO TV Gy -0t

(iv) j(3+x2)5dx.
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9.2

More Integration

. 1 N
Integration of —, ¢*, sin x and cos x
X

n
CcX

It was pointed out earlier in P1 that Rule I : ch" dx = + k 1s valid only

n+1
if # # ~1, since division by zero is undefined. Thus Rule 1 does not assist with

finding J’l dx.
x

In Chapter 7, it was shown that

d 1
—(lnx) = —
dx( %) x
80 that P«dx = Inx-+k
X

A difficulty arises that In x is undefined for x < 0. In
mathematics we must consider the integral even when x < 0.
To cope with this requirement we write

e = [“la = 462

- X
= In (-x) + k.
Thus jldx = Inx+k x>0
X
= In (—x) + k. x<0

These statements may be combined into the single statement

Xl = x,x20
=-x, X< 0
See Chapter 1.

Rule 11T ] jldx=1ngxi+k.
; X

Rule TII may be developed to consider integrals
dx
5-7x

such as dx andJ‘
3x+2

where a and b

dx
+

These integrals are special cases of the more general, I
ax

are constants. Note that ax + b is a linear function.

Now 4 Infax+5b) = L X —d_(ax +b) Rule V1
dx ax+b dx Chapter 7
__a
ax+b
Thus J o lln]ax+b!+k
ax-+b a

and more generally,

RulelV  [—“—dr= Zinjax+bl+k J

i ax-+b a |

We urge you again not to use such a result J‘ ;x ,?jb;e f%x In|al+b+k

with anything other than linear functions.
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Example 9.2
[ = 2miax+2pk.
3x+2 3
| S v = -Sufs-7al+k.
5-T7x 7

Exercises 9.3
Integrate the following.

w 2 1 1 . 1
) ;c- (i1) -3; (iiz) x+1 () 9x+7
) L, g a—

I—x 3-x 3+2x

Now we consider the function e*. Since
d
—(e¥} = ¥
dx( )

we have

RueV | [efdx= & +k.

. d
Now since —(cedXtby= ceaxtby Rule 111
dx Chapter 7
= cgedxtb

then

Rule VI | [ee™dx= Ceaxth 4 E
a

We ask you to note again our earlier comments concerning linear functions :
do not use Rule V1 for non-linear functions.

We note in passing that the integral of a* (a > 0) will not be considered in the
following exercises.

Exercises 9.4
Use Rule VI to integrate the following.

(i) e (ii) e=x+3 (i) e~ (iv)

1 , 1 B _
V) — (vi) e+ — (vii) (e )2 (viil) 2e3* — 6e=2¥
e e

Which of the following may be evaluated using Rule VI?
(i) exx—1 (if) e~1ox (iii) %X — Ge—4x
1

. L1 ) .
(iv) ex’ W) e (vi) e¢7173x
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It was pointed out in Chapter 8 that
d ;.
— (Sm x)=cosx
dx

so that

Rule VII J cos xdx = —sin x + k.

Also -d—cosx = ~8inx
dx

so that
Rule VIII Jsin xdx = —COS X + k.

Note the
negative sign in
the result

Then since ‘—ff (sin(ax + b)) = a cos(ax + b)
X

Rule I'

di (cos(ax + b)) = —asin{ax + b) Chapter 7
X

we have the following generalisations of Rules VII, VIII:

Rule IX J‘cos(ax +b)dx = lsin(ax +b)+ k.
a

Rule X J'sin(ax +b)dx = —lcos(ax +b)+ k.
Phat

Exercises 9.5

Integrate the following by Rules IX and X, omitting the constants of
integration.

(i) sin(x +2) (i) cos5x  (iii) sin(9 - 5x)
(iv)cos(dx —7)— 3sin(2x + 5) (v) 2cos(7x +1)+5sin3x

Which of the following may be evaluated using Rules IX and X?

(i) sin(3x+1) (ii) cosl9-5x*) (i) sin(2x” +1)
(iv) sin(l] v) cos{%} (vi) cos(9—7x)
X X

As in differentiation, 'practice makes perfect'. For this reason some additional
exercises are given below. For completeness, the rules established in this
Chapter are first summarised. The arbitrary constants are omitted to avoid
repetition.
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function f{x)

Rule 1 cx
Rule I clax + b

1
Rule II1 —

x
Rule IV [——x

ax+b

Rule V Je"dx
Rule VI j ce™ dx
Rule VII jcos xdx
Rule VIII fsin xdx
Rule IX J.cos(ax +b)dx
Rule X J.sin(ax +b)dx

Exercises 9.6

flx) dx

an—H

n-+
c(ax+b)™!
(n+Da

Infx]

E-h“llz:lx+b?
a

e*

f_ eax+é
o
sin x

—CO8S X

1 sin{ax + b)
a

(n—

1

(n=-1)

1 cos(ax + b)

a

Integrate the following functions with respect to the appropriate letter.

(i) — i) (i) x9
x x
{v) Jx+3 (vi) x% - %{ (vi1) 10;_ 5
(ix) €59 (x) (3x+2)10 (xi) a{i—&)f
(x11) &g&é (xiii) \5[2x + x“%j {x1v) [

(xvi) (a+ bt)? (xvii)

(xv) %

2

1
§3-2y

(x1x) {xx) alli (xx1) -1—+—5——
2+3y x* Nt 3451
7T
xxiii)sin Sx v BSin(Z -
( ) (xx1v) . y 4}

(xxv) 4cos3y—6 sin(’?y +5)
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(iv) x+3

(viii) er3

\3

xil
x)

(xviii) y(2 - 5y?)

{xx11) —
{(13-3w)

(xxvi) 7sin(3 - 2x)+ 2cos(10 - x)



9.3

More Integration

Definite Integrals and the Trapezium Rule
In this section we return to the topic of definite integration introduced in P1.

3
We recall that the definite integral J. Jfxdx may be interpreted as the area under

the curve y = f (x) betweenx =g and x = b.

Example 9.3
s : 2
Evaluate (i) [-———dx (i) [sin2xdx (iii) J'es””dx
;2x+3 ; ;
ol 1 !
i [—dx = [— nf2x + 3§)}
F2x+3 2 5
= -1— In9— l In7
2 2

~ 0.126, using the calculator.

T

4
(i) [sin2xdx
4]

1 3
——C082x%
-3

I

2
(i) [e*"dx
[

il
|
4]
W
&
by
| S
had [

Example 9.4
Sketch the curve y = cos x —sin x for0< x Sg, indicafing clearly where the

curve crosses the x-axis. Hence evaluate the area enclosed by the curve, the

y-axis and x =0, xz%.

The curve y = cos x — sin x is a combination of the y = cos x and y = sin x
curves.

y=C0SX y=sinx
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A

The required area is shown shaded. The x coordinate of the point A where the
curve crosses the x-axis is given by
cosx —sinx = 0.

COS X = sin x.
sin x
=tanx = 1.
coSx
b
x=—,
4
The total shaded area is

" bid

4 2
I(cosx — sinx) dx ~ I(cosx -~ sin x) dx
0 n

4
i kd
= [sinx+cosx|! —[sin x +cos x ]2
3
. . . . T n
= sinZ+cosZ —sin0—cos0—sin L —cos™ +sin—+ cos —
4 4 2 2 4 4

= 2sin ™+ 2cos X -2
4 4

= \/_f—zzfz

ki it
cos0=1,sin—=1,cos— =0,5in0=10
2 2

~0.828

Exercises 9.7

Evaluate I 4)
x +

Find the area enclosed between the curve y = sinx and the x-axis bounded by
the lines x =0 andx =m.

Evaluate ?de .
& e
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I 1
Evaluate the integrals (a) J——g-—dx (b) .[ 2 .
§2+3x

0N2+3x

Sketch the curve y =¢*. Find the area between the curve and the lines x = 1
andy=1.

Sometimes we are unable to evaluate definite integrals by first finding the
associated indefinite integral; for instance, it is not possible to find the

indefinite integral J\/sin xdx. If you think you’ve found it, differentiate your

answer and see whether you obtain +/sin x !
b
To deal with such cases, we recall that a definite integral .[ f(x)xis a number

a

which represents the area between y = f (x) and x=a, x=>5. (Itis assumed
here that y = f(x) does not cross the x-axis.)

y=f)
/‘
[/

0 a b *

Thus when finding an approximate value of the area, we are finding an
b
approximate value of .[ £ x)dx.

The approximate value of the area may be found by various methods. Here,
we consider the Trapezium Rule for finding an approximation.

The approximation is found by joining the ends of consecutive coordinates
and treating each trapezium formed as an approximation for the area under the
corresponding part of the curve.

Yo N ¥a

X
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If the first three ordinates are y,,y,,y,, and h is the distance between

. . , h
consecutive ordinates, the areas of the first two trapezia are 5(}20 +3,),
h : , : ,

E(}«’l + yz). Supposing there are n trapezia or strips, and therefore n+1

ordinates, we see that the total area of the trapezia is

h \
5[(}%*‘}‘,)"‘(}’] +,V2)+ ----- +(yn—1+yn)]>

where y, is the last ordinate.

b
Then the area under the curve = J f (x)dx 15 given approximately by

h
E(y +2y, 2y, o+ 2y, +yn).

first fast
ordinate ordinate

This formula is known as the trapezium rule.

Example 9.5
Use the trapezium rule with five ordinates to find an approximate value for

7}«/&3&& .

2

T T
We note that there are five ordinates or four strips. Then A = —24—4 = 1%
The approximate value is é.%[yo +2y, +2y, +2y, + yg] where the y values
are the values of +/sinx at x = ES—R6—R—7—T[7:
28 8 8

b 5w 6n n
X = = e e i

2 8 g 8
v = A/sinx 1 0.9611865  0.8408964  0.6186141 0
Factor 1 2 2 2 ]

Then j sinxdx ~ %x%[uz(().%l1865+0.8408964+0.6186141)+0]

={.57348. ..
~ 0.5735, rounding to four decimal places.
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Exercises 9.8
Use the trapezium rule with seven strips to find an approximate value for

{Tln(l + x)dx .

Use the trapezium rule with five ordinates to find an approximate value for
0.8

Ie'fzdx .
a

Use the trapezium rule with eleven ordinates to find an approximate value for
]

I dx

=
4] 1—x

Given that the value of the integral is %, find an approximate value for n.

