

GCE AS/A level

977/01

MATHEMATICS FP1 Further Pure Mathematics

A.M. THURSDAY, 22 January 2009 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

- **1.** (a) Differentiate 2^x . [3]
 - (b) Differentiate $\frac{x}{x+1}$ from first principles. [6]

2. Given that

$$S_n = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$$

obtain an expression for S_n in terms of n, giving your answer as a product of linear factors. [6]

3. Given that the roots of the cubic equation

$$x^3 + 4x^2 + 3x + 2 = 0$$

are α , β , γ , determine the cubic equation with roots $\beta\gamma$, $\gamma\alpha$, $\alpha\beta$. [7]

4. (a) Given that

$$2z - i\overline{z} = 1 + 4i,$$

find an expression for the complex number z in the form x + iy. [7]

(b) Find the modulus and argument of the complex number

$$\frac{1+3i}{2-i} . ag{6}$$

5. The rotation *T* in the plane has matrix

$$\begin{bmatrix} 0.6 & 0.8 & 2 \\ -0.8 & 0.6 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Find the coordinates of the fixed point of T. [4]
- (b) Determine the centre and the angle of this rotation. [4]
- 6. Use mathematical induction to show that

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 2n & 2n^2 \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{bmatrix}$$

for all positive integers *n*.

[8]

7. Given that **A** is a 2×2 matrix and k is a constant, show that

$$\det(k\mathbf{A}) = k^2 \det(\mathbf{A}).$$
 [4]

8. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z(1 - z).$$

Show that *(a)*

v = y(1 - 2x)

and find an expression for u in terms of x and y.

- The point *P* moves along the line y = x. Find the Cartesian equation of the locus of *Q*. *(b)* [4]
- 9. The matrix **A** is defined by

$$\mathbf{A} = \begin{bmatrix} \lambda + 1 & 1 & \lambda \\ 1 & 2 & \lambda \\ 2 & \lambda & 1 \end{bmatrix}.$$

- *(a)* (i) Find and simplify an expression for the determinant of A.
 - Show that A is singular when $\lambda = 1$ but there are no other real values of λ for which A (ii) is singular. [5]
- Now consider the system of equations *(b)*

$$\mathbf{A}\mathbf{X} = \mathbf{B}$$

where

$$\mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \ \mathbf{B} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}.$$

- Given that $\lambda = 1$, show that these equations are consistent and find their general (i) solution.
- Given that $\lambda = -1$, find the inverse matrix A^{-1} and hence solve these equations. (ii) [7]

[4]