

GCE AS/A level

985/01

MATHEMATICS S3 STATISTICS 3

P.M. TUESDAY, 22 June 2010 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications)

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

- 1. Jamie is given a coin and he wishes to estimate p, the probability of its landing 'heads' when tossed. He therefore tosses the coin 250 times and obtains 140 'heads'.
 - (a) Calculate an unbiased estimate of p. [1]
 - (b) Calculate an approximate 99% confidence interval for p. [5]
 - (c) State, with a reason, whether or not your results suggest that the coin is biased. [1]
- 2. A grower sells melons and claims that their mean weight is 1 kg. A shopkeeper buys a large number of these melons and he believes that the mean weight is less than 1 kg. In order to investigate his belief, he selects a random sample of 100 melons and he determines the weight, x kg, of each one. He produces the following summary statistics.

$$\sum x = 99 \cdot 6, \quad \sum x^2 = 99 \cdot 24$$

- (a) State suitable hypotheses to test the shopkeeper's belief. [1]
- (b) Calculate the *p*-value of these results and state your conclusion. [7]
- (c) State what the Central Limit Theorem enabled you to assume in your solution to (b). [1]
- **3.** A bag contains six coins, of which one is a 20p coin, three are 10p coins and two are 5p coins. A random sample of three of these coins is taken **without replacement**. Determine the sampling distribution of the total value of the coins in the sample. [9]
- **4.** A firm specialises in the manufacture of accurate watches. As part of a quality control procedure, 12 watches were selected and the number of seconds gained over a period of a week was recorded for each watch. The results were as follows.
 - 6, 8, -5, 3, 4, -2, 6, 5, -8, 1, -4, 4

You may assume that this is a random sample from the N(μ , σ^2) distribution.

- (a) Calculate unbiased estimates of μ and σ^2 . [4]
- (b) Calculate a 95% confidence interval for μ . [5]
- (c) The firm claims that 'on average, this type of watch is accurate to within 5 seconds after a week'. State, with a reason, whether or not your answer to (b) supports this claim. [1]

5. The director of a large chain of hotels wishes to compare the mean lifetimes of two types of electric light bulbs, Type A and Type B. He therefore determines the lifetime, *x* thousand hours, of each of 75 randomly selected bulbs of Type A and the lifetime, *y* thousand hours, of each of 75 randomly selected bulbs of Type B. He obtains the following results.

$$\sum x = 82.6$$
, $\sum x^2 = 92.4$, $\sum y = 86.3$, $\sum y^2 = 102.2$

- (a) State suitable hypotheses for a two-sided test. [1]
 (b) Calculate the *p*-value of these results. [10]
- (b) Calculate the p value of these results.
- (c) Interpret your *p*-value in context.
- 6. The probability distribution of the discrete random variable X is given in the following table, where $0 < \theta < \frac{1}{3}$.

x	-1	0	1
P(X = x)	θ	20	$1-3\theta$

(a) Obtain an expression for E(X) and show that

$$\operatorname{Var}(X) = 2\theta(3 - 8\theta).$$
^[3]

[1]

In order to estimate θ , a random sample of *n* observations of *X* is taken.

(b) The mean of the observations in the sample is denoted by \overline{X} . Show that

$$U = \frac{1 - \overline{X}}{4}$$

is an unbiased estimator for θ and obtain an expression for the variance of U. [4]

(c) The number of observations in the sample equal to zero is denoted by N. Show that

$$V = \frac{N}{2n}$$

is an unbiased estimator for θ and obtain an expression for the variance of V. [5]

(*d*) Show that

$$\operatorname{Var}(V) - \operatorname{Var}(U) > 0$$

State, with a reason, which is the better estimator, *U* or *V*. [3]

TURN OVER

3

7. The length, y metres, of an elastic string and its tension, x Newtons, are related by an equation of the form $y = \alpha + \beta x$. In order to estimate the values of α and β , the values of y were measured for six different values of x. The following results were obtained.

x	10	20	30	40	50	60
у	2.02	2.23	2.39	2.56	2.77	2.95

The values of x are exact but the values of y are subject to independent normally distributed measurement errors with mean zero and standard deviation 0.02 metres.

- (a) Calculate least squares estimates for α and β . [8]
- (b) Determine a 90% confidence interval for α . [5]