Use the trapezium rule with six ordinates to find an approximate value for
2
I\f 1+x dx.
1

A function y = f(x) is tabulated for various values of x as shown below.

X 1.0 1.2 1.4 1.6 1.8
y 3.70 3.82 4.15 4.51 5.07

1.8
Estimate _fydx , using the trapezium rule,
1.0
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Laws of Logarithms

Chapter 10
Laws of Logarithms

The exponential and logarithmic (log) functions were considered in Chapters 5 and
7. There, the graphs and differentiation of the functions were discussed. Here we
develop some laws satisfied by logs.

We start by recalling some of the ideas arising earlier,

10.1 Exponential and logarithmic functions : recap

The most general form of the exponential function is f(x) = o*, whereaisa
positive constant. The cases in which ¢ = e and a = 10 are of particular

interest, the first because of the differentiation of &%, the second because 10 is
the basis of our everyday number system.

The graphs of y = e* and y = 10" are similar : they fall to the left, climb to the
right, and pass through the point (1, 0). In fact, all graphs of the form y = a*
{a > 0) pass through the point (0, 1}.

yva y=10%

y=¢*

——

0

Y
=

The function f(x) = a* (g # 1) is a one-one function and
has an inverse function log ; x, known as the log

function. The log is said to be to the base a in this
case.

The inverses of f{x) = ¥ and g(x) = 10" together with
their inverses are shown below,

VA y=e* V4 y=10x
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The following features of the graphs are important.

Inl =0, log,,l = 0.
Inx — o, logyx —>w as x - . )

Inx - —oo, loggx ->-was x > 0.
Inx and log,, x are not defined for x < 0.

The usual relations between functions and their inverses are
particularly important for exponential and logarithmic functions.

Thus when f(x)=¢*, fl(x) =lnx
and the usual results ff~1(x) = x,
lf(x) = x,

— * * This important result will b d
lead to elnx = " Qpin&; m
and In(e*) = x ey —

with similar results for 10% and log,, x, and indeed for any

base. aloget =5,
Putting x = 1 in (II} above, we obtain the following important log,(@*)=x

results -

£l

Chanter 4

elnl = 1, (D
In(el) = 1

These results state in effect that e? = 1 and also that logee = 1.

More generally fora > 0,
a%l =1, (V) 10log10 1 = 1,
IOga(} = 1, loglo 1021.

Exercises 10.1
Simplify the following without use of a calculator.

(i) log,o(101314) (i) In(e*92)  (iii) In(e~561) (iv) eln36!
(v) 10'°810(316) (vi) 159851 (vii) logs(30

Write the following in logarithmic notation.

(i) a=¢e* (i) b = 107 (i) ¢ = d* (iv) 100 =1
(v) €2 = 7.389056 (correct to six decimal places)

(vi) 10231 = 204.1738 (correct to four decimal places)
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The derivatives of f(x) = e¥ and f~'(x) = In x were discussed in P1 (Chapter 7).

Then, given

céx function of
y = eft), o of0) i), function rule
dx

[

dx x
d "(x function of

g, & - EG)

de  g(x)

Exercises 10.2
Differentiate the following with respect to x.
@) In(x+1) @) Inx2+1) @i InBx) (iv) In(4x?)

i

[N

2
I

By first writing 10 = e!n 19 express 10* as a power of e and hence show that
4%y =108 10.
dx

Show that the following pairs of functions have the same derivatives. You
may assume x > (.

(1) In{6x), Inx

. X
(1) ln[;j , Inx
(i) In{4x), Inx

(iv) m[%j, In x

A, B are positive
constants

(v) In(x?), 2Inx
(viy In(x7), nlnx

(vi) In(4x?), 2Inx

Before moving to section 10.2, let's consider question 3, exercises 10.2 in a
little more detail. Specifically, let's look at question 3(1).

The functions In(6x) and In x have the same derivative [l] but are different
X

functions. Our knowledge of differentiation tells us that they must differ by a
constant which disappears on differentiation.
In(6x) = Inx+ constant.

x2 and x2 + 3 have
the same derivative,
for example.
Similarly for other parts of the question :-

/ X
Inj — | = In x + constant,
7)
In(x?) = 2 In x + constant,
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In(Ax2)= 2 In x + constant.

The above relationships are explored in the next section where the laws of logs
are established.

Laws of logs
It turns out that the laws of logs are a consequence of the laws of indices
considered in P1. Those laws are

(addition of indices) P x ph = pmtn,
{subtraction of indices) b+ plt= pm — 1
(multiplication of indices) (1)t = pmn

(i) Log of a product of two numbers
Consider the product pg. From the properties of the
exponential and logarithmic functions,

pq = elnpq, M See Rule I1 in
= ol section 10.1 with
q = elng. (3) x =g in turn.
Now pq = elnp xelng (using (2), (3))
= elnp +Ing (addition of
indices)
$0 pg =ellpting (g

Comparison of (4) and (1) gives

Similarly
In(pg) = Inp+ing V) _Joggo (PIQ)
i.e. the log of a product = sum of logs. < logiop +logg

(i) Log of a quotient

Consider the quotient 2 Now, as before,

q
»

L= e (5

q

p =enr,©

g =elng (7

P einp
Then == (from (6), (7))

q e

= elnp —1Ing (subtraction of indices)

so L~ np-Ing (g)

q
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Comparison of (8) and (5) gives

A
In [ﬂ ] =Inp-~Ing (VD) Similarly
4 logo (§)
or the log of a quotient = log{(numerator) =logiop - logio g
- log{denominator).
(ili) Log of a power
We consider p.
Now, as before, p o= elnp )]
and ph o= eln@n). (10 R
m cation
From (9), pho= (elnpy
=enlnp,
s0 pho=enlnp. (11
From (10), ph = elnn), 10)

Comparison of {11) and (10) gives

In(p™) = nlnp
i.e. log( of a power of a given number) (VID)
= power x log(of the given number).

Example 10.1
Let's return to question 3, exercises 10.2.

() In(6x) = n6+1Inx (Rule V)
/
(i) In| ﬂ =Inx-In7 (Rule VI)
\
(i)  In(4dx) = nAd+Inx (Rule V)
(iv) In g;] =Inx—InB (Rule VI)
(V) In(x2) = 2lnx (Rule VI
(vi) In(x*) = nlnx (Rule VII)
(vil) In(Ax%) = lnA+2Inx (Rule V followed by Rule VII)

The constants in (i)—(iv), (vii) will disappear on differentiation leading to the
results quoted in question 3, exercises 10.2.

The arguments for the derivation of the Rules V — VII are easily extended to

situations involving more than two numbers. The following example illustrates
the case when more than two numbers are involved.
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Example 10.2
3*5°11°
]n-73-1—5-7-— =2In3+3In5-6In11-3In7-7In13.

Example 10.3
Express the following in terms of Inx, In y, In z or log,, x,log,, y and log,, z.

@ nxy Gi) oz G m> G 0hY @ h- ()b
y z yz X

2 3 2 2.3

. x x . X 10 . x“y
(vii) In = (vin} In— (ix) In ~ x) logy —= (xi) log,y —=
) 5 ) . o (x) logyg f—x ) logyg ods

Answers

O Inx+Iny (i) lnx+ny+Inz (ili) nx—-1Iny
vy nx+Ilny-Inz (v) nx-lny-Inz (vi) —Inx
(vil) 2Inx-Iny (viii) 3lnx-1 (lne=1)

(@) nx—1-lny  (x) 2- %logmx (logy 102=2)

(x1) 2loggx+3loggy—1- %Iogm z

Logs of products and/or quotients of functions may often be differentiated
without too much difficulty if the logs are first expanded.

Example 10.4
Find dy if y= h{ YW] (x >i}
dx YV (2x-3) 2
- {(x+1){x+2)
Now y m{\{——(Zx—S) )

% In(x+ 1)+ % In(x +2) - % In(2x — 3). (Rules V, VI, VIT)
dy 1 ] ]

cd + - . i iati
- differentiation of
o T A 2wy T

Exercises 10.3
Write the following interms of Ing, In b, Inx, Iny, In z, log,, x,log,, v, 10gm z

i

where appropriate.
2
3

xy4

23

3 E
() 1nl4 () mxy? (i) mx*y? @) m¥x ) In
X
3

. . 1 x .
(vi) In(ea) (vii) ln—ﬁ (vii1) log,, ‘/j (ix) log, x? y?
e’b y

A

() logyq [? |
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2. Choose the correct options in the following.
Options
() In2+In3 (@ 5 (b) In [-g—] (c) In6 (d) ln(%]
AN
.. In18
(i) In18-1n9 (@ In9 (b) In2  (c) 2In2 (d) T
n
27) In27 . 5
i) In | — a b) In22 ¢) In27-mnd5 ()| —
(iii) [5/ @ © ©) <>[27J
(iv) hx+Iny—-Inz (a) Inxyz (b) In(x+y—2) () h— (d) nZ
xy z
(v) 1mx—llny+1ne2 (a) m-"iﬁ () Invx—Indfy +2
2 3 iy
2
© M=% (@) InS Vx
Yy vy
(vi) 2 +3log,x (a) logy, %x (b) log,, 6x

3
X
(©) logiy = (d) logy, 100x3

3. By first simplifying the following by means of rules V — Vi, find the values
of x.

() In@x+1)+knGx-1) = In2 (i) In(x+1) @2 -1) = 1
(i) Inx3 =2+Inx

4 Givenlnx+2Iny—In 5 = 0, express y in terms of x in the form y = Ax”A,
giving the values of £ and a.

5. ExpressIny=2In(x + 1) = 3 Inx + In(x2 + 1) + 2 in the form y = f{(x).

6. By first expanding the given log in each case, differentiate the following. You
need not simplify your answers.
{ 45
() In6x2 (i) In(e+1)x+2) i) In, Cr+Dx+2) |
L (3x-3) )
3 - 4
(v)  In((x-2)3Q2x+5)2) vy I G Gx=2)
Qx+1y
. d -
7. Show that ify = In Xt , Yoo 21 .
. x-1 dx x 1
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Solution of Equations

Chapter 11

Solution of Equations

Linear equations such as

3x+5=7-x
and quadratic equations such as

2+5x+3 =0
are simple examples of polynomial equations. Methods of solving such equations
were considered in P1.
This chapter introduces methods of solving equations involving polynomials of higher
degree. One of the methods introduced may also be used to solve equations not
involving polynomials, for example equations such as

e* = Inux
It is also shown that the laws of logarithms may be used to solve certain types of
equation,

11.1 Polynomial equations : use of the factor theorem
Quadratic equations may be solved by factorising or by means of the quadratic
formula. No such formula 1s available for the solution of equations involving
higher degree polynomials. However, on occasions, the polynomial may
factorise.

