

GCE AS/A level

983/01

MATHEMATICS S1 Statistics

A.M. THURSDAY, 11 June 2009 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications)

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

- 1. A school committee contains 9 members of which 2 are teachers, 3 are boys and 4 are girls. A subcommittee of 3 members is to be formed and it is decided to choose the 3 members at random. Calculate the probability that the sub-committee contains
 - (a) no teachers, [2]
 - $(b) \quad 1 \text{ teacher, 1 boy and 1 girl.}$ [3]
- 2. Events *A* and *B* are such that

$$P(A) = 0.2, P(B) = 0.3.$$

- (*a*) Evaluate $P(A \cup B)$ when
 - (i) *A* and *B* are mutually exclusive,
 - (ii) *A* and *B* are independent. [5]
- (b) Given that $P(A \cup B) = 0.4$, calculate P(A|B). [4]
- (c) What is the smallest possible value for $P(A \cup B)$ and when does this occur? [2]
- **3.** The random variable *X* has the binomial distribution B(25, 0.8).
 - (a) State the mean and variance of X. [2]
 - (*b*) The random variable *Y* is defined by

$$Y = aX - b$$

where *a*, *b* are positive constants.

- (i) Given that a = 2, b = 3, find the mean and variance of Y.
- (ii) Given that E(Y) = 0 and Var(Y) = 1, find the values of *a* and *b*. [8]
- 4. Dafydd is a fisherman. When he fishes in a certain lake, the number of fish that he catches in *t* hours has a Poisson distribution with mean 0.6t.
 - (a) One morning, he fishes for 4 hours. Find the probability that he catches
 - (i) exactly 3 fish,(ii) at least 3 fish. [5]
 - (b) One day, the probability of Dafydd catching no fish was 0.5. For how long did he fish? [4]

- 5. It is known that 5% of the population suffer from a certain disease. When a test is applied to a person with the disease, it gives a positive response with probability 0.99. When the test is applied to a person who does not have the disease, it gives a positive response with probability 0.02. The test is applied to a randomly selected member of the population.
 - (a) Find the probability that a positive response is obtained. [3]
 - (b) Given that a positive response is obtained, find the probability that the person has the disease. [3]
- 6. The probability distribution of the discrete random variable *X* is given in the following table.

x	1	2	3	4	5
P(X = x)	0.1	0.2	0.3	0.3	0.1

- (a) Evaluate
 - (i) E(X), (ii) Var(X). [6]
- (b) Given that X_1, X_2 are independent observations on X, calculate

$$P(X_1 = X_2).$$
[3]

- 7. (a) Ann tosses 3 fair coins and Bob tosses 2 fair coins. Find the probability that Ann obtains more heads than Bob. [6]
 - (b) Ceri and Mair now toss a fair coin alternately, starting with Ceri. The winner is the one who obtains the first head. Find the probability that Mair
 - (i) wins on her first toss,
 - (ii) wins on her second toss,
 - (iii) is the winner.
- 8. The continuous random variable *X* has probability density function *f* given by

 $f(x) = \frac{1}{2} (1 + 2x) \qquad \text{for } 0 \le x \le 1,$ $f(x) = 0 \qquad \text{otherwise.}$

- (a) Calculate E(X).
 - (b) Obtain an expression for F(x), valid for $0 \le x \le 1$, where F denotes the cumulative distribution function of X. [3]
 - (c) Calculate
 - (i) $P(0.4 \leq X \leq 0.5),$
 - (ii) the median of X.

[5]

[4]

[7]