

GCE AS/A level

0980/01

MATHEMATICS – M1 Mechanics

P.M. FRIDAY, 24 January 2014 1 hour 30 minutes

ADDITIONAL MATERIALS

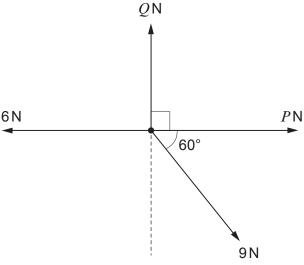
In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- · a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

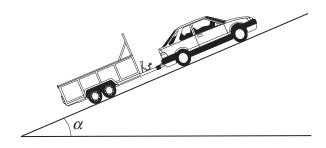
Answer all questions.


Take g as 9.8 ms⁻².

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.


1.	A vehicle travels on a straight horizontal road. As it passes a point A at time $t = 0$, it is with a constant velocity of $18\mathrm{ms^{-1}}$. It continues travelling at this velocity for 48 seconds decelerates at a constant rate for the next $12\mathrm{s}$ until it passes a point B with velocity $3\mathrm{ms}$				
	(a)	Sket	ch a velocity-time graph for the motion of the vehicle between A and B.	[2]	
	(b)	Find	the magnitude of the deceleration of the vehicle.	[2]	
	(c)	Dete	ermine the distance between A and B.	[3]	
2.	A pebble is projected vertically upwards with a speed of 7 ms ⁻¹ from the top of a cliff. It hits ground at the bottom of the cliff 4 seconds later.				
	(a)	Calc	culate the time for the pebble to reach its maximum height.	[3]	
	(b)	Dete	ermine the height of the cliff.	[3]	
3.			mass 65 kg stands in a lift which is ascending with acceleration 1·2 ms ⁻² . Fi of the reaction of the floor of the lift on the man.	nd the [3]	
4.	An object of mass 60 kg lies on a rough plane inclined at an angle of 25° to the horiz coefficient of friction between the plane and the object is denoted by μ . Initially, the object rest. It is then released.				
(a)		Whe	en μ = 0·3, the object slides down the plane. Calculate		
		(i)	the magnitude of the frictional force,		
		(ii)	the acceleration of the object.	[5]	
	(b)		Given that when the object is released it remains stationary, calculate the least possible value of μ . [3]		

Find the value of P and the value of Q.

[5]

6. The diagram below shows a car of mass 1500 kg connected to a trailer of mass 600 kg by means of a rigid tow bar. The car is moving upwards along a slope inclined at an angle α to the horizontal, where $\sin \alpha = \frac{7}{25}$. A constant resistance of magnitude 400 N acts on the car and a constant resistance of 300 N acts on the trailer. The car's engine produces a constant forward force of 8400 N.

- (a) Calculate the acceleration of the car, giving your answer correct to three decimal places. [5]
- (b) Determine the tension in the tow bar.

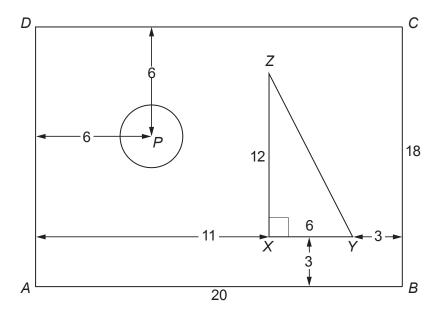
[4]

TURN OVER

980

- 7. A uniform plank AB, of length $4.8 \,\mathrm{m}$ and mass $M \,\mathrm{kg}$, is resting on two smooth supports at points X and Y, such that $AX = BY = 1.2 \,\mathrm{m}$.
 - (a) A person of mass 84 kg stands on the plank at a point which is 0.8 m from B. The reaction of the support at X is of magnitude 156.8 N. Find
 - (i) the value of M,
 - (ii) the magnitude of the reaction of the support at Y. [6]
 - (b) The person of mass 84 kg walks along the plank towards A. At the instant that the plank starts to tilt about X, find
 - (i) the magnitude of the reaction of the support at X,
 - (ii) the distance of the person from X.

[5]


- **8.** An object of mass 1.8 kg moving with speed 3 ms⁻¹ on a smooth horizontal surface collides directly with another object of mass 0.2 kg, which is stationary. After the collision, the two objects move together.
 - (a) (i) Show that the speed of the combined object after the collision is $2.7 \,\mathrm{ms}^{-1}$.
 - (ii) Write down the value of the coefficient of restitution between the objects. [4]
 - (b) The resistance to motion of the combined object is 8 N.
 - (i) Find the magnitude of the deceleration of the combined object.
 - (ii) Calculate the speed of the combined object 0.5 seconds after the collision.
 - (iii) Determine the distance of the combined object from the point of collision when its speed is 2 ms⁻¹. [8]

9. The diagram shows a lamina formed by **removing** a circle with centre *P* from a rectangle *ABCD* made of a uniform material, and **adding** a right-angled triangle *XYZ* made of the same uniform material.

The area of the circle is 21 cm².

The line XY is parallel to AB and $Y\hat{X}Z = 90^{\circ}$.

Dimensions, in cm, are as shown in the diagram.

- (a) Find the distance of the centre of mass of the lamina from
 - (i) AD,

(ii) AB. [10]

(b) When the lamina is suspended freely from a point Q on DC, it hangs in equilibrium with DC making an angle of 45° with the vertical. Find the possible distances of Q from D.

END OF PAPER

BLANK PAGE

BLANK PAGE