Example 11.1
Solve the equation
263+ x2~15x—-18 = 0.

Such an equation

This is an equation involving a third degree polynomial. is called a cubic
Let fx) = 2x3+x2-15x-18. equation,
We factorise the expression by means of the factor theorem
(see Chapter 2).
Now f{1) = 2+1-15-18 = -30 = 0.
fl-1) =-2+1+15-18 = -4 2 0.
f2) = 16+4-30-18 = —-28 # 0.

f(-2) = -16+4+30—18 = 0.
Then since f(-2) = 0, x + 2 is a factor of the polynomial.
We divide out the factor to obtain

23+ x2 —15x - 18 = (x +2)(2x2 - 3x - 9)

= (x+ 2){x - 3)(2x + 3), 1
on factorising the quadratic expression. @

Long division or
matching terms,
Chapter 2.
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The equation becomes
x+2x-3)2x+3) =0

so that x = -2 or3or—§.

The roots are therefore — 2, 3, — ;

Ifabc =10,
then a=10,
orbh=0,0rc=40.

Example 11.2
Solve the equation
A6+ T2 -8x~6 = 0.

Let fx) = x4+ 6x3 + 7x%2 — 8x - 6.
Now f{1)y=1+6+7-8-6 =20
so {x — 1) is a factor of the polynomial.

Dividing out the factor, we obtain

A 6x3+ T2 - 8x—6 = (x— )3+ Tx2 + 14x + 6).
The factor theorem is then applied to ’

g(x) = 23+ 7x2+ 14x+ 6.
A little work along the previous lines shows that
g(~3) = (=3P +7(-32+14(-3)+6

—-27+63-42+6 = 0.
Thus (x + 3) is a factor of x3 + 7x2 + 14x + 6.
Then x*+63+7x2=8x~6 = (x — 1)(x+3)(x2 + 4x + 2),
after dividing out the factors.

When attempting to
factorise g(x) you  «
should check the

possibility thatx — 1 is

also a factor of g (x).

M

The expression x2 + 4x + 2 does not contain any obvious factors.

Then x-1 =0, 1e. x=1

or x+3 =0, ie. x=-3

or X2+4x+2 =0,

giving x = —4EV10-8 —4£8 =-2+42. Do not approximate
2 2 the surds unless you

The roots are therefore 1, — 3 and =2 —/2, =2 ++/2.. are asked to do so.

Exercises 11.1
Solve the equation x3 —3x2 —4x+ 12 = 0,

Solve the equation x3 — 2x2 + 1 = 0.
Find the value of kif x = — 2 is aroot of x> + ka2 + 6x — 4 = 0.
Solve the equation 2x3 + 3x2 —32x+ 15 = 0.
Given that x = £ 1 are roots of the equation
BraxZ+bx-2 =0,

find the other root of the equation.

Show that the equation x# — 4x3 +x2 +16x — 20 = 0 has only two real roots.
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11.2

Solution of Equations

When equations cannot be solved exactly, we find approximate values of their
roots. The roots are then found to any required degree of accuracy. Some
methods of finding approximate values of roots involve the use of an initial
approximation. A method of finding an initial approximation is considered in
the next section.

Location of the roots of f(x) =0
As an example, we consider the equation
fix) = 0,

where  f(x) = 4x3 +6x2 - 20x - 5.
Now  f(1) = 4(1P +6(1)2=20(1)~5 = —15
and  £2) = 423 +6(2)2-202)-5 = 11

so that f(1) and f(2) are of opposite sign.

5 f(x)

20+

10+ B
¢ t t ; » X
1 2 3 4

-10+
oA

__20-_

Thus for a graph of y = 4x3 + 6x2 — 20x ~ 5, the point
A is below the x-axis whilst the point B lies above the
x-axis. Since the graph of y = 4x3 + 6x2 — 20x - 5
contains no breaks, le. is a continuous line, 1t must
cross the x-axis at least once between x = 1 and x = 2.
In other words, there is a value for x between x = | and
x =2 at which 4x3 + 6x2 - 20x -5 = 0.

This example is a special case of a more general
situation.

If f is any continuous function (so the graph of fis a
continuous line) and f(a), f(b) are of opposite sign, there is at least one root
of f(x} =0 in (a, b).

This statement provides a method for the location of roots of equations of the
type f{x} =0, where {15 a continuous function.

Example 11.3

By finding the value of f{x}) = x* - 3x3 +x? +x -3 atx=0, 1,2, ... show
that f{x} = 0 has at least one positive root. Find a root correct to one decimal
place.



Solution of Equations

1 fx) The actual values of
0 -3 {(x) are unimportant:
1 -3 the signs of the values
2 -5 are the main interest,
but find them.
Roothere —» - =« -« - - -
3 9

As f(2) and f(3) are of opposite sign and f is a continuous function, there is a
root of x* — 3x3 + x2 + x — 3 = 0 between x = 2 and x = 3. To find the root
correct to 1 decimal place using this approach, we could consider the values of
f(2.1), f(2.2), ..., f{2.9) and seek a change of sign between adjacent values of
f(x).

211 %)8 N.B.
I A convenient method of

2 2 —4.5 calculation of values of

2.3 -3.9 *-33+x2+x-31s

24 -3.1 to write the polynomial

2.5 —2.1 n the nested form

2.6 -0.7 (= 3)x+ x+ Dx— 3.
Roothere > ---------envou----

2.7 1.1

Since there is a change of sign of f(x) between x = 2.6 and x = 2.7, the root is
between 2.6 and 2.7. It appears that the root is closer
to 2.6 than 2.7 because {{2.6) = —0.7 is nearer to 0 than
=11

To check this we find the value of f at the point
halfway between x =2.6 and x= 2.7, 1.e. at x = 2.65. In
fact f{2.65) = 0.2. Since there 1s a change of sign of f(x) between x = 2.6 and
x = 2.65, the root lies between 2.6 and 2.65. The root is nearer 2.6 than 2.7
and is therefore 2.6, to one decimal place.

Alternatively, the number of calculations could have been reduced by noting
that there was a change of sign of f(x) between x = 2 and x = 3, and finding the
value of f(x) at the midpoint of [2, 3], i.e. at 2.5.

x fx) : .

2 _s As there is no change of sign of f{x)
25 1 between x = 2 and x = 2.5, we calculate
26 07 f12.6), f(2.7),...

Roothere — ----cn---

As before, x = 2.6 is an approximate root and we calculate f{2.65) as before.
Then x = 2.6 is an approximate root to one decimal place.

This method of location of roots, by noting changes of sign of the function
values, becomes tedious when greater accuracy is required. Fortunately, other
methods of solving equations exist. The change of sign method given here is
useful in that it provides a first approximation for use with the more refined
methods.
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Exercises 11.2
1. Given that x = 2 is an approximate root of the equation
=22 4+x-1 =0,
find the value of this root correct to one decimal place.
2. By making a table of values of f(x) = x3 — 4x2 + x + 1 for integer values of x
between — 2 and 5 inclusive, locate the three roots of x3 — 4x2 + x + 1 = 0.
Find the largest root correct to one decimal place.
3. Find a root, correct to one decimal place, between — 3 and 0 of the equation
43+ 6x2-20x-5 = 0.
4. By first considering f(x) = x2 — 2, show that V2 lies between 1.41 and 1.42.

11.3 Iterative methods
Up until now, equations have been solved by direct methods such as
factorising, quadratic formula and graphical methods. The method of iteration
adopts a different approach : an initial approximation to the root 1s refined
until an answer to the required accuracy is obtained.
The method used here depends upon first rewriting an equation

fix) =0

in the form x = g(x).

Example 11.4
Given the equation
X3 -9x2+24x-13 =0
has a root between 0 and 1, find this root correct to 3 decimal places.
We note in passing that if
flx) = x3—9x2+24x~13

then {0y = -13, f(1) = 3.
Since f{x) is continuous and f{0), f{1) differ in sign, there is indeed w
aroot between 0 and 1.

Let's get back to finding this solution.
Now the eguation

x3=9x2+24x-13 = 0
may be rewritten as

_ f{x) = 0 has
24x = —IXB +9x2+13 been rewritten
s0 x = 2—4(~x3+9x2+ 13). 1) as x = g(x).
We add the suffices » and » + 1 to the x terms in (1) to
obtain n+ 1onthe
1 left hand side,
Xpaq = — (- %2 +9x7 413). ) n on the right
24 hand side.

Thenif n =01 (2),
x; = E]Z(—x3+9x§+l3) 3)

so that if we substitute a value for x(, we can find a value for x;.

‘What shall we use for x3? Well, there is a root between 0 and 1 so let's take

0+1
x0T > = 0.5 the mean of
the end values.
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Substitution in (3) for xy gives
1
x| = a(—(0.5)3 +9(0.5)2 +13)

= (.63021.
Whenrn =1in(2),

X = Elz(-xf%9xf+l3) = 0.68017,

We shall carry 5
decimal places
in our working

on substituting x; = 0.63021.

Similarly, we substitute for x, to find x5 from (2) with n =2, i.e. from
1
X3 = g(—xg +9x2 +13),

This process may be continued along the above lines and the work set out as
follows.

n Xy X1

0 0.5 ? 0.63021
1 0.63021 0.68017

2 0.68017 -~ 0.70204

3 0.70204 / 0.71207 The output at any.
4 0.71207 " 071676 e s g b
5 071676 " 0.71898

6 0.71898 ,_~" 0.72003 _

7 0.72003 " 072053 Ige’i’éaféﬁis’éo;l
8 072053 T~ 072077 table such as this
9 0.72077 / 0.72088 because the results
10 0.72088 " 072093 aggzﬁgritggig may
11 072093 °°_~  0.7209 calculator.
12 0.72096 0.72097

The process is terminated when the outputs (x4 values) are in agreement to a

specified number of decimal places. In the table, it is clear that after n =7 the
changes between the x,,,; values are not affecting the third decimal place. The

root appears to be x = 0.721, correct to 3 decimal places.
We check that the root is 0.721, correct to three decimal places, as follows.

