

GCE AS/A level

977/01

MATHEMATICS FP1 Further Pure Mathematics

P.M. MONDAY, 1 February 2010 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

- 1. (a) Show that 1 + 2i is a root of the equation $x^3 + x + 10 = 0$. [3]
 - (b) Determine the other two roots of the equation. [4]
- 2. The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{bmatrix} 7 & 5 \\ 3 & 2 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- (a) Find the inverse of \mathbf{A} .
- (b) Find the 2×2 matrix **X** that satisfies the equation

$$\mathbf{A}\mathbf{X} = \mathbf{B}.$$
 [3]

[3]

[3]

3. The complex number z is given by

$$z = \frac{1+8i}{1-2i} \quad .$$

- (a) Express z in the form x + iy.
- (b) Find the modulus and argument of z. [3]
- 4. (a) Show that the following matrix is singular.

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 4 & 5 & 7 \end{bmatrix}$$
[2]

(b) Consider the following equations

$$x + 2y + 2z = 1$$

$$2x + y + 3z = 3$$

$$4x + 5y + 7z = \lambda$$

- (i) Find the value of λ for which these equations are consistent.
- (ii) Find the general solution corresponding to this value of λ . [7]
- 5. Given that the cubic equation $x^3 qx + r = 0$ has two equal roots, show that

$$4q^3 = 27r^2.$$
 [6]

6. (a) Use mathematical induction to prove that

$$1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! - 1$$

for all positive integers *n*.

(b) Given that

$$S_n = \sum_{r=1}^n r(3r+1) \; ,$$

obtain an expression for S_n in terms of n, simplifying your answer. [5]

7. The function *f* is defined for $0 < x < \frac{\pi}{2}$ by

$$f(x) = (\operatorname{cosec} x)^x.$$

- (a) Obtain and simplify an expression for f'(x).
- (b) (i) Show that f(x) has a stationary value at $x = \alpha$, where

$$\alpha = \tan \alpha \ln (\operatorname{cosec} \alpha)$$
.

(ii) Use the recurrence relation

$$\alpha_{n+1} = \tan \alpha_n \ln (\operatorname{cosec} \alpha_n)$$

with
$$\alpha_0 = 0.5$$
 to find the value of α correct to four decimal places. [5]

- 8. The transformation *T* in the plane consists of a reflection in the line y = x followed by a translation in which the point (x, y) is transformed to the point (x + 1, y 1) followed by a clockwise rotation through 90° about the origin.
 - (a) Show that the matrix representing T is

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
[5]

- (b) Show that T has no fixed points.
 - (c) Find the equation of the image under T of the line y = 2x + 1. [5]
- 9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and $w = 1 + z^2$.
 - (a) Obtain expressions for u and v in terms of x and y. [4]
 - (b) The point P moves along the line y = 2x. Find the equation of the locus of Q. [4]

[6]

[4]

[3]