

GCE AS/A level

977/01

MATHEMATICS FP1 Further Pure Mathematics

P.M. FRIDAY, 18 June 2010 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

- 1. Differentiate $\frac{1}{1+x^2}$ from first principles.
- 2. The complex number z = 2 i. The complex conjugate of z is denoted by \overline{z} . Find the modulus and argument of the complex number

$$z - \frac{5\overline{z}}{z}$$
 [7]

[6]

[4]

3. The matrix **A** is given by

$$\mathbf{A} = \begin{bmatrix} 2 & \lambda & 3 \\ 1 & 2 & \lambda \\ 4 & 5 & 5 \end{bmatrix}$$

- (a) Find the values of λ for which A is singular.
- (b) Given that $\lambda = 3$,
 - (i) find the inverse of **A**,
 - (ii) **hence** solve the equations

$$2x + 3y + 3z = 2x + 2y + 3z = -14x + 5y + 5z = 4.$$
 [6]

4. The roots of the quadratic equation

$$x^2 + 2x + 3 = 0$$

are denoted by α , β . Find the quadratic equation whose roots are

$$\alpha - \frac{1}{\beta^2}, \ \beta - \frac{1}{\alpha^2}.$$
 [8]

5. Use mathematical induction to prove that $4^{2n} - 1$ is divisible by 15 for all positive integers *n*. [6]

6. (a) Express
$$\frac{1}{r(r+2)}$$
 in partial fractions. [3]

(b) Hence show that

$$\sum_{r=1}^{n} \frac{1}{r(r+2)} = \frac{3}{4} - \frac{(2n+3)}{2(n+1)(n+2)}$$
 [4]

7. The function *f* is defined for x > 0 by

$$f(x) = x^{-2x}.$$

- (a) Obtain and simplify an expression for f'(x).
- (b) Find the stationary value of f(x) and show that it is a maximum. [5]
- 8. The transformation T in the plane consists of an anti-clockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point (x 3, y + 1).
 - (a) Show that the matrix representing T is

$$\begin{bmatrix} 0 & -1 & -3 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

[3]

[5]

- (b) Find the coordinates of the fixed point of T. [4]
- (c) The image of the line L under T has equation x + 2y = 3. Find the equation of L. [4]
- 9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = \frac{1}{1-z} \; .$$

- (a) Obtain expressions for u and v in terms of x and y. [4]
- (b) The point P moves along the line y = 1 x. Find the equation of the locus of Q. [2]
- (c) Find the coordinates of the points in the *z*-plane which are transformed to points with the same coordinates in the *w*-plane. [4]