The root appears to be between 0.720 and 0.721. -
Let’s find the values of
when x = 0.7205 and 0.721, since the root appears to X —9xF+24x-13 =0,

be nearer 0.721 than 0.720.

x fx)
0.7205 ~-0.006
e < root
0.721 +0.0002

The root lies between 0.72035 and 0.721, i.e. is nearer 0.721 than 0.720, and is
therefore 0.721, correct to three decimal places.
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One of the strengths of this iteration method is that it may be used with
equations which do not involve polynomials.

Example 11.5

; ; The dictionary
It is known t‘hat the equation definition of
x—sinx-0.2 =0, iteration is

where x is measured in radians, has an approximate root 'repeat’.
equal to 1.1. Find this root correct to 4 decimal places.
Rewrite the equation in the form
x = sinx+0.2
to set up the iterative process
X,p1 = sinx, +0.2.

Then using xg = 1.1, we have We quote results
xp = sin(1.1)+02 = 1.091207, to 6 decimal places.

x; = sin(1.091207) + 0.2 = 1.087184.
Similarly, x3 = 1.085321, x4 = 1.084453,
x5 = 1.084048, x5 = 1.083859,
x; = 1.083770,  xg = 1.083728,
xg = 1.083709, x5 = 1.083700.

Note that xg, xg, x|¢ agree to within 4 decimal places and we believe that

x = 1.0837, correct to 4 decimal places.

Let's check our belief.

The root appears to be between 1.0837 and 1.0838. We find the values of
fix}) = x-sinx-02

when x = 1.0837 and 1.08375.

x f(x)
1.0837 + 0.0000043 . . -
1.08375 + 0.00003907 try 1.08365
1.08365 - 0.000022 ..

There is a root between 1.08365 and 1.0837.
Thus the root is 1.0837 correct to four decimal places.

You may feel that the checking procedures used in examples 11.4 and 11.5 are
unnecessary. However, there is a tendency to terminate an iterative process
prematurely before the correct root is found. The checking procedure should
eliminate any possible error of that type.

There is no unique way of rewriting an equation for purposes of iteration.

Example 1.6
In this example alternative rearrangements of the equations considered in
examples 11.4 and 11.5 are given.

(a) Show that x,.; = —zl-(xn + sin x,, + 0.2) is a possible iterative process for

solving the equation x —sinx - 0.2 = 0.
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2
13
(b) Show that x,,; = ?};ﬁ +
x; +24

is a possible iterative process for solving the

equation
x3 =92 +24x-13 = 0.

Given an iterative formula we are able to find the underlying equation by
dropping the suffices.
(a) The underlying equation is

x = -21-(x+ sinx +0.2)

il

x+ginx+02
x—-sinx—02= 0.

S0 2x

{(b) The underlying equation is

9x? +13

X% +24
so that X +24x = 9x2+ 13

: 3 —9x? +24x -13 = 0.

Given there are many ways of rewriting an equation to obtain NP
an iterative process, which one should be used? The answer to
that question is outside the scope of this course. Suffice it to

say, not all rearrangements are useful!

x =

Example 11.7
The equation

X3 -9x2+24x-13 =0
has an approximate root 0.7.
The rearrangement

x = -1?(9x2 - 24x +13)
X

See Example 11.4
the root is 0.721, correct
to 3 decimal places.

of the equation gives the iteration formula

Xyl = —;—2(9)@3—24)6” +13).

Using x = 0.7 with this formula, we obtain
x; = 1.244898, xy = —1.890352
xy = 25334009, x4 = 8.072912.

It is clear that even though the starting value was taken close to the root, the
successive values of x, x,, . . . bear no relationship to this root.

Thus this particular rearrangement is not useful.
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Exercises 11.3

Solve the equation x2 — 2x - 1 = 0 by rearranging it in the form
1

x—-2
and using xg = — 0.4 to start the iteration. Give your answer correct to three
decimal places.

x =

2x) +1

x; —1

Show that x,,; = is an iteration formula arising from a rewriting of

the equation x3 —x~1 = 0. Use this iteration formula with starting
value x, = 1.3 to find a root correct to four decimal places.

sinx, —xcosx, +0.2

Show that x,,.; = 1—cosx
n

is an iteration formula arising from a rearrangement of the equation
x—sinx—02 = 0.

Use this formula, with starting value xy = 1.1, to find a root of this equation

correct to four decimal places.

Show that the iteration formula

_xn . e“Xn

with starting value xg=0.57 can be used to find a root of
xet =1
correct to three decimal places.
Show further that the iteration formula
Xpe1 = —Inx,
can be derived from the equation but that it cannot be used with x5 = 0.57 to
find the root.

By first considering the change of sign of
f(x) = tanx - 2x
find an approximate value to the positive root of
tanx—-2x = 0 forl <x<2.

Use the iteration formula

2

xsec” x, +x, —tanx,

Xn+l 2
sec” x, —1

with xg = 1.2 to find a root of this equation correct to three decimal places.

Sketch the graph of y = x3 — 3x2 — 1 and deduce that the equation
¥=-3x2-1=0
has only one root. Show that this root lies between 3 and 4. Use x5 =3.1 with

1

the formula Xpp1 = 3+ —

"
to find this root correct to four decimal places.
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11.4 Solution of equations where the unknown occurs in the index

Let's consider the following examples.

Example 11.8
Find x given that

5% = 8.
We can move the unknown from the index by taking logs.
Then In(5*) = In8&.
SO xIn5 = In8. Rule VII
In8 Chapter 10
In5

Leave the answer in its exact form unless an approximate value is required.
Otherwise, x = 1.2920, correct to four decimal places, say.

Example 11.9
By first writing y = 3%, solve the equation
320 - 3324+ 20 = (.
Now if y = 3%, then 32 = y2 and
32 = 323x = gy
Substitution into the original equation gives

2 — . =
‘ y-=9y+20 = 0. or use the
s ) G-50r-4) 2 ) quadratic formula
so that Yy = o4

1

Then 3 =35 or 3¥ =4
In5 In4
) X = e QT =,
In3 In3
Example 11.10
Find y given that
Tx2" = 3x5Y

Taking logs, we have
m(7x2”) = In(3x5>)

In7+m2° = In3+In5> < Ruev.Chprerto %
AR

In7+yln2 = In3+2ylIn$ @e’ VIL Chapter TS
y(2In5-n2) = In7-1In3 DA
sothat y = 27734 3385
2In5-1n2

correct to four decimal places.

Note that the exact value of the answer

7
In —
In7-mIn3 (3]

2In5-n2 [25]'
ln ?
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Exercises 11.4
Find x given that 3% = 7,
Given that 32¥*1 = 2% find x.
Given that 3¥*1 = 41, find y.
By first writing y = 2%, solve
220 _xt2 12 = (.
By first writing 5% = g, 3V = b, find the values of x and y satisfying
3(5%) - = 4,
S+l 4 2(3y+1) = 45
Use the factor theorem to solve
293 -5y2-9y+18 = 0.
Deduce the value of x satisfying
2(53x) - 52xt1 _ 9(5%y + 18 = 0.
Use the 1terative formula
Al © Inx, +3
with starting value xj = 4.5 to find, correct to three decimal places, a value of x
satisfying
x—-nx-3 = 0.
Deduce an approximate value of y satisfying
3 =yn3+3.

POST SCRIPT
Cautionarv Note

The essence of the factorisation method of solving equations is to write the
expression as a product of bracketed expressions.

Then ( )(C ) )=0

N

One of these factors could be equal to zero.

The roots of the equation could then be found by considering the possibility
that each bracketed expression is equal to zero. Note that the presence of 0 on
the right hand side is crucial.

Students should avoid the following illogical argument.
Given 2x3+x2-15x-18 =0

then 203 +x2-15x = 18, O.K. so far l:gﬁ
. ¥(2x2 +x—15) = 18. not very use

Then x =18

x F?UbLT?LOdGIC:

2 by — = ifab = 18 it does

or 2xc+x—15 18. ot follow that

Note that a=18orb=18.
ab =0 = a=0o0or b =0

but if ab

il

¢ (where ¢ # 0) it does not follow thata = corb=c.
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Chapter 12

Some Aspects of Proof

In this chapter, we take a brief look at the use of proof in mathematics.

12.1

12.2

The need for proof
In mathematics it is tempting on the basis of checking a number of special
cases to deduce that a general conjecture is true.

Example 12.1

A prime number is a number which has no factors other than itself and one.
Thus 1,2,3,5,7, 1lareprimesbut 6 =2 x 3,9=3 x 3 are not.

Let’s consider f(r)=n®—4n> + 7Tn+1, where x is a positive integer.

Now f(1)=5, f(2)=7, f3)=13, f{4)=29, f(5)=61,all primes.

A possible conjecture would therefore be that when » is an integer,
n’ —4n® +7n+1 is aprime. Note that since the conjecture is true for

n = 1, 2, 3, 4, 5 it may not be true for all integer values. Indeed,
£(6)=115 which is not a prime.

A correct proof is the only way to convince another of the truth of a
conjecture. There are a number of methods of proof.

Examples of direct proof are the derivation of sums of arithmetic and
geometric series (P1) and the laws of logarithms (Chapter 10).

Proof by mathematical induction occurs in the P4 course.

In this chapter, we consider proof by contradiction and disproof by counter-
example.

Proof by contradiction

Proof is concerned with the demonstration of the truth of an assertion. The

essence of proof by contradiction is to assume that the assertion is false and
show that the assumption leads to a contradiction. The method is illustrated
by the following examples.

Example 12.2
Prove that if n? is even, then » is even:

Given that »n’is even, assume that # is not even i.e. that z is odd.
Ifnis odd, n=2k+1, where kis an integer.

Then n? =k +1) = 4k* + 4k +1
= 1+2(24* +2k), which is odd.

