WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU

General Certificate of Education

Tystysgrif Addysg Gyffredinol

Advanced Level/Advanced Subsidiary

Safon Uwch/Uwch Gyfrannol

MATHEMATICS S1

Statistics

Specimen Paper 2005/2006

 $(1\frac{1}{2} \text{ hours})$

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

A calculator may be used for this paper.

A formula booklet is available and may be used.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1.			four red balls, three blue balls and two yellow balls. Three of these ed at random without replacement . Find the probability that						
	(a)	the thr	ree balls are all of different colours,	[3]					
	<i>(b)</i>	the thr	ree balls are all of the same colour.	[4]					
2.	The random variable X has a Poisson distribution with mean 4. The random variable Y is defined by								
Y = 4X + 1.									
	Find th	ne mear	and standard deviation of Y.	[6]					
3.	The events A and B are independent such that $P(A) = 0.7$ and $P(B) = 0.4$.								
	(a)	$P(A \cup B)$.	[3]						
	(b) Find the probability that								
		(i)	exactly one of A and B will occur,						
		(ii)	neither A nor B will occur.	[6]					
4.	(a)	The number of cars sold per week by a car dealer can be modelled a Poisson random variable with mean 6. Using the appropriate table, find probability that, during a randomly chosen week, the dealer sells							
		(i)	at least 4 cars,						
		(ii)	exactly 6 cars.	[5]					
	(b) The dealer also sells motorbikes. Assuming that the number of mosold per week is also Poisson distributed, but with mean 1.12, probability that, in a randomly chosen week, the dealer sells								
		(i)	exactly 2 motorbikes,						
		(ii)	at least 2 motorbikes.	[5]					

- 5. Of the eggs received daily at a packing station, 50% come from Farm A, 30% come from Farm B and 20% come from Farm C. 15% of the eggs from Farm A are white, 20% of the eggs from Farm B are white and 25% of the eggs from Farm C are white. One of the eggs received on a particular day is chosen at random.
 - (a) Calculate the probability that the chosen egg is white. [3]
 - (b) Given that the chosen egg is white, calculate the probability that it came from Farm A. [3]
- 6. Independently for each seed of a particular plant that is sown, the probability that the seed will germinate is 0.8. Ten such seeds are sown, and X denotes the number of these seeds that will germinate.
 - (a) Calculate the mean and standard deviation of X. [3]
 - (b) Find
 - (i) P(X = 8),

(ii)
$$P(4 \le X \le 7)$$
. [6]

7. The following table gives the probability distribution of the discrete random variable X.

X	1	2	3	4
P(X = x)	0.2	0.3	0.2	0.3

- (a) Find the mean and variance of X. [5]
- (b) Evaluate $E\left(\frac{1}{X}\right)$. [3]
- (c) Given that X_1, X_2 are two independent observations of X, evaluate

$$P(X_1 + X_2 = 4) ag{4}$$

8. The probability density function of the time, *X* hours, that a manager spends on the telephone during the day is given by

$$f(x) = \frac{1}{12}(8x - x^3)$$
, for $0 \le x \le 2$
 $f(x) = 0$, otherwise.

- (a) Evaluate E(X). [4]
- (b) The cumulative distribution function of *X* is denoted by F.
 - (i) Obtain an expression for F(x), valid for $0 \le x \le 2$.
 - (ii) Find the probability that the manager spends more than 1 hour on the telephone on a randomly chosen day.
 - (iii) Show that the median, m, of X satisfies the equation

$$m^4 - 16m^2 + 24 = 0$$
.

Hence evaluate m. [12]