

GCE AS/A level

0983/01

MATHEMATICS S1 Statistics

P.M. WEDNESDAY, 25 January 2012 $1^{1\!/_{\!2}}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications)

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. A class contains 8 girls and 6 boys. A sub-committee of 3 members of the class is to be formed and it is decided to select its members at random from the class. Calculate the probability that the sub-committee will contain

boys,	[2]
1	boys,

(b) more boys than girls.

[4]

- 2. The random variable X has a Poisson distribution with mean 5 and the random variable Y is given by Y = 2X + 3. Determine the mean and variance of Y. [5]
- 3. Alun and Ben are snooker players. When they play a game against each other, Alun wins with probability 0.6 and successive games are independent.
 - (a) One evening they play 10 games against each other. Determine the probability that Alun wins
 - (i) exactly 7 games,
 - (ii) at least 6 games. [5]
 - (b) On another evening, find the probability that Alun wins for the first time on the fourth game. [3]
- 4. The events *A* and *B* are such that

P(A) = 0.4, P(B) = 0.2 and P(A|B) = 0.3.

Calculate

- $(a) P(A \cap B), \tag{2}$
- $(b) P(A \cup B),$ [2]
- (c) P(B|A). [2]
- 5. Each of three boxes contains 3 cards. Box A contains 1 red card, Box B contains 2 red cards and Box C contains 3 red cards. One of the boxes is selected at random and a card is chosen at random from that box.
 - (a) Find the probability that a red card is chosen. [3]
 - (b) Given that a red card is chosen, find the probability that Box A was selected. [3]

- 6. The number of emergency admissions, X, into a hospital during each 24-hour period can be modelled by a Poisson distribution with mean 3.6.
 - (a) Without the use of tables, determine
 - (i) P(X = 5),
 - (ii) P(X < 3). [5]

[3]

(b) Using tables, determine $P(3 \le X \le 7)$.

7. The probability distribution of the discrete random variable *X* is given by

X	1	2	3	4	5
P(X = x)	0.1	0.1	0.2	0.2	0.4

- (a) Calculate the mean and variance of X.[5](b) Calculate $E\left(\frac{1}{X^2}\right)$.[3]
- (c) Two independent observations X_1, X_2 are taken from the distribution of X.
 - (i) Calculate $P(X_1 + X_2 = 6)$. [4]
 - (ii) Calculate $P(X_1 = X_2)$. [3]
- 8. The random variable X has the binomial distribution B(16, p), where p < 0.5. Given that the variance of X is 2.56,

(a)	a) calculate the value of p ,		

(b) for this value of p, calculate $E(X^2)$. [3]

TURN OVER

- 4
- 9. The continuous random variable X has cumulative distribution function F given by

$$F(x) = 0$$
for $x < 1$,

 $F(x) = k(x^2 - x)$
for $1 \le x \le 3$,

 $F(x) = 1$
for $x > 3$,

where k is a constant.

(a) (i) Show that $k = \frac{1}{6}$.

- (ii) Find the probability that the value of *X* is greater than 2.
- (iii) Find the median of *X*.
- (b) (i) Find an expression for f(x), valid for $1 \le x \le 3$, where f denotes the probability density function of X.
 - (ii) Determine E(X). [6]

[8]