WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced Subsidiary/Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

976/01

MATHEMATICS C4

Pure Mathematics

A.M. MONDAY, 20 June 2005

 $(1\frac{1}{2}$ hours)

NEW SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Express
$$\frac{8x^2 + x - 5}{(2x-1)^2(x+2)}$$
 in partial fractions. [4]

(b) Find
$$\int \frac{8x^2 + x - 5}{(2x - 1)^2(x + 2)} dx$$
. [3]

2. Expand $(1-2x)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^2 . State the range of values of x for which the expansion is valid. Hence, by writing $x = \frac{1}{8}$ in your expansion, find an approximate value for $\sqrt{3}$ in the form $\frac{a}{b}$, where a and b are integers. [5]

3. Find the equation of the tangent to the curve

$$4x^2 + 3xy - y^2 = 21$$

at the point (2, 1).

4. (a) Find all values of θ in the range $0 \le \theta \le 360^\circ$ satisfying

$$\sin 2\theta = \cos \theta.$$
 [4]

[4]

(b) Find all values of θ in the range $0 \le \theta \le 360^\circ$ satisfying

$$4\sin\theta + \cos\theta = 2$$
,

giving your answers in degrees correct to one decimal place. [6]

5. The region bounded by the curve $y = \sqrt{x} + \frac{4}{\sqrt{x}}$, the *x*-axis and the lines x = 1, x = 4 is rotated through four right-angles about the *x*-axis. Find, correct to one decimal place, the volume of the solid formed. [5] 6. The parametric equations of the curve *C* are

$$x = 2t + 1$$
, $y = t^2 + 3$.

(a) Show that the tangent to C at the point P with parameter p has equation

$$px - y = p^2 + p - 3.$$
 [4]

- (b) The tangent to C at the point P passes through the point (2, -3). Given that the point P is in the second quadrant, find the equation of the tangent. [4]
- 7. (a) Use the substitution u = 2x 1 to evaluate

$$\int_{0}^{1} x(2x-1)^{9} dx \quad .$$
 [5]

(b) (i) Find
$$\int x \cos 2x \, dx$$
 [4]

(ii) Use the result of (b)(i) to find

$$\int x \cos^2 x \, \mathrm{d}x \quad . \tag{3}$$

- 8. The size P of a population of bacteria at time t days is to be modelled as a continuous variable such that the rate of increase of P is directly proportional to P.
 - (a) Write down a differential equation that is satisfied by P. [1]
 - (b) Given that the initial size of the population is P_0 , show that $P = P_0 e^{kt}$, where k is a positive constant. [5]
 - (c) Two days after the start, the population is $1 \cdot 2P_0$. Find when the population will be $2P_0$. [4]

9. (a) The position vectors of the points A and B are given by $\mathbf{a} = 5\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = -7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$.

- (i) Find the vector equation of the line AB. [3]
- (ii) The vector equation of the line L is

$$\mathbf{r} = -\mathbf{i} + 7\mathbf{j} + 8\mathbf{k} + \mu(2\mathbf{i} - 5\mathbf{j} - 7\mathbf{k}).$$

Given that AB and L intersect, find the position vector of the point of intersection.

[5]

(b) Show that the vectors $\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ are perpendicular. [2]

TURN OVER

10. Complete the following proof by contradiction to show that $x + \frac{25}{x} \ge 10$ when x is real and positive.

Assume that $x + \frac{25}{x} < 10$, when x is real and positive.

Since x is positive, multiplication of both sides of the inequality by x gives $x^2 + 25 < 10x$. [4]