

GCE AS/A level

MATHEMATICS C4 Pure Mathematics

P.M. MONDAY, 15 June 2009 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer **all** questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$f(x) = \frac{3x}{(1+x)^2(2+x)} ,$$

- (a) express f(x) in terms of partial fractions,
- (b) evaluate

$$\int_0^1 f(x) \mathrm{d}x,$$

giving your answer correct to three decimal places.

- 2. Find all the values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying $3\sin 2\theta = 2\sin \theta$. [5]
- 3. (a) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]
 - (b) Find all values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying

$$\cos\theta + \sqrt{3}\sin\theta = 1.$$
 [4]

[4]

[4]

- 4. The region bounded by the curve $y = \cos 2x$, the x-axis and the lines x = 0 and $x = \frac{\pi}{8}$, is rotated about the x-axis through four right-angles. Find the volume of the solid generated. [6]
- **5.** The parametric equations of the curve C are $x = t^2$, $y = t^3$. The point P has parameter p.
 - (a) Show that the equation of the tangent to C at the point P is $3px 2y = p^3$. [4]
 - (b) The tangent to C at the point P intersects C again at the point $Q(q^2, q^3)$. Given that p = 2, show that q satisfies the equation $q^3 3q^2 + 4 = 0$ and determine the value of q. [5]

6. (a) Find
$$\int (x+3)e^{2x} dx$$
. [4]

(b) Use the substitution $u = 2\cos x + 1$ to evaluate

$$\int_0^{\frac{\pi}{3}} \frac{\sin x}{\sqrt{(2\cos x + 1)}} \, \mathrm{d}x.$$
 [5]

- 7. The value of an electronic component may be modelled as a continuous variable. The value of the component at time t years is $\pounds P$. The rate of decrease of P is directly proportional to P^3 .
 - (a) Write down a differential equation that is satisfied by P. [1]
 - (b) The value of the component when t = 0 is £20. Show that

$$\frac{1}{P^2} = \frac{1}{400} + At,$$
 [5]

where A is a positive constant.

- (c) Given that the value of the component when t = 1 is £10, find the time when the value is £5.
- **8.** (a) The position vectors of the points A and B are given by

$$a = 3i + 4j + 7k$$
, $b = 4i + 2j + 10k$.

- (i) Find the vector equation of the line AB.
- (ii) The vector equation of the line L is

$$\mathbf{r} = 5\mathbf{i} + 6\mathbf{j} + \mathbf{k} + \mu(3\mathbf{i} - 2\mathbf{j} + \mathbf{k}).$$

Show that AB and L intersect and find the position vector of the point of intersection. [9]

- (b) Show that the vectors $3\mathbf{i} 2\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ are perpendicular. [2]
- **9.** Expand $(1+4x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^2 . State the range of values of x for which your expansion is valid.

Expand
$$(1+4k+16k^2)^{\frac{1}{2}}$$
 in ascending powers of k as far as the term in k^2 . [6]

10. Complete the following proof by contradiction to show that $\sqrt{3}$ is irrational.

Assume that $\sqrt{3}$ is rational. Then $\sqrt{3}$ may be written in the form $\frac{a}{b}$ where a and b are integers having no common factors.

∴
$$a^2 = 3b^2$$
.
∴ a^2 has a factor 3.
∴ a has a factor 3 so that $a = 3k$, where k is an integer. [4]