But »? is even (given).
Contradiction.
The assumption is false and # is even.
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Some Aspects of Proof

Example 12.3

Show that 3/2 is irrational, i.e. it cannot be expressed in the formi , where
s

and s are integers.

Assume that 3\/4 = {, ()
s

where r and s are integers having no common factors.

Any commoen
factors can be
cancelled out.

Then if 2 = —’i,
s
r 3
2= | L
)
and r= 287, 2)
Thus 2 divides #*
or 2dividesrx ¥ x r.
Thus, 2 divides r.
: r = 2k, 3)

where & is an integer.

Substitution from (3} into (2) gives

@kf = 25°
or s o= 4k,
Thus 2 divides s’
or 2 divides s x § x s.
Then 2 divides s so that

s = 21, e

where [ is an integer.

From (3) and (4), r and s have a common factor.
But r and s have no commmeon factor (assumption).
Contradiction.

The assumption is false and 32 is irrational.

Example 12.4
Given that f (x) is a polynomial of degree #, show that

flx)=0

cannot have more than » distinct roots.

Assume that f{x)= 0 has more than  distinct roots. Then the equation has at
least n + 1 roots:-

7 T S a,, a,, (say).

Then (x—a,Xx—a,)..... ... (x—a“)(x—am)

is a factor of f(x), in other words f(x) has a factor of the form
P O G yxT ,

a polynomial of degree n +1.
Thus, f(x) is a polynomial of degree of at least n +1.
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But f (x) is of degree n (given).
Contradiction.
Our assumption is false and f (x) = { cannot have more than » distinct roots.

Example 12.5
Use a proof by contradiction to show that if ¢ and b are real numbers, then

a’ +b* >2ab.

Assume that o’ +b* <2ab.

Then &’ +5% -2ab<0

so that (a-b) <0.

Since the square of a real number cannot be negative, ¢ — b is not a real

number.

But g, b are real numbers (given) so that a — & 1s a real number.
Contradiction.

Our assumption is false and a* + 5% > 2ab .

Example 12.6
Use a proof by contradiction to show that
if(x+1)(x—3)<0 then —1 <x <3.

Assume that if (x +1)}x —-3) <0
then x<—-lor x=3.
There are two cases to be considered.

x £~1
Let X =] g where a 2 0.
Then (x+1{x-3)=(-1-a+1}-1-a-3)

= (-a)(—1~a—3)

= (— a)(— a— 4)
= a(a + 4) 20.
But (x+1Xx~3)<0 (given).
Contradiction.
The assumption is false and x > -1 (1)
xz3
Let x=3+b where b2 0.
Then (x+1)x-3)=(1+3+b)3+b6-3)
=(4+bh>0.
But (x+l)(x—3)<0.
Contradiction.
The assumption is false and x <3. (i)

Combining statements (i) and (i1), we conclude that
if (x+1fx—3)<0 then —-1<x<3.
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Example 12.7
Prove by contradiction that if x is real and x > 0 then
X+ i >4,
X
4
Assume that X+—<4.
X
Then multiplying by x and noting that x > 0, we obtain
' +4<dx
or ¥ —dx+4<0.
(x ~2) <0.

Then x —2 is not real since the square of a real number is never negative.

But x is real (given) and 2 is real and therefore x -2 is real.
Contradiction.

Our assumption is false and

x+i24.
X

Proof by contradiction may sometimes be used to prove that a function
1S one-one.

Example 12.8
Note that a function f{is one-one if given fla) = fib), then a =b.
Show that the function f defined by
Ax)=x*~2x+3 forx>1
is one-one.

Assume that { is not a one-one function; in other words there exist ¢ and b
suchthat  fla)=fb)

and a #b.

Under the assumption,

a'=2a+3=b>-2b+3

or a’ b —2a+2b=0
(a-b)a+b)-2(a-b)=0.
(a-bNa+b-2)=0. (1)
Since a# b, (assumption)
a—-b#0
and the non zero factor a — b may be cancelled from (1).
Then a+b-2=0. @)
But from the definition of the domain of the function,
a>1,
b>1
and so a+b>2
or a+b-2>0. 3)

Now (3) contradicts (2).
Qur assumption is false and fis a one-one function.
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12.3

Some Aspects of Proof

Exercises 12.1
Use proof by contradiction to prove the following.

Show that if #’is odd, then # is odd.
Show that if 2»n° + # is even, then # is even.

Show that «/5 1s irrational.

Show that if x is real and x > 0, then

Xx+—2=2.

x
Show that if (x —2)x—5)>0, then
x<2 or x=5.

Show that if x and y are real, then
X +4y° >4xy.

Show that if f (x) is a cubic, then
f)=0

cannot have more than 3 distinct roots.

Show that the function defined by
f(x) = x> +4x+5 for x <-2 is one-one.

Show that the function defined by
f(x)=x*+6x+9 for x>0 is one-one.

Disproof by counter-example

Many conjectures in Mathematics involve the word ‘all’. To show that a
conjecture involving ‘all’ is false, it is sufficient to show that the conjecture is
false in just one case. This approach is known as disproof by counter-example.

Example 12.9
A student asserts that
sin(8, +6,)=sin®, +sind,
for all angles 6,,9,.
Use a counter-example to show that this assertion is false.

Now if 8, = 30°, 0, = 60° (for example)
sin(8, +8, ) = sin(30°+ 60°) = sin 90° = 1

3

and sin 6, + sin 8,=sin 30° + sin 60° = %+7¢1.

Thus it is not true that
sin(8, +0,)=sinH, +sin O,
for all angles 6,,6,.
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Example 12.10
Give a counter-example to disprove the followtng:-
if [ (0) =0then f (x) has a maximum or minimum at x = 0.

A suitable counter-example is

fx)=x".
Then f* (O) = ( but there 1s not a maximum or minimum atx = 0 buta
stationary point of inflexion.

Example 12.11
Use a counter-example to show that the function { defined

by f(x)=3+4x - x’ for all x is not one-one.

To show fis not one-one we require values a and b such that
fla)= 1)

with a#b.

Now f(x)=3+4x—x*=7-(x-2).

Then «a =0, b=4 will do the trick,

since f(0)=7-(-2) =3

and f(4)=7-(4-2) =3.

Thus fis not one-one.

Exercises 12.2
Use counter-examples to show that the following statements are false.

c0s20 = 2cos 0 for all values of 0.
1n(x+y)=1nx+lny forall x,y>0.

For all real values of x and y,
if x> ythen x* > y°.

if, in the quadratic equation
ax* +bx+c¢=0,

a, b, ¢ are real and b is negative, then the roots are negative.

If /'(0)=0and f"(0)=0, then f(x) has a stationary point of inflexion at
x=0.

For any real numbers n, p with p > G,
M £
ln(p" J=(np)".
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Revision Papers
Revision Paper 1

1. Solve the inequalities
(a) |5x=31] <7,
by x-3)x—-2) >12.

2. Write down the binomial expansion for (1 + x)!9 in ascending powers of x as

far as the term in x3.
Given that
(I+ax+b2)(1-2x)10 = 1-23x+242x2 +cx3+ ...,
(a) finda and b,
(b) finde.

3. Given a function f defined by
1
flx) =1~ ,
2x% +3
(a) find f'(x) and deduce that fis an increasing function,
(b) give the range of f,

x>0

(¢) derive an expression for £~1(x).

4. Iflnx=13614,Iny=2.1469, In z = 0.6158 evaluate the following, using your

calculator for +, x, + only and showing all your working.

xz\/;}_

z
5.(a) Integrate the following with respect to x.

(@ % () ¢ —

(7x-9) ( (2 -5x)?

(a) In(xy) (b) L‘a[

6. (a) Differentiate (x* + 1) In(x? + 1) with respect to x.

X x | X
(b) Show that 'd— o Ax)| _ xe tl . Hence evaluate w,,f?_,__;
dr| x+1 (x+1)* J(x+1)
7. Show that the circle which has the line joining two points (1, 1) and (3, 5)as a

diameter is given by
x2+y2—4x—-6y+8 = 0.

Show that the equation of the tangent to the circle at (0, 2) is
y+2x=2.
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8.

(a)
(b)
(c)

Revision Papers

A is the point (a, cos a) on the curve y = cos x and 4B is perpendicular to Ox
as shown,

S
Q
&y
e
v
>

The area of triangle AOB is one quarter of the area below the curve between

the lines x = 0, x = a and the x-axis.
Show that a = %tan a.

. . i Sn
Show that there 1s a root of the equation between 3 and 7
Use the iterative process
a,+1 = tan~1(2a,)

with ag = 1.16 to find the value of a correct to three decimal places.

Prove by contradiction that the equation
x*+a,x’ +a,x’ +ax+a, =0,

where a,, a,, a,, a,are constants, cannot have more than four distinct roots.
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Revision Paper 2

1. Given that x + 1 and x ~ 2 are factors of
x4 ax3 = Tx2 + bx + 6,

find all the factors of the expression.

2. Write down the binomial expansion of (1 + 2x)*.
Solve the equation
(I+2)4+(1-2x4-34 =0

3.(a) Use a counter-example to show that the function f defined by
Flx)=x"+6x+11 forallx

is not a one-one function.
(b) Use proof contradiction to show that the function g defined by

glx)= x* +6x+11for x> -3
is a one-one function.

4. Find x in the following cases.
(a) 52 = 3(2%), correct to four decimal places. (b) 42X + 16 =65 x 4%,

x2 —a

x2 +a

Given f'(1) = 1, find the value of a.
(b) Differentiate the following with respect to x.

() In(e¥ +x) (i) x2(1+x)12  (ili) sin4x

5.(a) Given f{x) =

, find £'(x).

6. Integrate the following with respect to x.
3 2 .
a) |———dx b) |——dx c sin{3x + 5
@ [= (b) J(zm)z ©  [sin@x+s)x
7. A circle has equation

x2+3y2=2x—4y—5 = Q.
(a) Find the coordinates of the centre of the circle.
{b) Find the radius of the circle.
{c) Theline y = 2x + 5 intersects the circle at points 4 and B. O is the centre of
the circle. Show that BO is perpendicular to 40 and find the area of triangle
ABO.

