

**GCE AS/A level** 

977/01

# MATHEMATICS FP1 Further Pure Mathematics

P.M. MONDAY, 15 June 2009  $1\frac{1}{2}$  hours

## ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

## **INSTRUCTIONS TO CANDIDATES**

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

**1.** Given that

$$\mathbf{S}_n = \sum_{r=1}^n r \left( r + 1 \right)^2 \,,$$

find an expression for  $S_n$  in terms of n, giving your answer as a product of linear factors. [6]

2. The roots of the quadratic equation

$$x^2 + 3x + 4 = 0$$

are denoted by  $\alpha$  and  $\beta$ . Find the cubic equation whose roots are  $\alpha$ ,  $\beta$  and  $\alpha\beta$ . [8]

#### **3.** (*a*) Find the inverse of the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{bmatrix} .$$
 [6]

(b) Hence solve the system of equations

$$\begin{array}{l} x + 2y + 3z = 13 \\ 2x + 3y + z = 13 \\ 3x + 5y + 2z = 22. \end{array}$$
[2]

4. The complex number z is given by

$$z = \frac{9+7i}{3-i} \cdot$$

- (a) Express z in the form x + iy, where x, y are real. [4]
- (b) Find the modulus and argument of z. [2]
- 5. Use mathematical induction to prove that

$$\sum_{r=1}^n \frac{1}{r(r+1)} = \frac{n}{n+1} \quad .$$

for all positive integers n.

[8]

6. The matrix A is given by

$$\mathbf{A} = \begin{bmatrix} \lambda & 1 & 2 \\ 2 & -1 & \lambda \\ 3 & \lambda & 4 \end{bmatrix} \quad .$$

- (a) Show that  $\lambda = 1$  is the only positive value of  $\lambda$  for which A is singular. [5]
- (b) Consider the following equations.

$$x + y + 2z = 2$$
  

$$2x - y + z = -2$$
  

$$3x + y + 4z = 2$$

- (i) Show that these equations are consistent.
- (ii) Find the general solution.
- 7. The complex number z is represented by the point P(x, y) in the Argand diagram. Given that

$$|z-1| = 2|z+2|,$$

show that the locus of *P* is a circle, and find its radius and the coordinates of its centre. [7]

- 8. The transformation *T* in the plane consists of a reflection in the line x + y = 0 followed by a translation in which the point (x, y) is transformed to the point (x + h, y + k).
  - (a) Show that the matrix representing T is

$$\begin{bmatrix} 0 & -1 & h \\ -1 & 0 & k \\ 0 & 0 & 1 \end{bmatrix} .$$
[3]

[6]

- (b) Given that the image of the point (1, 2) under T is the point (2, 1),
  - (i) find the values of h and k,
  - (ii) find the equation of the image under *T* of the line y = 3x + 2. [8]

# **TURN OVER**

9. The function *f* is defined for x > 0 by

$$f(x) = x^x e^{-2x}.$$

- (*a*) Show that
  - (i)  $\ln f(x) = x \ln x 2x$ ,
  - (ii)  $f'(x) = f(x) (a \ln x + b)$ , where the values of the constants *a* and *b* are to be found. [4]
- (b) Write down an expression for f''(x) in terms of f(x) and f'(x). [1]
- (c) Find the coordinates of the stationary point on the graph of f and determine whether this point is a maximum or a minimum. [5]