8. Use the trapezium rule with five ordinates to find an approximate value for
} dx
ovl+x :

giving your answer correct to three decimal places.
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1. (a)
(b)

(a)
(b)

3. (a)

(b)

(©)

(2)
(b)

5.(a)
(b)

6. (a)

(b)

Revision Papers

Revision Paper 3

Factorise 5x3 — 4x2 — 11x - 2.
Find y if 53yl 4 x5y —11x5Yy-2 = 0.

The functions f and g are defined by
) = = (>3
x-3
and g(x) = 3x2 -3 (x>0).
Derive an expression for gf(x).

Derive an expression for g~1(x) and sketch the graphs of g(x) and g_l(x) on
the same diagram.

Given that p = e P , Where p is real and positive,

show that ln(p" ): nlnp.
A student claims that if x, y are both real and positive, then
In(xy)=(nxXIn y).
Use a counter-example to show that this assertion is false.

Given that
5 X 2x+1 — 3)( 5x+2
show that
In2-1Inl15
X=—"-:.
In5-In2

The circle C is given by the equation
x2+3y2-6x —dy+4 = 0.
Write down the coordinates of the centre of the circle.
Show that the distance of the centre of the circle from the y-axis is equal to the

radius. What does this result indicate concerning the y-axis and the circle?
2x

Differentiate with respect to x.

3x-5
Differentiate x? In x with respect to x. Hence show that
2

jxlnxdx= 21n2—%

1

A chord is joining the points at which x =0 and x = % on the curve y = cos 2x.

. . T .
Find the values of x in the range 0 to 5 at the points where the tangents are

parallel to the chord.

T

V2

4
. . 2.
Show that J.(sm3x —sin5x)dx=—~—+-—, given that cos =
0

1
15 15 4 2
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Show that there is a root of the equation
x=2sinx
between -g and m.

Use the iterative formula
X 2(— X, Cosx, +sinx, )

n+l =

1-2cosx,

with starting value x, = 2 to find the root correct to two decimal places.

The sketch shows the graph of y = f (x) The curve passes through the point
(1,0) and has a maximum point at (0, 1).
Sketch on separate diagrams graphs of

@  y=/(x)+1
by  y=flx+1)

e
(c) y-f[g)-
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(a)
(b)
(©)

(a)
(b)

(a)
(b)

7. (a)

(b)

Revision Papers

Revision Paper 4

Write down the binomial expansion for (a + b)4.

!./ 4
Find the term independent of x in the binomial expansion of  3x - %} .
| x

Prove by contradiction that if

X' —6x+8<0
then 2<x <4,

If

Vxt -1
()=
X
with domain x =1,
find an expression for f'x,
state the domain and range of f ',
explain why the function of ff cannot be formed.

Solve the following equations
3): — el.wl

3n2x=1+Inx.

A circle C has equation
x4y +dx—4y-8=0.
The straight line with equation x + y = 4 cuts C at two points A and B.

Find the coordinates of A and B.
If O is the cenire of C, find the area of triangle AORB.

Differentiate the following with respect to x.

(a) e. *l (2] ln(sin x) (c) x* (1 + x3)20
e’ +2

Integrate the following with respect to x.

e ey L 2

1) e il +
® e’ (@) 3x+2 (4)c+7)2
Find the area between the curve y =sin2x, the x-axis and the lines
x=0,x= I

2

Use the trapezium rule with five ordinates to find an approximate value for
3
1
J. x - —dx,
3 x

giving your answer correct to two decimal places.
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1. (a)

(b)

(a)
(b)

(c)
(d)

4.(a)

(b)

6. (a)

(b)

(c)

Revision Papers

Revision Paper 5

Express the polynomial
24 —3x3 - 2x2+x -2
as a product of two linear factors and a quadratic factor.
Use the result of (a) to show that there is only one value of 6 in the range 0° to
360° satisfying 2 sin* 0 —3sin36 -2sin20 +sin® -2 = 0.

Sketch the graphs of (a) y =Inx, (b) y =In(2x) () y=2Inx+3,
showing the points (i) where y =0,
(il)  wherex=e.

The functions f and g are defined by
f(x)= 2, x#l
x—1
glx)=x*+2 forallx
Find the values of x for which
f (x) =x.
State the range of g.
Find fg(x)and state the range of fg.

State whether the inverse of g exists, giving a reason for your answer.

Given that x and y are real and positive, show that
In{xy) = Inx+1Iny.

Solve the equation
In(x*-10) = Inx+2In3.

Differentiate the following with respect to x, simplifying your answers as far
as possible.

2e (b) x’cos3x !

(a) T (c) \/—4;2;+;

. 1 3
Find + .
" J(4x+5 (3x+2)3}]x

S A

Evaluate (cos 2x +sin x) dx.
3x

Find [ ax.
e
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Revision Papers

Sketch the graphs of y = cos 20 + 1 and y = 40 for 0 £ 0 <t and hence show
there is a root of
cos 20 +1 =40

between 0 and g Show further that the root lies between 0.4 and 0.5.

Use the iterative formula
0,41 = %(1 +c0s 20,)

with starting value 6, = 0.4 to find the root correct to three decimal places.

Use proof by contradiction to show that V5 is irrational.
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Revision Paper 6

1. (a) Write down the binomial expansion of (a + bx)8 as far as the term inx” .

(b) In the binomial expansion for (a + b;c)E ,
(i) the term in x has coefficient 64,
(i) the coefficient of x’is equal to the coefficient of x”.
Show that a =++/2 .
2. Solve the inequalities
(a) x+3>5,

(b) 3x7 —4x+3<2x* - 3x +5.

3. Find the values of x and y satisfying the simultaneous equations
Ix53* +2x77 =13,
Tx5"+3x7Y =20.

4. The quadratic expression
f(x)=ax* +bx+c
is such that
(a) when it is divided by x ~ 1, the remainder is 3,
(b) when it is divided by x + 1, the remainder is 7,
(¢) f(0)=1.
Find f(x).

5. The function f'is defined by
f(,'c)=x+i for x > 1
X

{a) State the range of f.
(b) Show that fis an increasing function.

(¢) Find an expression for £™'(x} and state the domain and range of f'.
(d) Sketch the graphs of fand f™'on the same axes.

6. (a) Differentiate sinx cosx with respect to x.

(b) Differentiate xe*‘dx. Hence evaluate
I

J-xeudx .
0
7. Integrate the following with respect to x.
1
a) e’ b cos(5x +7 ¢
(a) (®) (5x+7) () Gr2)

8.(a) Use a counter-example to show that the following assertion is false:-
tan(f, -6, ) = tan®, —tan®, for all values of 8, 8, .

(b) Use proof by contradiction to show that if 4n” + 1 + 1 is even, then » is odd.
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ANSWERS

Chapter 1
Exercises 1.1

(a) 12>9 (b) 4<7 (c) x2y (d) m>0 () p20

Exercises 1.2

L Q) x>4 (i) x>—4 (iii)x>§;— (iv)x<§

(v) x>-12 (vi) xsg (vii) x>-21 (vii) x <14

2. () x<-Sorx>-1 (i) 4<x<5 (i) x<-7orxz 1
(iv) -125x<~-6 (v)x<5_;/ﬁ cnrx>5+:1/ﬁ
(Vi)§<x<2 (vii)x<—§orx>2(viii) 5";@ §x§5+;/§§
(ix) x§7-\/1_§0rx27+\/’l_3 x) _5_m$x£—5+\/ﬁ
6 6 8 8
(xi) ~1<x<2
3. ) fcz—g (i) —48 <k< 48 (i) k<0 or k>4
. 17 11
) k<— — V) k<— —
() 3 v) 5
Exercises 1.3
1. @ 2 (i) 1 (iii) 0 (iv) 24
Exercises 1.4
. . 3 9 1 11
1. Iy —16<x<2 ) x<——orx>-— m) — — <x<-—
)] x (i) x 5 0rxZ S (iir) 1572

. 1 5
W) xE—0rxz —
(v) 5 5

2. () x=-3,7 (i) x=-2,5 (iii) x=-4,9
~2£410 ~2£42

2 2

(iv) x=6++34, 6+£2J7 (v) y=

Exercises 1.5

1. (@ (=3, (b) (~=,6] (¢) [9,%) () (~=»,-4) (¢) [-3,21)
(0 [9.12) (8 (-5,20] (h) (=0, =30][-20, =)

2. (1) (==, -S)u(-1, ) (1) 4,5 (i) (—w, =71, @) (v) [-12,-6]
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Chapter 2
Exercises 2.1

1.

2.
3.
4.

(1) (x+3)x-6)+16
(i) x+ D(x2-4x+5)-8

Answers

(i) (x = 5)(x2 + 2x + 14) + 65
(iv) (6x+ 5)(2x3 = 3x2 +6x—5)+26

(v) (4x2 =3x+2)3x2 +2x+3)+5x— 13

(@) x2+4x+1
x-5x~-3x+4)
x—-2)x-3)x+3)}x—-4)

Exercises 2.2

(i) x2 -1

(i) X2 —2x+ 1= (x - 1)2

1. (-4 ()7 @i)o (@Gv)-3
2. -7 3. 2,-1
4. (D) (x+ Dx—2)2 (i) x-DE2-x-1)

(i) (x— Dx+2)(x2 -x+2) (iv) (x-2)(x2 —x—3)
5. 14 6. -1526
7. 0,-2; x+ 12x-2) 9. 3
Chapter 3
Exercises 3.1
1. (D) a+5a% +10a3b2 + 10a2b3 + 5ab% + b5

(i) @b+ 6a3b + 15a*b2 + 20a3b3 + 15a2b% + 6ab5 + b0

(iii) a8 + 8a7h + 284062 + 56453 + 70a4H4 + 564355 + 284250 + 8ab T+ b8
2. 1+ 6y + 1232 + 8y3 3. x4+ 12x3y + 54x2y2 + 108xy3 + 814
4. 1-9y+272-273 5. () 17+1242 (i) 9v3+112 (i) 32
Exercises 3.2
1. (i) 5040 (i) 2520 2. 60 3. 720 4. 120

1
5. 120,20 6. 722 7. 70 8. 35 9. "
31(n - 3)!

Exercises 3.3
1. (i) 362880 (i) 165765600 (iii) 53130  (iv) 15504
2. 60480 3.360; 60 4.5 5.4845; 969 6. 1906884

Exercises 3.4

L.
(i1)

(iv)
2.

(i) 1+ 10z + 4022 + 8023 + 80z4 + 3225

x4~ 8x3y +24x2)2 — 3203 + 164 (iii) x3 + 3x + £ %
X x

8y3 — 122z + 6yz2 — 23
() 1+ 12x+66x2 (i) 1-28y+364y2 (iii) pl0+ 16p15g + 120p1442

45x°

(iv) 1+5x+ (v) 256 —3072x +16128x2 (vi) x22 + 11x18 + 55514

20
-[ }2%”}»3 or — 149422080x17y3 4. —960x3 5. 0.8508

17
1.083 9. £2
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10 =l 11. 8 12, + 1
48 2
Chapter 4
Exercises 4.1
1. 2;2;—2;@'-}-l 2. No 4, -1,-2
2 a
Exercises 4.2
1. (a) (-,2] (b) (—oo,—3NU(=3,%) (¢) (0, )
(d) (-2,1)u(1,0) (e) (-9, — 1)1, ) () (—w, DU, 333, «©)
<@(—wf—nu(§mj M) 221 () (916, )

Exercises 4.3

L (@) [-1,4] (b) (4,9) () (1, 3] (d) (0,0)  (e) [0,25]
2. (a) No (b) No (c) Yes (d) No (e) No (f) Yes (g) Yes

Exercises 4.4

1. (a) One-one (b) Notone-one {c) One-one (d) Not one-one
(e) Notone-one (f) Not one-one (g) One-one (h) Not one-one
2 @l =T L] L)

(© 1) = 3+49+x; [-9,27]; [-3,3]
@fm=§mwmmm

3. (@Hm=iﬁmwm&@

b 1x) ==2+Jx=3;(7,0); (0, )
© 1) = B3+Vd+x ; (-4,0); (-3, )
(@ 1) = x2-2;[0, ©);[-2, «)
S DI 1-2x" . .
(e i) = ; ; (0,0) 5 (=2, )
® lx) = 14V4+x% 5 (0, ©);[1, ©)
4. (o0, = D=1, ) ; f1lx) = 1=x s (=0, 000, ) ; (— o0, — 1)U(=1, o)

5. 1x) = -—\jﬁf : (0,1); (-, 0)
6. ("' «Q, — B}U(—B, QO) ; (_ o0, 00) : f_l(x) - 1+ 3x
2-x

7. 10,20 [0,2]; Bl = V4~
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Exercises 4.5
In the following, the broken line graphs relate to the inverse functions.

x—2
1. ix) = for all x.
In questions 1 and 2,
¥ the broken lines
indicate the inverse
functions.
-
e
e
P -
0. X
-~
-
-~
-~
. -~
-
2 1{x) =Jx forx 20
4
y y=
’I
1
1
£
0 x
3. (a) (b)
y y
s Y=
31 /
7
1 /l 4
7 7/
/ '
L t
7
o1 3
7
7/
Ve
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&
y
©) @ . 3y
p
Ve
S
34 /
Ve
1 //
1 //
-3 :
1 3 x
/; -1
7/
/s
/ 13

1 denotes the inverse in the above cases.

Exercises 4.6

1. fo(xr) =9x2 — 12x + 6 ; gf(x)=3x2 +4
Domains and ranges are (— o, w0}, (— o, ©) in both cases.
2. fgxy=6x-2; gfix)=6x-11
Domains and ranges are (— o, ), {— o, =) in both cases.
3. fg doesn’t exist; gf{x) = 2x with domain (0, o) and range (0, «).
4, (a) gf doesn’t exist because the range of f ([0, 19]) is not contained in the
domain of g ((4, 20)).
(b) fg exists because the range of g((0, 4]) is contained in the domain
of £ ({0, 4]).
A
{c) th exists because the range of h [(—2%5,2) ) is contained in the domain of
J
£([0, 4]).
(d) hf doesn’t exist because the range of £([3, 19]) is not contained in the
domain of h ((1, 15]). Similarly, (e), (f), gh and hg do not exist.
Chapter 5
Exercises 5.1
1. ¢ G,D) @i,y (Gv,F) (v,Hy ™, G) (vi,B)  (viil, A)
(ix, B) (x, M) (xi,K) {xi;,L) (xuii,lJ)
2.
y
y=log X
3
L X
0 3
y = 3-x

153



Answers

Where graphs intersect
3-x=log,, x
or x+log,x-3=0.
Graphs intersect at one point. Therefore, the equation has only one root.

o~

y=2-x

The graphs intersect at only one value of x, which is positive. Thus the
equation has only one root which is positive.

y

1 y=sinx y=x2

Graphs intersect at one point and, therefore, the equation has only one root.
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Exercises 5.2 (drawings are not given to scale.)

Answers

Equation y = 1
X

1 (a) (b) Y
y
\ 0 / ]
3 L 0 4,0
"%7'2)
(©)
}:1\
\ b
-4 \/1 x
(és-z)
2.
y T

|

1

|

|

1,1
(7) | (0’2}
_ al
0 T 1

(-1,-1) ’ |

|

|

Equation y = 2
x+1



Answers

y Y
0
X - x
0
2,-4)
y=Ilx] y=lx-21-4
Transformations (x, y) —b(x+2,y), (x,y)—» (%)"4)'
y
. /\ ) 3 /\h x
7 x 7 \
/ 0 2 4
/ \
Y AN
\--
y=sinx

-
gt
I
b
E
M!g
<
SIS
o
=
- 7
~
/

y=cosx

/

The graph y =sin x+ gj 1s obtained from y = sin x by an x translation of %
N

to the left, this resulting in the graph y =cosx.
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Yy
1 . .
[N VNt
/’ t X
-// _1
y = sin x
Y
9

VARYLVARVARN *

In y = sin x, the peaks and troughs occur at x = (2k + 1)—3, (k any integer),

with values at £1. For y = 5sin3x + 4, the peaks and troughs occur more
frequently at x = (2k + 1)3 , with values 9 and -1.
&

y y=3X
/
-1,%)
_._f/-w/l
X
0
a, 11)
7 / y=2x3+5
7
0 X
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y =M

0 X
y
y=(DE 44
9
2
g X
8. (i)
yi
(10, 1)

=lo
y gl Ox
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(ii) Y (10, 3)
0o 1 i
/ v=3log o
y (10, 8)
(iii)
(1,5
0
Yy
iv) ,8)
(3, 9)
0
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Chapter 6
Exercises 6.1

1. 22 +2p2+x-1=0 2. 2+32=25
3. ly+1], 2y=x2-1 4. x2+32=5
5. y2 =4qax 6. 32 — 8x2 —20ax - 842 =0
Exercises 6.2
1. (&) x2+y2-2y-8=0 (b) x2+32+2x -4y =0
(€) X2 +3y2 —4x—6y-3=0 (d) x2+y2+2x+2y=0
(€) x2+3y2 —8x—2y+12=0
2. (@ (-2,-1),1 () (1,2),3 (c) (0,3), 57
2 2
7 145 3
@ 2.0),2 © 15 000
8 8 2
3. x2+p2 —4x+2y+1=0
4. x2+32 - 12x-13y+36=0
5. x2+y2 ~5y+5=0
6. (@ (g ijgi+fi-c (b) g+ fi+2ga+2/B+a’ +p?
Exercises 6.3
1. () y+tx—-4=90 (b) 2y+3x-5=0 () py+dx~11=0
(d) 49+9%-5=0
2. V26 3. y—x+1=0, y+x+5=0
N
4, A(=5,0), B(O; , 6.25
2)
5, (&) y+tx=0,y—x=0
Exercises 6.4
1. Cisonthecircle 2. 2417 3. (3,0)
3 3 3
4. 42 y=Zxy=->
4 7 4): Y 49(
5. (@) c=2-m (b) c=+2v1+m?
() y=2, 3y+4x-10=0
6. 4y -3x+10=0,4y - 3x~-10=10
Exercises 6.5
/
2,3—6-1 5. 0,0), 3y+x=0 6. 5
25°25)
Chapter 7
Exercises 7.1
()  mnot composite (i) composite, g(x) =x3 + 2x + 1; f(x) = Vx
(i)  composite, g(x) = 5x + 7, f{x) = tan x (iv) not composite
) composite, g(x) = x2+3, f(x) = x3 (vi) not composite
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(vii)
(vill) g(x)=6", fx)=x+7

Exercises 7.2

(i) 2(2x-3).2 (i) 2(3x2 + 4).6x

Exercises 7.3

() 3G+ D21 () 3@2x-1)22

Exercises 7.4
1. () 36(9x -2)3
(iii) 2(x2 +3x +4)(2x +3)
(V) 3x2(x? + 4x3)2(7x* + 12x2)

(vii) - 5(x? —4x+ 2)"‘3’ (x—2)

. 1V 1
(1x) 4(x +;J (1—-;—2—}

1
w1 T 11312 1 2
xi) —|3x+—+— (3-——-——
(i) 2[ x xz} P ox

Exercises 7.5

Q) - 45 (i) 12[x+ L [1-— !

Xy
5

2

(iv) -é[gx" -7x* ES
2 x

W = (63x° ~18x° +2)
(’?xg -3x° +2x+ 1)2

—[6x+5+%—]
X

3
2(3342 +5x— sz

\ x’

(vii)

Exercises 7.6
1. 0.99 x2.7%

Exercises 7.7

Q) 3¢3% (i) 2xe”

(v) —e*

(i) 3x2e* +2

composite, g(x) =x + 3, f(x) =x2+5

(1x) not composite
(i) 2(x3 +0)(3x2 + 1)
(i) 3(x2 +1)2.2x

(i) — 6x(3x2+ 2)~2
i) (2x+1)7

v (x4 1)?
(viill) - 3 5
2(3x +2)2

j (iii) ;(3x2+5x-61)%(6x+5)

)
X

1
j L36x3 -21x% + —6-3-]
X

“ (2x7 =75 +1

(viii) - 6{\/; + % + 3j_7f—1— - i}
x N

24 x X

2. 1.001 x2.72*

(iv) ex%[l-%J
X

(vi) - de=4% (vii) (x> —1) ¢*
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Exercises 7.8

L)+ ) —— i) 2L Gy -2 () X
x 6x+ x“+x X 9x° +4x+3
3 6
o) 2L i) P i) ) = (9 222D
x(x”+1) x'+1 2x x+1 x“+x
(xi) 2 (xii) 1
2. i) 2x (i) 3(1nx)2 (i) 3x2  (iv) 363 which equals 3x2, in fact.
X X
4
3. i, -, 1 6. x
X X X
Exercises 7.9
1 x .. 2x 3 3 A 2x+1 3x—7
(1) —+e (i1) s +2x (1i1) 3e”* +4x (iv) > +3e
x x“+1 x“+x
X x° ex _ 1
o L Li 1 i 2)‘ +2(x—5)  (viil) —— %
e* +x et 4+ x 3x°+2 e’ +142
X _ —X ) N )
(ix) € ° (x) e [3+2x ’[or x'e* {i+2x]]
et +e " x J x
(xi) 4(e¥ —x+2)3(e*—1)
Exercises 7.10
X
@ 2 _ (if) Inx 21 (iif) ()c+1)e2 . 30 .
(x+1) (Inx) (x+2) (5+3x)
1
_ 2e* < -Ilnx
0 V) —— (vi) X
(x+1)? (e* +1)?
2
(vii) 2(x 2+2x23) _ 2(x 21)(x—2+3) - — 4 .
(x“+3) (x°+3) (e +e™)
Exercises 7.11
3
1. ) 3x2—6x+1—i2 (i) 1+Inx (iii) % (iv) 30x(x2 + 1)14
x (x"+1)
-1 -1
(V) ——— (V) —4e™*  (vii) (Inx)2+2Inx  (vii) ———
2Vl-x 2(x+1)2
e —¢”
(ix) eX(1 + In(e* + 1)) x) ————  (xi) 1-2x
(ex +e~x)z
(xii) (1-x)9(1-11x) (xiii) 1—% (xiv) 1+1Inx+ iz(l ~Inx)
X X
2
(xv) x“(1 221n)c)2+1
x(x“+1)
1 , 1 : N .
2. — 4. 3e 5. 1,— | maximum ; | —1,—— | minimum
2 2 2
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6. (1, 0y maximum ; (3, 4) minimum 7. (0, 0) minimum ; (2, 4¢~2) maximum

9. () 2¥m2 (i) F(1+xmn3) (i) iﬂﬂ;ﬁ"_l)
X

(iv) 3{3 3 +ln3]n(3x+1)} (v) 3¥%eX(1+1n 3)
X

+1
Chapter 8
Exercises 8.2
. () 3cosx (i) —3sin3x (iii) LcosX (iv) Lsec?| X
’ 2 2 4 4
\
) Esec[é-xj tan[gj£ (vi) — 2 cosec 2x cot 2x
47 4) 4
(vii) 3{cos 3x — sin 3x) (vili) sec x(tan x + sec x)
e 1
(ix) —sin L-’ﬂ (x) 12 cosx —x’sinx
2 3x?

(xi) 2x(1 —x)sinx+ (x2+ 4x + 1) cos x

.. 6 )
(xii) —— +x(5 cos x —sec? x) + 5 sinx — tan x
x

(xiii) — 6x cos? (x2) sin (x2) (xiv) sec” x
2+/tanx

) . - XCOSX

{xv) 2x(cos 2x — x sin 2x) (xvi) +sinx + _
2+/sinx
} I inx-2 e i
(xvii) 0 (xviii) (2x+3)sinx : cOS X (xix) e (3 cos;c +sinx)
(2x+3) cos” x
~4xsin2x - cos2 .. 1+cos? )
(xx) x sm2x3 cos2x (xxi) + coi x (xxii) — tan x
2x? 2cos? x
SiN X COSXx

(xxiii) — cosec x ZX1V)
V2 +sin? x

Fxercises 8.3

1. (i) Minimum value — N3_Tm ~~2.70
2 12

Maximum value —3 - ET-E =201
2 12

(ii) Minimum value — 2, maximum value 2
(iti) Minimum value ~ — 127.6, maximum value =~ 5.51

(iv) Minimum value — —3\5 ~— 1,299, maximum value ~ 1.299

(v) Minimum value 3, maximum value 11
2. 137 or 46.87 approximately 4, + 54.7° approximately

5. Maximum value 1, minimum value —1— = 0.71
V2
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Chapter 9
Exercises 9.1
7
Lo05 (ii) %x% (iii) —;% (1v) %x%
X1 LY 1
PRA— L Dy —
89 > (vi) sty 3
Exercises 9.2
3 o 5 e S
T AL M (2x8 1) (i) (3x1+57) ) (?}:356)
3 1
) 20x+D? i) 2(9x - 8)? wii) =] ;
9 9 (2x+3)?
3 3
- 2 - 2 s+l
(viii) 241+ x () = 82207 (3-2%) o XM
5 3 (s+ 1)/
2. (1) and (iii).
Exercises 9.3
() 2In|x| (i) é-mm (i) In|x+1 (iv) éln§9x+7]
V) -Inj1-x| (vi)—h1§3—x|+-;—]n§3+2x}
Exercises 9.4
-2x 5-3x —4x
.G %ewl (i) -3 (iii) qez (iv) —e3 ) —64

3x

e’ e
3 3
(1), (1), (i), (vi)

(vi)
2.

Exercises 9.5

1. (i) —cos(x+2)

2 s
vii) —e?
(vii) 5

Sx

(iv) -}Isin(a,x ~7}+ —%cos(Zx +5)

2. (i), (vi).

Exercises 9.6

e 2
(viii) ges"+33

N
1) —sinSx
(i) .

~-3x

(iii) %cos(‘} —5x)

%) %sin(?x + 1) - % cos3x

7 2 .
M - )k i) 2 (V) a3k @) 2(x+3)
X 7 9 3
. x3 3x2 . 1 A i eS—9x
V) == (vii) - Inf10x 9] (vii)) o* ()~
Gx+2)" Ll . 3
(x) 13 (x1) m (xi1) 2x+6In|x]| _z.x_z
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4 2

3 Z
(xii) %xl flnlx] (xiv) %+—;——+31n{x]—2—xl? (xv) -;:x3
3 4
(xvi) (i%”—)— (i) —B-2y  (xvidi) y? - %’_
(xix) In|2 + 3y (xx) —i+-13- (xx1) ~i+2\!3+5t
x  3x \/t_
.. 1 1 . 3 7
(xxi1) — {xxii1) ——cos5x xiv) - —005(2 y- —}
2(13-5w)? 5 2 4

(xxv) -;Esin 3y+ gcos(7y +5) (xxvi) %008(3 ~2x)-2sin(10 - x)

Exercises 9.7

1.
4.(a)2.75

2.2

5. e~1

Exercises 9.8
Answers are given correct to three decimal places.

3. 8.45, correct to two decimal places

(b) 4.93, both correct to two decimal places

1. 0.202 2. 1.019 3. 0.524, 3.143 4. 2.133 5. 3.373
Chapter 10
Exercises 10.1
1. (i) 1.314 (ii) 4.92 (iii) -5.61  (vi) 3.61
(v) 5.16 (vi) 1 (vii) 1
2. (i) Ina = (ii) log, b=y (iii) log, c =z
(iv) log,1=0 (v) In (7.389056)=2 (approximately)

(vi) log,, 204.1738 = 2.31 (approximately)

Exercises 10.2

1.

L1
Y

Exercises 10.3

1.

(i) -4 Inx

2x
x*+1

(ii) (i) (v) 2
X X

(i1) 1nx+§1ny (iii)41nx+%lny (iv)% Inx

2] %k1x+41nyf31nz (vi) 1 +Ina (vi)-2-2Inb

o 1 1
(vii1) Elogw x ——il()g10 ¥y

(i) 21og, x+ log, ¥~ 1og, 2

1 1
(x) log,, x+ ‘iloglo y- glogm z

M (©
() (b)

@ 3

(1) (b) (1) (c) () (d)
(vi) (d)

) < i e
(4
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b 2
4 y=+/5x 2 5. yz(x+l)2(x2+l)e
X3
. 2 4 3
6 1} — 1 ——+ + -
® (1) x+1 x+2 (1) 2x+1 x+2 3x-5
(iv) + 4 v) 3 + 12 - 4
x—2 2x+5 x+1 3x-12 2x+1
Chapter 11
Exercises 11.1
. 2,23 2 1}*J§,315 .6
2 2
1
4, -5 -, 3 5. -2
2
Exercises 11.2
1. 1.8 2. 3.7 3. -0.2
Exercises 11.3
1. -0.414 2. 1.3247 3, 1.0837
4. 0.567 5. 1.166 6. 3.1038
Exercises 11.4
In7 2 __ In3  In3
In3 ' 2In3-1n2 (9]
In —
W2, W6 W3S
[4] In2 In5 In3
Inl —
3
3 In3 1n[§}
6. 3,2,2, =2 7. 4.505,1.370
2 In5" In5
Chapter 12

Exercises 12.2
There are many possible counter-examples in addition to the following suggestions

1. e:% 2. x=1,y=2 3. x=2,y=-3

4. x'=2x+1=0 5. f(x)=x"has a minimum at x = 0
6. p=2,n=3
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INDEX

Binomial, Inequalities,
expression 16 strict 1
theorem 22 manipulation of 2

Integration,

Circles, approximate {trapezium rule} 113
equations of 62 of exponential functions 108
tangents to 63 of trigonometric functions 109
orthogonal 70 Interval notation 6,7
touching 68

Logarithmic functions 116, 120

Differentiation, manipulation of 119, 120
of composite functions 72,75
of exponential functions 79,91 Modulus 5,6
of logarithmic functions 82
of trigonometric Pascal’s triangle 16

functions 93,94, 95 Proof,

Disproof 138, 139 the need for 134

Division of polynomials 8,9 by contradiction 135,136, 137

Equations, Scalings 53
use of Factor Theorem 123, 124
location of roots 125 Translations 49

iterative methods of solution 127
where unknown occurs

in the index 132
Exponential functions 116
Factor theorem 13
Functions,

domain of 28
range of 29
inverse 31
composition of 38
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